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In the previous papers ([8], [10]), we introduced the locally convex topology to simplicial
complexes and real vector spaces. In this paper, we deal with continuity of maps and product
spaces in vector spaces and simplicial complexes with the locally convex topology. Further, we
deal with subdivisions and neighborhood retracts of simplicial complexes with the locally convex

topology.

§1. Introduction

In the previous paper [8], we introduced a locally convex topology to simplicial
complexes, which is the strongest locally convex topology contained in the Whitehead
topology. We called it the locally convex topology. The study of this topology was
motivated by the fact that the Whitehead topology is mnot necessarily locally
convex. Thelocally convex topology of full simplicial complex was applied to the closed
embedding theorem; that is, each stratifiable space is embedded to an AR (stratifiable)-
space as a closed subspace ([9]). The fact that the Whitehead topology is not necessarily
locally convex was recognized by the following ([4; pp. 416, 4.3]):

PROPOSITION 1.1.  There is a real vector space with the finite topology such that it is
neither a linear topological space nor a locally convex space.

In Proposition 1.1 the finite topology in a real vector space is the weak topology
determined by the Euclidean topology on each finite dimensional linear subspace (cf. [4;
pp. 416, Definition 4.2]).  On the other hand, by the fact of Proposition 1.1 the study of
the other previous paper [10] was motivated; that is, in a real vector space E there exists a
topology 7 such that (E, ) is a linear topological space and J is the strongest locally
convex topology contained in the finite topology. (We also call this topology Z the
locally convex topology. From now on, we use “the l.c. topology ” as an abbreviation of
the locally convex topology.)

In this paper, by considering the fact that a simplicial complex with the 1.c. topology
is a subspace of some real vector space with the Lc. topology, we show the following
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results: In section 3, we show that every linear map from a real vector space with the l.c.
topology to a locally convex linear topological space is continuous. Further, we deal
with continuity of linear maps in simplicial complexes. In section 4, we show that the
cartesian product of two real vector spaces £ and F with the lc. topology is
homeomorphic to the vector space E x F with the L.c. topology. Further we show that
the cartesian product of two simplicial complexes with the l.c. topology is a simplicial
complex with the Lc. topology. In section 5, we show that any subdivision of a simplicial
complex with the l.c. topology is a simplicial complex with the Lc. topology which is
homeomorphic to the original one. In section 6, we show that every subcomplex of a
simplicial complex K with the L.c. topology is a neighborhood retract of K. This theorem
was announced in [8; Theorem 4.17, but as we only gave an outline of the proofin [8], we
give a complete proof of the theorem.

Throughout this paper, N and R denote the sets of all natural numbers and all real
numbers, respectively. For M, -spaces and stratifiable spaces, see [2] and [1],
respectively. For ANR (or AR) and linear topological spaces, see [5] and [7],
respectively. Every terminology is referred to [4] or [7], unless otherwise stated.

The author wishes to express his gratitude to Dr. K. Sakai for his valuable comments
and discussions.

§2. Preliminaries

In the previous paper [10], we introduced the Lc. topology to a real vector
space. This is useful because a real vector space with the L.c. topology is a locally convex
linear topological space (cf. Proposition 1.1 and [10; Theorem 2.4]). Note that a
countable dimensional vector space with the finite topology is a locally convex linear
topological space (cf. [6; Theorem] or [3; Lemma 4.4]).

We now refer to the construction of the Lc. topology in a real vector space ([10;
Construction 2.1]) so that it can be used in this paper.

ConsTRUCTION 2.1.  Let E be a real vector space with a Hamel basis 8 = {u,: ac A}
and let &, be all n-dimensional linear subspaces of E generated by n elements of 4. For
each e, pick upann,eN. Let U; =(J{{m,: |t|<1/n,}: aeA}. By using induction, if
U,.-, has been defined for n>2, let U,=\){conv(FNU,_,): Fe&,}, where conv A4 is the
convex hull of 4. Let U(n,: aeA)=){U,: neN} and % be all U(n,: acA).

By [10; Lemma 2.2], % satisfies the local base conditions. Therefore by [7;
Theorem 5.1], 7 ={W < E: For each xe W, there is Ue# with x+Uc W} is a vector
topology (i.e. (E, 77) is a linear topological space) and % is a local base for 7. We denote
the space E equipped with this topology by |E|c.. Furthermore we obtained the
following result ([10; Theorem 2.4]).

THEOREM 2.2. (E, 7) is a locally convex linear topological space, and T is the
strongest locally convex topology contained in the finite topology.
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On the other hand, for a full simplicial complex K, we introduced the l.c. topology
([81; also see [9]). We denote the space K equipped with the lc. topology by
|K|e. (Notethat |K|y, is the space K with the Whitehead topology.) Thel.c. topology of
K is characterized by the strongest locally convex topology contained in |K|y. We
embed K in a suitable vector space E with the l.c. topology so that its vertices are at the
unit points of E. By the definitions and constructions of the lLc. topology in vector
spaces or full simplicial complexes ([8], [10]), it is easily verified that |K| is a subspace of
|Elc. Therefore we use the same name “the Lc. topology” in vector spaces and full
simplicial complexes. In general, if a simplicial complex H has a relative topology of the
l.c. topology in a full simplicial complex containing H, we call that the space H has the Lc.
topology and denote by |H|.

In the previous papers [8] and [10], we obtained the following results:

TueoreM 2.3. Let E be a real vector space and K a full simplicial complex. Then
(1) [8; Theorem 3.2] |K|¢ is an M,-space.

(2) [8; Theorem 3.3] |K|c is AR(stratifiable).

(3) [10; Theorem 2.8] |E|c is an M -space.

(4) [10; Theorem 2.9] |E|. is AR(stratifiable).

Furthermore, we have

THEOREM 2.4. Let H be a simplicial complex. Then |H|c is an M,-space.

ProoF. H can be embedded in a full simplicial complex K with the same
vertics. To prove this theorem, we use the notation in the proof of [8; Theorem
32]. Let 4™H)={UnH: Ue} and U (H)={UNH: Ue%,}. Then it is obvious
that {@"(H): m, ne H}){%o(H)} is a base of |H|c. Therefore it is sufficient to prove that
each #"™(H) and % ,(H) are closure preserving in |H|c.

Let # cU™H), xeH and xécl,U for each Ue#. Then there is a simplex S of H
such that xeS and Sex’, for some keN, and there is U'e# with UnH=U. Since
xéclyU and U'NH =U, it is easily verified that xécl U'. Let%'={U'e¥;: UNH=U
for Ue}. Since T is closure preserving by the proof of [8; Theorem 3.2], there is a
neighborhood W' of x in |K| such that WU’ = ¢foreach U'e%’. Then W=W'NH isa
neighborhood of x in |H|¢ such that WNU = ¢ for each Ue%. Thus %;(H) is closure
preserving. The closure preservingness of %(H) is much the same.

§3. Continuity of linear maps

Continuity of a map from a linear space with the finite topology (resp. a simplicial
complex with the Whitehead topology) is verified by continuity of the restriction to each
finite dimensional linear subspace (resp. each simplex). Butin thel.c. topology, there do
not exist such good and simple verifying methods, because a vector space (or a simplicial
complex) with the Lc. topology need not be a k-space (cf. [8; Proposition 2.3]). The
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following theorems are useful to verify continuity of maps from vector spaces (or
simplicial complexes) with the l.c. topology.

THEOREM 3.1. Let E be a vector space and F a locally convex linear topological
space. Then every linear map f: |E|c— F is continuous.

Proor. By [7;pp. 37, 5.3], it is sufficient to prove the continuity of fat the origin 0
of E. Let V' be any locally convex neighborhood of 0=/ (0)in F. Using the notation of
Construction 2.1, for each ae, there exists an n,eN such that f({tu,: |f|<1/n,})=V
because fis linear. By the convexity of V, f(U(n,: aeA))<= V. This completes the
proof.

THEOREM 3.2. Let K and L be two simplicial complexes. Then every linear map f-
|Klc—|L |c is continuous, where a linear map of a simplicial complex means that the map is
linear on each simplex.

PrOOF. Let #={u,: acA} and & be the sets of all vertices of K and L,
respectively. Further, let E and F be two real vector spaces which have the bases % and
#' as their Hamel bases, respectively. Then K| and |L| are the subspaces of |E|. and
|Flc, respectively. Furthermore, we define a map g: |E|.—|F|; by

g(s-ug+tug)=sf(u)+tf(ug) (5, teR, u,, uzeR).

Then it is easily verified that g is a linear map and g||K|c=f. By Theorem 3.1, g is
continuous. Therefore fis continuous.

§4. Product spaces

In this section, we shall show that for two vector spaces E and F, |E|c x |F|c is
homeomorphic to |E x F|¢; further that for two simplicial complexes K and L, |K|¢ x |L|¢
is homeomorphic to |K x L|.. These results show that the l.c. topology behaves very
well for the cartesian product.

THEOREM 4.1.  Let E and F be two vector spaces. Then the product space |E|. x |F|¢
is homeomorphic to |E x F|c.

Proor. Let Id: |E|c x |Flc—|E X F|c be the identity. Then, by Theorem 3.1, it is
clear that Id~! is continuous. Next, let 8= {u,: acA} and B’ ={vy: fe M} be Hamel
bases of E and F, respectively. Then, B, = {u,: ae A}(J{v}: Be M} is a Hamel basis of £
x F, where u, = (u,, 0) and v = (0, v5) for each e 4 and fe M. Now, we shall prove that
Idis continuous. Let U(n,: ae A+ M) be a canonical convex neighborhood of the origin
in |[Ex Fle. Then V=U(2n,: aeA) and W=U(2n,: fe M) are neighborhoods of the
origins of E and F, respectively. Pick up any (x, y)eV x W. Then, there are some sets
{01,000 0t =4, {By,...., B} =N and {ay,..., a,, by,..., b} = R such that
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m k
xX= Z ai(l/znai)uai’ y= Z bi(1/2nﬂi)vpi,
i=1 i

i=1

m k
Y laj<1 and Y |bl<1.
i=1 i=1

Therefore, since

(=3 @2 (Unit + 3, (/2 (g,

and

m k
'21 la;/2]| + _Zl |b/2| <1,

(x, y) belongs to U(n,: acA+M). Thus Id(V x W)c U(n,: ae A+ M). This completes
the proof.

THEOREM 4.2.  Let K and L be two simplicial complexes. Then the product space
IK|c % |L|c is homeomorphic to |K x L.

PrOOF. Let E and F be two vector spaces such that K and L are naturally
embedded to E and F, respectively. Then, |Klc and |L | are subspaces of | E|c and |Fl,
respectively. Further, |[Kx L | is a subspace of |E x F¢. Therefore, by Theorem 4.1,
1d: |Klg X |L |c=|K x L |¢ is a homeomorphism. This completes the proof.

§5. Subdivisions

In this section, we consider subdivisions of simplicial complexes with the l.c.
topology. For subdivisions, we have the following:

THEOREM 5.1.  If Sd: K— K’ is a subdivision of a simplicial complex K, and if K and K’
are given the l.c. topology, then Sd is a homeomorphism.

Proor. Since Sd™ ! maps each closed simplex of X’ linearly, by Theorem 3.2 Sd ™! is
continuous. Next, we shall prove that Sd is continuous. Pick up a point xeK and a
neighborhood U of Sd(x)in K'. Then there is a simplex S with xeS. Suppose that Sis
subdivised to S;(JS,()-+-S, in K'.- Then there is a convex neighborhood ¥y of x in S
such that Sd(Vs)< UN(S,U:--US,). For any simplex T with S as its face, by the same
way there is a convex neighborhood V; of x in T such that Sd(V;)c U and VyNS
=Vs. By the constructions of neighborhoods in simplicial complexes (cf. [8], proof of
Theorem 3.2), the union ¥ of these ¥;’s is a neighborhood of x in K such that Sd(V)
< U. This completes the proof.
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§6. Neighborhood retracts in simplicial complexes

The following theorem was announced in [8; Theorem 4.1]. In this section, we
shall give a complete proof.

THECREM 6.1.  Let K be a simplicial complex and H a subcomplex of K. Then |H|. is
a neighborhood retract of |K|c.

Proor. Consider the barycentric subdivisions K and H of K and H,
respectively. Then, by Theorem 5.1, |K'|¢ and |H'| are homeomorphic to |K]|c and |H]c,
respectively. Let {u,: acA} denote the set of all vertices of K. A point xeK' is
determined by its barycentric coodinates {x,: aeA}, where

Y x,=1
aeA

Let M = A be defined by M ={aecA: u,eH'} and consider the real-valued function f: K’
—1=[0, 1] defined by

flx)= X X

peM

Since f'is clearly linear on each closed simplex of K’, by Theorem 3.2 f'is continuous on
|K'lc.  Then the set U={xeK': f(x)>0} is an open neighborhood of |H'|¢ in |K'|..

Next, define a map r: U—|H’|. by taking as the image r(x) of a point xe U the point
whose barycentric coordinates are

X, /f (x) (if aeM)
{ (if aed—M).

[r(x)].=

We shall prove that r is continuous. For a point xeU, let W be any convex
neighborhood of r(x) in |H'|c, and let S be a simplex of K’ with xeS. Since r|UNS is
clearly continuous, there is a convex neighborhood V5 of x in UNS such that r(Vs)
< W. For any simplex T with S as its face, by the definition of » and the convexity of W7,
there is a convex neighborhood V; of x in UNT such that #(V;)= Wand VpNS=Vs. By
the constructions of neighborhoods in simplicial complexes with the l.c. topology (cf. [8],
proof of Theorem 3.2), the union ¥ of these V;’s is a neighborhood of x in U'such that r(V')
c W. Thus,risaretraction. Therefore |H'|cis a neighborhood retract of |K’|.. Since
|K'|c and |H'| are homeomorphic to |K]. and | H|, respectively, this completes the proof.

By this theorem, Theorems 2.3 (2) and 2.4, we have the following corollary, which
was announced in [8; Corollary 4.2].

COROLLARY 6.2. Every simplicial complex with the Lc. topology is ANR(M,).
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