Mem. Fac. Sci. Shimane Univ., 22, pp. 51-62 Dec. 20, 1988

A Construction of Anti-Lie Triple Systems from a Class of Triple Systems.

Dedicated to Professor Kiyosi Yamaguti on his 60th birthday

by Noriaki Kamiya*

Department of Mathematics, Faculty of Science, Shimane University, Matsue 690, Japan (Received September 7, 1988)

Abstract. In this paper, it is shown that the construction of Lie algebras " $Id_w \otimes Der J \oplus T \otimes Anti-Der J \oplus W \otimes J$ " due to U. Hirzebruch can be modified to a construction of Lie superalgebras.

Introduction

In [12], J. Tits constructed a Lie algebra from the tensor product $Y \otimes A$ of a Lie algebra Y and a Jordan algebra A. This construction is investigated by U. Hirzebruch in [3] and generalized for the tensor product $W \otimes J$, where W is a two dimensional Jordan triple system and J is any Jordan triple system. In this paper, it is shown that the construction can be modified to get a construction of a Lie superalgebra.

The aim of our article is to introduce a class of triple systems defined by certain identities and to construct an anti-Lie triple system from it. We shall obtain a construction of Lie superalgebras by the standard imbedding of anti-Lie triple systems.

In $\S1$, we introduce a class of triple systems, called anti-Jordan triple systems and give some examples. We study correspondence of polarized anti-Jordan triple systems with anti-Jordan pairs.

In §2, we define a bilinear form on an anti-Jordan triple system and consider it. Also we study the bilinear form for an anti-Lie triple system and the Lie superalgebra which is related to an anti-Jordan triple system.

In $\S3$, we study a construction of Lie superalgebras by a slightly different method than in $\S2$.

We shall be concerned with algebras and triple systems which are finite dimensional over a field of characteristic different from 2 or 3, unless otherwise specified.

^{*} This research was partially supported by a Grant-in-Aid for Scientific Research (No 59540041) from the Ministry of Education, Japan.

1.

A triple system is a vector space V over a field K together with a K-linear map $V \times V \times V \rightarrow V$. We consider a triple system V as satisfying;

$$(1) \qquad \{xyz\} = -\{zyx\}$$

(2)
$$\{xy\{zuv\}\} = \{\{xyz\}uv\} + \{z\{yxu\}v\} + \{zu\{xyv\}\}\}$$

for all
$$x, y, z, u, v \in V$$

and call it an anti-Jordan triple system. This notion first appeared in [2]. Also this triple system can be regarded as a Freudenthal-Kantor triple system with $\varepsilon = 1$, $\delta = -1$ and K(a, b) = 0 in [14]. We use the following notation in an anti-Jordan triple system;

$$S(a, b) := L(a, b) + L(b, a),$$

 $A(a, b) := L(a, b) - L(b, a),$

where $L(a, b)c = \{abc\}$.

Then by straightforward calcuulations, we get

(3)
$$[S(a, b), L(c, d)] = L(S(a, b)c, d) + L(c, S(a, b)d)$$

(4)
$$[A(a, b), L(c, d)] = L(A(a, b)c, d) - L(c, A(a, b)d),$$

that is to say;

S(a, b) is a derivation and A(a, b) is an anti-derivation of the anti-Jordan triple system. (cf. [6, 14])

EXAMPLE 1. Let V be a vector space with an anti-symmetric bilinear form < -, ->. Then $\{xyz\} = <x, y>z+<y, z>x$ defines on V an anti-Jordan triple system.

EXAMPLE 2. Under the assumption of Example 1. $\{xyz\} = \langle x, y \rangle z + \langle y, z \rangle x$ - $\langle z, x \rangle y$ defines on V an anti-Jordan triple system.

EXAMPLE 3a. Let q be the standard nondegenerate anti-symmetric bilinear form on K^{2n} and s: $K^{2n} \rightarrow K^{2n}$ an orthogonal reflection, i.e. s is orthogonal and satisfies $s^2 = Id$. Then $\{xyz\} = q(x, y)z + q(y, z)x - q(z, sx)y$ defines on K^{2n} an anti-Jordan triple system. Especially, if s = id, this reduces to Example 2.

EXAMPLE 3b. One defines on $(K \oplus K)^{2n}$ a triple product $\{xyz\} = q(x, \bar{y})z + q(\bar{y}, z)x - q(z, x)\bar{y}$, where q is the standard non-degenerate anti-symmetric bilinear form on $(K \oplus K)^{2n}$ and $(\overline{x_1^+, x_1^-, \dots, x_{2n}^+, x_{2n}^-}) = (x_1^-, x_1^+, \dots, x_{2n}^-, x_{2n}^+)$. From this triple product, we obtain an anti-Jordan triple system.

EXAMPLE 4. For an anti-Jordan triple system V, we put $T = V \oplus \overline{V}$, where \overline{V} is a

of V. Then T becomes an anti-Jordan triple system with respect to the trilinear product defined by

(5)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right\} = \begin{pmatrix} L(x_1, y_2)z_1 \\ L(x_2, y_1)z_2 \end{pmatrix}$$

We recall an anti-Lie triple system defined by J. R. Faulkner and J. C. Ferrar that satisfies

$$[xyz] = [yxz]$$

(7)
$$[xyz] + [yzx] + [zxy] = 0$$

(8) [xy[uvz]] - [uv[xyz]] = [[xyu]vz] + [u[xyv]z].x, y, z, u, $v \in T$.

The starting point of this paper is the following fundamental theorem.

THEOREM 1.1. If $(V, \{-, -, -, \})$ is an anti-Jordan triple system, then (V, [-, -, -]) with

$$[xyz] = \{xyz\} + \{yxz\}$$

is an anti-Lie triple system.

We denote the anti-Lie triple system induced from an anti-Jordan triple system V by V^+

For $\delta = \pm 1$, we consider the following identities;

$$\{xyz\} = \delta\{zyx\}$$

$$\{xy\{uvw\}\} = \{\{xyu\}vw\} - \delta\{u\{yxv\}w\} + \{uv\{xyw\}\}$$

In the case $\delta = 1$, these reduce to those of a Jordan triple system, while in the case $\delta = -1$ they reduce to those of an anti-Jordan triple system.

For $\delta = \pm 1$, we put $[xyz] = \{xyz\} - \delta\{yxz\}$. If $(V, \{\})$ is an anti-Jordan triple system $(\delta = -1)$, then $(V^+, [-, -, -, -])$ becomes an anti-Lie triple system. If $(V, \{\})$ is a Jordan triple system $(\delta = +1)$, then $(V^-, [-, -, -])$ becomes a Lie triple system.

Hence we have the following correspondences.

Jordan triple system.....Lie triple system..... $\delta = 1$ (resp. anti-) $\delta = -1$

Next we shall discuss a relation of an anti-Jordan pair to a polarized anti-Jordan triple system.

A polarized anti-Jordan tripple system is an anti-Jordan system V together with a direct sum decomposition $V = V_+ \oplus V_-$ into submodules V such that

Noriaki KAMIYA

$$\{V_{\sigma}V_{\sigma}V_{\sigma}\} = 0, \{V_{\sigma}V_{\sigma}V_{-\sigma}\} = \{V_{\sigma}V_{-\sigma}V_{-\sigma}\} = 0$$

and $\{V_{\sigma}V_{-\sigma}V_{\sigma}\} \subset V_{\sigma}$
holds for $\sigma = \pm$

In this case, we have

$$\{xyz\} = \{x_+y_-z_+\} \oplus \{x_-y_+z_-\}$$

for $x = x_+ \oplus x_-, y = y_+ \oplus y_-, z = z_+ \oplus z_-$

As in [11, Th A.3], we can show that;

PROPOSITION 1.2. Let $V = V_+ \oplus V_-$ and $W = W_+ \oplus W_-$ be two simple polarized anti-Jordan triple system and $\mathfrak{B} = (V_+, V_-)$ resp. $\mathfrak{W} = (W_+, W_-)$ the corresponding anti-Jordan pairs. Then the followings are equivalent;

- i) V and W are isomorphic
- ii) **B** is isomorphic to **B** or to **B**^{op},

where $\mathfrak{W}^{op} = (W_{-}, W_{+}).$

We now consider the correspondence between polarized anti-Jordan and anti-Lie triple systems. We begin with the definition. An anti-Lie triple system T is called polarized if it has a direct sum decomposition $T = T_+ \oplus T_-$ satisfying

$$[T_{\sigma}T_{\sigma}T_{\sigma}] = [T_{\sigma}T_{\sigma}T_{-\sigma}] = 0$$

and $[T_{\sigma}T_{-\sigma}T_{\sigma}] \subset T_{\sigma}$ for $\sigma = \pm$.

In this case, we have

 $[xyz] = [x_+y_-z_+] + [x_-y_+z_+] \oplus [x_-y_+z_-] + [x_+y_-z_-].$

Hence we have the following proposition.

PROPOSITION 1.3.(a) Let $T = T_+ \oplus T_-$ be a polarized anti-Lie triple system. Define a new triple product on T by $\{x_+ \oplus x_-, y_+ \oplus y_-, z_+ \oplus z_-\} = [x_+y_-z_+] \oplus [x_-y_+z_-]$. Then $(T, \{\})$ is a polarized anti-Jordan triple system.

(b) Conversely, if V is a polarized anti-Jordan triple system, then V^+ is a polarized anti-Lie triple system.

Therefore from the above proposition and Proposition 5.1 in [2], we obtain the following.

THEOREM 1.4. There exists a one to one correspondence between each pair of the following classes:

(i) equivalence classes of simple anti-Jordan pairs.

(ii) isomorphism classes of simple polarized anti-Jordan triple systems and

These correpondences are given by

$$(V_+, V_-) \leftrightarrow V = V_+ \oplus V_- \leftrightarrow V^+.$$

2

Let V be an anti-Jordan triple system. Then we can define an anti-Lie triple system on $V \oplus \overline{V}$ with respect to the triple product defined by

(10)
$$\begin{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{pmatrix} L(x_1, y_2)z_1 + L(y_1, x_2)z_1 \\ L(x_2, y_1)z_2 + L(y_2, x_1)z_2 \end{pmatrix}.$$

This anti-Lie tripple system is obtained from Example 4 and Theorem 1 by straightforward calculation. We call it the anti-Lie triple system associated with an anti-Jordan triple system. Using the notation S(a, b), A(a, b) of Section 1, we have

$$\begin{pmatrix} 2L(a, b) & 0 \\ 0 & 2L(b, a) \end{pmatrix} = \begin{pmatrix} S(a, b) + A(a, b) & 0 \\ 0 & S(a, b) - A(a, b) \end{pmatrix}.$$

Hence the inner derivations of the anti-Lie triple system are determined by derivations and anti-derivations of the anti-Jordan triple system. This construction is parallel to the construction of Lie algebras from Jordan triple systems in [8, 10]. On the other hand, these constructions of Lie algebras was extended to get all simple Lie algebras in [6, 7, 13].

As in [6], we may define a bilinear form $\gamma(x, y)$ of an anti-Jordan triple system by

(11)
$$\gamma(x, y) := 1/2 \ Tr\{L(x, y) - L(y, x)\}.$$

PROPOSITION 2.1. For the bilinear form γ of an anti-Jordan triple system V, we have

(i)
$$\gamma(z, \{yxw\}) + \gamma(\{xyz\}, w) = 0$$

(ii)
$$\gamma(x, \{yzw\}) + (\{xwz\}, y) = 0$$

for all $x, y, z, w \in V$.

If γ is nondegenerate, this implies

(i)'
$$L(x, y)^* = -L(y, x)$$

(ii)'
$$R(z, w)^* = -R(w, z)$$

where * denotes the adjoint relative to γ .

PROOF. (i): We have the following identity in anti-Jordan triple system:

Noriaki Kamiya

[L(x, y), L(z, w)] = L(L(x, y)z, w) + L(z, L(y, x)w).

Therefore we get TrL(L(x, y)z, w) = -TrL(z, L(y, x)w), so we obtain (i) of Lemma.

(ii): From $\{yxw\} = -\{wxy\}$ and (i), it is clear.

It should be noted that (i) and (ii) of the above proposition coincide with identities (10) in [2].

Next we shall define a bilinear form $\alpha(x, y)$ on an anti-Lie triple system T by

(12)
$$\alpha(x, y) := 1/2 \ Tr \{R(x, y) - R(y, x)\}, \text{ where } R(x, y)z = [zxy].$$

The correspondence between the bilinear form of an anti-Jordan triple system V and the bilinear form of the anti-Lie triple system T associted with it is given by

PROPOSITION 2.2.

(13)
$$\alpha\left(\binom{x_1}{x_2}, \binom{y_1}{y_2}\right) = \gamma(x_1, y_2) + \gamma(x_2, y_1)$$

where $\gamma(,)$ is the bilinear form of the anti-Jordan triple system, and $\alpha(,)$ is the bilinear form of the anti-Lie triple system.

PROOF. From the definition of the anti-Lie triple system associated with an anti-Jordan triple system we have

$$\begin{bmatrix} \binom{z_1}{z_2} \binom{x_1}{x_2} \binom{y_1}{y_2} \end{bmatrix} - \begin{bmatrix} \binom{z_1}{z_2} \binom{y_1}{y_2} \binom{x_1}{x_2} \binom{x_1}{x_2} \end{bmatrix}$$
$$= \begin{pmatrix} L(z_1, x_2)y_1 + L(x_1, z_2)y_1 - L(z_1, y_2)x_1 - L(y_1, z_2)x_1 \\ L(z_2, x_1)y_2 + L(x_2, z_1)y_2 - L(z_2, y_1)x_2 - L(y_2, z_1)x_2 \end{pmatrix}$$
$$= \begin{pmatrix} L(x_1, y_2) - L(y_1, x_2) & K(x_1, y_1) \\ K(x_2, y_2) & L(x_2, y_1) - L(y_2, x_1) \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

where $K(x, y)z = \{xzy\} - \{yzx\}$. Hence we get

$$\alpha\left(\binom{x_1}{x_2},\binom{y_1}{y_2}\right) = \gamma(x_1, y_2) + \gamma(x_2, y_1).$$

There exists an almost complex structure $J = \begin{pmatrix} 0 & Id \\ -Id & 0 \end{pmatrix}$ on anti-Lie triple system associated with an anti-Jordantriple system. As in [6] (cf. Remark in §4), this structure has the following property;

$$\alpha \left(J \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, J \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = -\alpha \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right).$$

Roughly speaking, this concept corresponds to an anti-Hermite structure on supersymmetric space.

Assume that T is an anti-Lie triple system and D is a Lie subalgebra of derivations of T containing the inner derivation L(T, T). Consider $L(T, D) = L_0 \oplus L_1$ with $L_0 = D$ and $L_1 = T$ and with the product given by $[a_1, a_2] = L(a_1, a_2), -[a_1, D_1] = [D_1, a_1] = D_1a_1, [D_1, D_2] = D_1D_2 - D_2D_1$ for $a_i \in T, D_i \in D$. Then from the definition of an anti-Lie triple system, it follows that L(T, D) is a Lie superalgebra. Hence $L(T, T) \oplus T$ is an ideal of the Lie superalgebra L(T, D). We denote $L(T, T) \oplus T$ by L and call it the standard imbedding Lie superalgebra of T (cf. [2]).

We consider the correspondence between the bilinear form of anti-Lie triple system T and the bilinear form of Lie superalgebra $L = L(T, T) \oplus T$ which is defined by supertrace β in [5], that is, $\beta(x, y) = \text{strace } ad x ad y$, for $x, y \in L$.

PROPOSITION 2.3. Let α be the bilinear form of an anti-Lie triple system T and let β be the bilinear form of the standard imbedding Lie superalgebra $L = L(T, T) \oplus T$. Then

(14) $\alpha(x, y) = \beta(y, x) \quad for \quad x, y \in T.$

Especially, $\beta(x, D) = 0$ for $x \in T$, $D \in L(T, T)$.

PROOF. For $x, y \in T$, from the definition of standard imbedding Lie superalgebra of T, we obtain

$$[zxy] - [zyx] = [[z, x], y] - [[z, y], x] = -ad y ad x z + ad x ad y z.$$

On the other hand, if we put $\operatorname{End}_0 T = \{a \in \operatorname{End} L | aT \subset T\}$, then it contains *ad y ad x*, and *ad x ad y*. Hence from the properties of supertrace in [5], we obtain

$$2\alpha(x, y) = Tr \{R(x, y) - R(y, x)\}$$

= strace ad y ad x - strace ad x ad y
= -2 strace ad x ad y
= 2\beta(y, x).

For x, $y \in T$, $D \in L(T, T)$, we have

ad x ad D
$$y = [x, Dy] \in L(T, T)$$
.

If we put $\operatorname{End}_1 T = \{b \in \operatorname{End} L | bT \subset L(T, T)\}$, then ad x ad D is contained in $\operatorname{End}_1 T$. Hence, we get

strace ad x ad D = 0.

From Proposition 2.2 and Proposition 2.3, we obtain the following theorem.

THEOREM 2.4. Let V be an anti-Jordan triple system, T be the anti-Lie triple system associated with V, and L be the standard imbedding Lie superalgebra of T. Let γ , α , β be the respective forms.

Then the following statements are equivalent:

- (i) the bilinear form γ is nondegenerate,
- (ii) the bilinear form α is nondegenerate,
- (iii) the bilinear form β is nondegenerate.

3

We shall now study a construction of an anti-Lie triple system and of a Lie superalgebra by means of a slightly different way to the construction in §2. The conception in this chapter is a variation of the construction of Lie algebras due to U. Hirzebruch in [3]. Following J. Tits [12], in construction of a Lie superalgebra, it is natural for us to make tensor products $Y \otimes J$ of a Lie superalgebra Y with a bilinear form <, > and Jordan algebras J. Hence, applying this idea to [3], we first consider an anti-Jordan triple system of a two dimensional vector space W over a field K defined by

(*)
$$\{abc\}: = \langle a, b \rangle c + \langle b, c \rangle a - \langle c, a \rangle b$$
 for $a, b, c \in W$.

where \langle , \rangle is an anti-symmetric nondegenerate bilinear form on W. (see Example 2). If we denote the map $c \rightarrow \{abc\}$ by l(a, b), the expression $l(a, b) - \langle a, b \rangle id_w$ is symmetric in a and b. Since W has dimension two over K, the linear span of the endomorphims $l(a, b) - \langle a, b \rangle id_w$ has dimension one over K. Hence it follows that

$$[l(a, b), l(c, d)] = 0$$
 for all $a, b, c, d \in W$.

Together with the definition of an anti-Jordan triple system, by straightforward calculations,

we have

 $(15) \qquad \{ab\{cde\}\} = \{\{abc\}de\}$

(16) $\{ab\{cde\}\} = -\{c\{bad\}e\}$

58

(17)
$$\{ab\{cde\}\} = \{cd\{abe\}\}.$$

Now we can prove the following:

PROPOSITION 3.1. Let W be a two dimensional anti-Jordan triple system over K defined by (*) and J be any Jordan triple system over K. Then the triple product on $W \otimes J$ defined by

$$\{a \otimes x, b \otimes y, c \otimes z\} = \{abc\} \otimes \{xyz\}$$

for a, b, $c \in W$ and x, y, $z \in J$, is an anti-Jordan triple product on $W \otimes J$.

PROOF. It is clear that

$$\{a \otimes x, b \otimes y, c \otimes z\} = -\{c \otimes z, b \otimes y, a \otimes x\}.$$

By the definition, $\{a \otimes x, b \otimes y, \{c \otimes z, d \otimes u, e \otimes v\}\}$

$$= \{ab\{cde\}\} \otimes \{xy\{zuv\}\}$$

= $\{ab\{cde\}\} \otimes (\{\{xyz\}uv\} - \{z\{yxu\}v\} + \{zu\{xyv\}\}\})$
= $\{ab\{cde\}\} \otimes \{\{xyz\}uv\} - \{ab\{cde\}\} \otimes \{z\{yxu\}v\} + \{ab\{cde\}\} \otimes \{zu\{xyv\}\}\}$

Hence, by using (15), (16) and (17) we have

$$\{a \otimes x, b \otimes y, \{c \otimes z, d \otimes u, e \otimes v\} \}$$

$$= \{\{abc\}de\} \otimes \{\{xyz\}uv\} + \{c\{bad\}e\} \otimes \{\{z\{yxu\}v\}$$

$$+ \{cd\{abe\}\} \otimes \{zu\{xyv\}\}$$

$$= \{\{a \otimes x, b \otimes y, c \otimes z\}, d \otimes u, e \otimes v\} + \{c \otimes z\{b \otimes y, a \otimes x, d \otimes u\}$$

$$e \otimes v\} + \{c \otimes z, d \otimes u, \{a \otimes x, b \otimes y, e \otimes v\} \}.$$

This completes the proof.

REMARK 3.2. Let W be a two dimensional Jordan triple system (resp. anti-) which is defined by

$$\{abc\} = \langle a, b \rangle c + \langle b, c \rangle a - \langle c, a \rangle b$$

where $\langle a, b \rangle = \langle b, a \rangle$ (resp. $\langle a, b \rangle = -\langle b, a \rangle$). And let J be any Jordan triple system or anti-Jordan triple system. Then we can consider the four possibilities of tensor product $W \otimes J$ as follows;

Noriaki KAMIYA

	J: J. T. S.	J: anti-
W: J. T. S.	(A) $W \otimes J : J. T. S.$	(B) $W \otimes J$:anti-
W: anti-	(C) $W \otimes J$:anti-	(D) $W \otimes J : J. T. S.$

Giving an anti-Jordan triple system on $W \otimes J$ (in the case of (B) and (C)), one gets an anti-Lie triple system $(W \otimes J)^+$ on the vector space $W \otimes J$ by symmetrizing the first two variables in the anti-Jordan triple system. From the anti-Lie triple system one obtains a Lie superalgebra by taking the standard imbedding (see Section 2).

For the anti-Jordan triple system W, since

$$\{abc\} - \langle a, b \rangle c = \langle b, c \rangle a - \langle c, a \rangle b$$
 and $l(a, b) - \langle a, b \rangle id_{w}$

is symmetric in a, b, there are a symmetric bilinear form τ and an endomorphism S on W such that

$$l(a, b) = \langle a, b \rangle id_w + \tau(a, b)S.$$

Let J be any Jordan triple system over K. Then it can be easily seen that

$$L(x, y) - L(y, x) \in Der J.$$

$$L(x, y) + L(y, x) \in Anti-Der J, \quad \text{for} \quad x, y \in J.$$

For the left-multiplication in the anti-Lie triple system on $W \otimes J$, we get

$$L(a \otimes x, b \otimes y) + L(b \otimes y, a \otimes x)$$

= $\langle a, b \rangle id_w \otimes (L(x, y) - L(y, x))$
+ $\tau(a, b)S \otimes (L(x, y) + L(y, x)),$

which is contained in

. . .

$$id_w \otimes Der \ J + S \otimes Anti-Der \ J.$$

From the assumption that the form <, > on W is nondegenerate, there exists a basis $\{e_1, e_2\}$ of W such that

 $< e_1, e_1 > = 0, < e_2, e_2 > = 0$ and $< e_1, e_2 > \neq 0.$

Then we have

$$\tau(e_1, e_2)Se_1 = \langle e_2, e_1 \rangle e_1$$
 and $\tau(e_1, e_2)Se_2 = -\langle e_2, e_1 \rangle e_2$.

Hence it has been shown that the linear endomorphisms id_w and S are linearly independent. Therefore, by choosing an element $w \in W$ such that w and Sw form a basis of W, we can see that an element of

$$(id_w \otimes Der \ J) \cap (S \otimes Anti-Der \ J)$$
 is zero on $w \otimes J + Sw \otimes J$.

Hence the sum

 $id_{w} \otimes Der J + S \otimes Anti-Der J$ is direct sum.

Next we shall show that

 $id_w \otimes Der \ J \in Der \ (W \otimes J)^+$ $S \otimes Anti-Der \ J \in Der \ (W \otimes J)^+.$

For $D \in Der J$, we have

$$< a, b > id_w \otimes D$$

= 1/2{ < a, b > id_w \otimes D + \tau(a, b)S \otimes D}
- 1/2{ < b, a > id_w \otimes D + \tau(b, a)S \otimes D}
= 1/2l(a, b) \otimes D - 1/2l(b, a) \otimes D
= 1/2(l(a, b) - l(b, a)) \otimes D.

By straightforward calculation, we can show that $(l(a, b) - l(b, a)) \otimes D$ is a derivation of the anti-Jordan triple system $W \otimes J$. Hence $id_w \otimes D$ is a derivation of the anti-Lie triple system on $W \otimes J$. Similarly, using $\tau(a, b)S = l(a, b) - \langle a, b \rangle id_w$, we get $S \otimes Anti-Der J \in Der (W \otimes J)^+$. So we have the following,

THEOREM 3.3. Under the assumption of Proposition 3.1, there exists a natural Lie superalgebra structure on

(18) $id_w \otimes Der \ J \oplus S \otimes Anti-Der \ J \oplus W \otimes J$

such that this Lie superalgebra contains the standard imbedding of the anti-Lie triple system on $W \otimes J$.

REMARK 3.4. Theorem in [3], Remark 3.2 and Theorem 3.3 in this section suggest that simultaneous treatment for the four cases on $W \otimes J$ is natural.

References

- 1. Asano, H. and K. Yamaguti. A construction of Lie algebras by generalized Jordan triple systems of second order, Indag. Math., 42, (1980), 249–253.
- Faulkner, J. R. and J. C. Ferrar, Simple anti-Jordan pairs, Comm. Algebra, 8, (1980), 993– 1013.
- Hirzebruch, U. A generalization of Tits' construction of Lie algebras by Jordan algebras to Jordan triple systems, Indag. Math., 40, (1978), 456–459.
- Jacobson, N. Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., vol. 39, Providence, R.I., 1968.
- 5. Kac, V. G. Lie superalgebras, Advances in Math. 26, (1977), 8-96.

Noriaki KAMIYA

- Kamiya, N. A structure theory of Freudenthal-Kantor triple systems, J. Algebra, 110, (1987), 108-123.
- 7. Kantor I. L. Models of exceptional Lie algebras, Soviet Math. Dokl., 14, (1973), 254-258.
- Koecher, M. Imbedding of Jordan algebras into Lie algebras, I., Amer. J. Math., 89(1967), 787-816.
- 9. Loos, O. Jordan pairs. Springer Lecture Notes 460, 1975.
- 10. Meyberg, K. Lectures on algebras and triple systems, Lecture notes. The Univ. of Virginia, Charlottesville. 1972.
- 11. Neher, E. On the classification of Lie and Jordan triple systems, Habilitationsschrift, Wilhelms-Universität zu Münster, 1983.
- Tits, J. Une classe dálgèbres de Lie en relation avec les algèbres de Jordan, Indag. Math., 24 (1962), 530-535.
- 13. Yamaguti, K. On the metasymplectic geometry and triple systems, Surikaisekikenkyusho Kokyuroku **306**, (1977), 55–92. Research Institute for Math. Sci., Kyoto Univ., (in Japanese).
- 14. Yamaguti, K. and A. Ono, On representations of Freudenthal-Kantor triple systems $U(\varepsilon, \delta)$, Bull. Fac. School Ed., Hiroshima Univ., Part II, 7, (1984), 43–51.