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In the previous papers ([8] , [10]), we introduced the locally convex topology to simplicial 

complexes and real vector spaces. In this paper, we deal with continuity of maps and product 

spaces m vector spaces and srmplicial complexes with the locally convex topology. Further, we 

deal with subdivisions and neighborhood retracts of simplicial complexes with the locally convex 

topology . 

S1. Introductiom 

In the previous paper [8], we introduced a locally convex topology to simplicial 

complexes, which is the strongest locally convex topology contained in the Whitehead 

topology. We called it the locally convex topology. The study of this topology was 

motivated by the fact that the Whitehead topology is not necessarily locally 

convex. The locally convex topology offull simplicial complex was applied to the closed 

embedding theorem; that is, each stratifiable space is embedded to an AR(stratifiable)-

space as a closed subspace ([9])･ The fact that the Whitehead topology is not necessarily 

locally convex was recognized by the following ([4; pp. 416, 4.3])-

PRoposmoN 1.1. There is a real vector space with thefinite topology such that it is 

neither a linear topological space nor a locally convex space. 

In Proposition 1.1 the finite topology in a real vector space is the weak topology 

determined by the Euclidean topology on each finite dimensional linear subspace (cf. [4; 

pp. 416, Definition 4.2]). On the other hand, by the fact of Proposition 1.1 the study of 

the other previous paper [10] was motivatedj that is, in a real vector space E there exists a 

topology jcr such that (E, jcr) is a linear topological space and Jcr is the strongest locally 

convex topology contained in the finite topology. (We also call this topology jcr the 

locall.v convex topology. From now on, we use "the l.c, topology" as an abbreviation of 

the locally convex topology.) 

In this paper, by considering the fact that a simplicial complex with the I .c. topology 

is a subspace of some real vector space with the l.c. topology, we show the following 
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topology to a locally convex linear topological space is continuous. Further, we deal 

with contmuity of linear maps in simplicial complexes. In section 4, we show that the 

cartesian product of two real vector spaces E and F with the l.c. topology is 

homeomorphic to the vector space E x F with the l.c, topology. Further we show that 

the cartesran product of two simplicial complexes with the l.c. topology is a simplicial 

complex with the l.c. topology. In section 5, we show that any subdivision ofasimplicial 

complex with the l.c. topology is a simplicial complex with the l.c. topology which is 

homeomorphic to the original one. In section 6, we show that every subcomplex of a 

simplicial complex Kwith the l.c. topology is a neighborhood retract ofK. This theorem 

was announced in [8 ; Theorem 4. I], but as we only gave an outline of the proof in [8], we 

give a complete proof of the theorem. 

Throughout this paper, N and R denote the sets of all natural numbers and all real 

numbers, respectively. For M1~spaces and stratifiable spaces, see [2] and [1], 

respectively. For ANR (or AR) and linear topological spaces, see [5] and [7], 

respectively. Every terminology is referred to [4] or [7], unless otherwise stated 

The author wishes to express his gratitude to Dr. K. Sakai for his valuable comments 

and discussions. 

S2. PreliFnimaries 

In the previous paper [10], we introduced the l.c. topology to a real vector 

space. This is useful because a real vector space with the l.c. topology is a locally convex 

linear topological space (cf. Proposition 1.1 and [10; Theorem 2.4]). Note that a 

countable dimensional vector space with the finite topology is a locally convex linear 

topological space (cf. [6; Theorem] or [3; Lemma 4.4]) 

We now refer to the construction of the l.c. topology in a real vector space ([10; 

Construction 2.1]) so that it can be used in this paper. 

CONSTRUCTION 2.1. Let E be a real vector space with a Hamel basis ~ = {u.: oceA} 

and let (~~ be all n-dimensional linear subspaces of E generated by n elements of ~. For 

each cceA, pick up an n.eN. Let U1 = U{{tu.: Itl 

U~_ I has been defined for n >~ 2, Iet U~ = U {conv (Fn U~_ I ): Fe~.}, where conv A is the 

convex hull of A. Let U(n.: ceeA)=U{U~: neN} and i~f be all U(n.: oceA). 

By [10; Lemma 2.2], ~~/ satisfies the local base conditions. Therefore by [7; 

Theorem 5.1], jcr= { WcE: For each xe W, there is Uec~/ with x + Uc W} is a vector 

topology (i.e. (E, J6r) is a linear topological space) and i~f is a local base for Jcr. We denote 

the space E equipped with this topology jcr by IElc' Furthermore we obtained the 

following result ([10; Theorem 2.4]). 

THEOREM 2.2. (E, jcr) is a locally convex linear topological space, and jcr is the 

strongest locally convex topology contained in the finite topology. 
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On the other hand, for a full simplicial complex K, we introduced the l.c. topology 

([8]; also see [9])･ We denote the space K equipped with the l.c. topology by 

IKlc' (Note that IKlwis the space K with the Whitehead topology.) The l.c. topology of 

K is characterized by the strongest locally convex topology contained in IKlw' We 

embed K in a suitable vector space E with the l.c. topology so that its vertices are at the 

umt points of E. By the definitions and constructions of the l.c. topology in vector 

spaces or full simplicial complexes ([8], [10]), it is easily verified that IKIC is a subspace of 

IElc' Therefore we use the same name "the l.c. topology" in vector spaces and full 

simplicial complexes. In general, if a simplicial complex H has a relative topology of the 

l.c. topology in a full simplicial complex containing H, we call that the space H has the l.c 

topology and denote by IH]c' 

In the previous papers [8] and [10], we obtained the following results: 

THEOREM 2.3. Let E be a real vector space and K a full simplicial complex. Then 

(1) [8; Theorem 3.2] IKlc is an Ml~space. 

(2) [8; Theorem 3.3] IKlc is AR(stratifiable). 

(3) [10; Theorem 2.8] IElc is an Ml~space. 

(4) [10; Theorem 2.9] IEIC is AR(stratifiable) 

Furthermore, we have 

THEOREM 2.4. Let H be a silnplicial complex. Then IHIC is an M1~space. 

PROOF. H can be embedded in a full simplicial complex K with the same 
vertics. To prove this theorem, we use the notation in the proof of [8; Theorem 

3.2]. Let a~f~(H)={UnH: Ue~~f~} and ~fo(H)={UnH: Ue~~/o}･ Then it is obvious 
that {i~/'""(H): m, neH}U{i~fo(H)} is a base of IHlc' Therefore it is sufficient to prove that 

each ~/~(H) and c~fo(H) are closure preservmg m IHI 

Let c~f ci~/~(H), xeH and x~cIHU for each Uei~/. Then there rs a snnplex S of H 

such that xeS and Se~k for some keN, and there is U'e~~f~ with U'nH=U. Since 
x~cIHU and U'nH= U, it is easily verified that x~cIKU'. Let i~/' = {U'ei~/~: U'nH= U 

for Ue~~/}. Since i~/~ is closure preserving by the proof of [8; Theorem 3.2], there is a 

neighborhood W' ofx in IKIC Such that W'nU' = ipfor each U'e~~/'. Then W= WnHis a 

neighborhood of x in IHlc Such that WnU=ip for each Uei~f. Thus ~~/~(H) is closure 

preserving. The closure preservingness of c~fo(H) is much the same 

S3･ Comtinuity of limear maps 

Contmuity of a map from a linear space with the finite topology (resp. a simplicial 

complex with the Whitehead topology) is verified by continuity of the restriction to each 

finrte dimensional linear subspace (resp. each simplex). But in the l.c. topology, there do 

not exist such good and simple verifying methods, because a vector space (or a simplicial 

complex) wrth the l.c. topology need not be a k-space (cf. [8; Proposition 2.3]). The 
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following theorems are useful to verify continuity of maps from vector spaces (or 

simplicial complexes) with the l.c. topology 

THEOREM 3.1. Let E be a vector space and F a locally convex linear topological 

space. Then every linear map f: IElc~>F is continuous. 

PROoF. By [7; pp. 37, 5.3], it is sufficient to prove the continuity offat the origin O 

ofE. Let Vbe any locally convex neighborhood of0=f(O)in F. Using the notation of 

Construction 2.1, for each oceA, there exists an n.eN such that f({tu.: Itl 

because f is linear. By the convexity of V, f(U(n*: oceA))c V. This completes the 

proof. 

THEOREM 3.2. Let K and L be two simplicial complexes. Then every linear mapf 

IKlc~>lL Ic is continuous, where a linear map of a simplicial complex means that the map is 

linear on each simplex 

PROOF. Let ~ = {u.: oceA} and ~' be the sets of all vertices of K and L, 

respectively. Further, Iet E and F be two real vector spaces which have the bases ~ and 

~' as their Hamel bases, respectively. Then IKlc and ILIC are the subspaces of IElc and 

IFlc, respectively. Furthermore, we define a map g: IEIC~>lFlc by 

g(s'u. + t'up) =sf(u.) + tf(up) (s, teR, u., upe~). 

Then it is easily verified that g is a linear map and gl IKjc=f By Theorem 3.1, g is 

continuous. Therefore f is continuous. 

S4. Product spaces 

In this section, we shall show that for two vector spaces E and F, IEIC X IFlc is 

homeomorphic to IE x Flc; further that for two simplicial complexes K and L, IKjc X IL Ic 

is homeomorphic to IK x L Ic' These results show that the l.c. topology behaves very 

well for the cartesian product 

THEOREM 4. 1. Let E andFbe two vector spaces. Then theproduct space IElc X IFIC 

is homeomorphic to IE x Flc' 

PRooF. Let Id: IElcXlflc~'1ExJlc be the identity. Then, by Theorem 3.1, it is 

clear that Id- I is continuous. Next, Iet ~ = {u.: QceA} and ~' = {vp: peM} be Hamel 

bases of E and F, respectively. Then, ~l = {u~: c(eA} U{vp: peM} is a Hamel basis of E 

x F, where u~ = (u*, O)and vp = (O, vp)for each oceA and peM. Now, we shall prove that 

ldis continuous. Let U(n*:o(eA+M) be a canonical convex neighborhood ofthe origin 

in IExFlc' Then V= U(2n.: oceA) and W= U(2np: peM) are neighborhoods of the 
origins of E and F, respectively. Pick up any (x, y)eV x W. Then, there are some sets 

{ocl" "' c(~} cA, {pl, ... , pk} CN and {a a~, bl,..., bk} c R such that 
1" " ' 
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x = ~ ai(1/2na')uai' y= ~ bi(1/2npi)vpi' m 

i=1 t i=1 
m ~ lbkl ~ Iail 

i= I i= 1 
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Therefore, since 

(x, y) = ~ (ai/2) (1/n..)u~.+ ~ (bi/2) (1/npi)vpi' 

i=1 ' ' i=1 

and 

~ 
~ Iai/21 + ~ Ibi/21 

i=1 i=1 

(x, y) belongs to U(n.: oceA+M). Thus Id(Vx W) c U(n oceA+M) This completes 
the proof. 

THEOREM 4.2. Let K and L be tvvo simplicial complexes. Then the product space 

IKIC X ILlc is homeomorphic to IK x L Ic' 

PROOF. Let E and F be two vector spaces such that K and L are naturally 
embedded to E and F, respectively. Then, IKlc and IL Ic are subspaces of IElcand IFlc' 

respectively. Further, IKXL Ic is a subspace of IExFlc' Therefore, by Theorem 4.1, 

ld.' IKlc X IL Ic~>lKx L Ic is a homeomorphism. This completes the proof 

S5. Subdivisions 

In this section, we consider subdivisions of simplicial complexes with the l.c 

topology. For subdivisions, we have the following 

THEOREM 5.1. IfSd: K~,K is a subdivision ofa simplicial complex K, and tfK and K 

are given the l.c. topology, then Sd is a homeomorphism. 

PROoF. Since Sd- I maps each closed simplex ofKlinearly, by Theorem 3.2 Sd- I is 

continuous. Next, we shall prove that Sd is continuous. Pick up a point xeKand a 

neighborhood U of Sd(x)in K. Then there is a simplex S with xeS. Suppose that S is 

subdivised to SIUS2U" 'US~ in K. ･ Then there is a convex neighborhood Vs Of x in S 

such that Sd( Vs) c Un (SI U " ' US~). For any simplex T with S as its face, by the same 

way there is a convex neighborhood VT Of x in T such that Sd(VT)c U and VTnS 

= Vs' By the constructions of neighborhoods in simplicial complexes (cf. [8], proof of 

Theorem 3.2), the union V of these VT's is a neighborhood of x in K such that Sd( V ) 

c U. This completes the proof 



48 Takuo MIWA 

S6. Neighborhood retracts in simplicial complexes 

The following theorem was announced in [8; Theorem 4.1]. In this section, we 

shall give a complete proof 

THEOREM 6.1. Let Kbe a simplicial complex and H a subcomplex ofK. Then IHIC is 

a neighborhood retract of IKlc' 

PROOF. Consider the barycentric subdivisions K and lr of K and H, 
respectively. Then, by Theorem 5.1, IKlc and IHlc are homeomorphic to IK]c and IHlc, 

respectively. Let {u.: QceA} denote the set of all vertices of K. A point xeK rs 

determined by its barycentric coodinates {x. : oceA}, where 

~ x.= 1. 
*~A 

Let M c A be defined by M = {cceA : u.eH'} and consider the real-valued function f: K' 

->1= [O, I] defined by 

f(x)= ~ xu. 
P=M 

Since f is clearly linear on each closed simplex of K', by Theorem 3.2 j~is contmuous on 

IK'Ic' Then the set U = {xeK':f(x) >0} is an open neighborhood of IH'Ic in IK'Ic 

Next, define a map r: U->IH'Ic by taking as the image r(x) of a point xe U the point 

whose barycentric coordmates are 

x./f(x) (if oceM) 
[r(x)]. O (if oceA-M). 

We shall prove that r is continuous. For a point xeU, Iet W be any convex 
neighborhood of r(x) in 11Tlc, and let S be a simplex of K with xeS. Smce rl UnS rs 

clearly continuous, there is a convex neighborhood Vs of x in UnS such that r(Vs) 

c W. For any simplex T with S as its face, by the definition of r and the convexity of W, 

there is a convex neighborhood VT ofxin Un Tsuch that r(VT)c Wand VTnS= Vs' By 

the constructions of neighborhoods in simplicial complexes with the l.c. topology (cf. [8], 

proof of Theorem 3.2), the union Vof these VT's is a neighborhood of x in U such that r( V ) 

c W. Thus, r is'aretraction. Therefore IHlcis a neighborhood retract of IKlc' Smce 

IKIC and IHIC are homeomorphic to IKIC and IHlc, respectively, this completes the proof 

By this theorem, Theorems 2.3 (2) and 2.4, we have the following corollary, which 

was announced in [8; Corollary 4.2] 

COROLLARY 6.2. Every simplicial complex with the l.c. topology is ANR(MI ) 
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