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Abstract. In this paper, 

JeTRAnti-Der JeWRJ" due 
superalgebras 

it is 

to 

shown that the construction of 

U. Hirzebruch can be modified 

Lie 

to a 

algebras "Id~ R Der 

construction of Lie 

Introductiom 

In [12], J. Tits constructed a Lie algebra from the tensor product YRA of a Lie 

algebra Y and a Jordan algebra A. This construction is investigted by U. Hirzebruch in 

[3] and generalized for the tensor product WRJ, where W is a two dimensional Jordan 

triple system and J is any Jordan triple system. In this paper, it is shown that the 

construction can be modified to get a construction of a Lie superalgebra. 

The aim of our article is to introduce a class of triple systems defined by certain 

identities and to construct an anti-Lie triple system from it. We shall obtain a 

construction of Lie superalgebras by the standard imbedding of anti-Lie triple systems 

In S1, we introduce a class of triple systems, called anti-Jordan triple systems and give 

some examples. We study correspondence of polarized anti-Jordan triple systems with 

anti-Jordan parrs 

In S2, we define a bilinear form on an anti-Jordan triple system and consider 

it. Also we study the bilinear form for an anti-Lie triple system and the Lie superalgebra 

which is related to an anti-Jordan triple system 

In S3, we study a construction of Lie superalgebras by a slightly different method 

than in S2 

We shall be concerned with algebras and triple systems which are finite dimensional 

over a field of characteristic different from 2 or 3, unless otherwise specified 

* This research was partially supported by a Grant-in-Aid for Scientific Research (No 59540041) 

from the Ministry of Education, Japan . 
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1
.
 

A triple system is a vector space V over a field K together with a K-linear map V x V 

x V-> V. We consider a triple system V as satisfying; 

(1) {xyz} = - {zyx} 
(2) {xy{zuv}} = {{xyz}uv} + {z{yxu}v} + {zu{xyv}} . 

for all x, y, z, u, ve V 

and call it an anti-Jordan triple system. This notion first appeared in [2]. Also this 

triple system can be regarded as a Freudenthal-Kantor triple system with 8 = 1, 6 = - 1 

and K(a, b)=0 in [14]. We use the following notation in an anti-Jordan triple system 

S(a, b); =L (a, b)+ L(b, a), 

A(a, b).' =L(a, b)-L(b, a), 

where L (a, b)c = {abc}. 

Then by straightforward calcuulations, we get 

(3) [S(a, b), L (c, d)] = L (S(a, b)c, d) + L (c, S(a, b)d) 

(4) [A (a, b), L (c, d)] = L (A (a, b)c, d) - L (c, A(a, b)d), 

that is to say; 

S(a, b ) rs a derivation and A (a, b ) is an anti-derivation of the anti-Jordan triple system. (cf 

[6, 14]) 

EXAMPLE 1. Let V be a vector space with an anti-symmetric bilinear form 

> . Then {xyz} = 

 z + 

 x defines on V an anti-Jordan triple system E)~MPLE 2. Under the assumption of Example 1. {xyz} = 

 z + 

 x 
- 

y defines on V an anti-Jordan triple system 
EXAMPLE 3a. Let q be the standard nondegenerate anti-symmetric bilinear form on 

K2~ and s.' K2~->K2~ an orthogonal reflection, i.e. s is orthogonal and satisfies s2 

=1d. Then {xyz} = q(x, y)z+qO/, z)x-q(z, sx)y defines on K2~ an anti-Jordan triple 

system. Especially, if s = id, this reduces to Example 2 

E)~MPLE 3b. One defines on (K~)K)2~ a triple product {xyz} = q(x, y)z + q0~, z)x 

- q(z, x)y~, where q is the standard non-degenerate anti-symmetric bilinear form on 

(KeK)2~ and (xl +, xi~, "',x2.+, x2~~)= (xl ~' xl +,..., x2~~, x2.+). From this triple 

product, we obtain an anti-Jordan triple system. 

EXAMPLE 4. For an anti-Jordan triple system V, we put T= Ve V~, where ~ is a 
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of V. Then Tbecomes an anti-Jordan triple system with respect to the trilinear product 

defined by 

(5) xl yl _ L(xl, y2)zl 
X2 z. y2 L(x2' yl )z2 

We recall an anti-Lie triple system defined by J. R. Faulkner and J. C. Ferrar that 

satrsfies 

(6) [xyz] = [yxz] 

(7) [xyz] + [yzx] + [zxy] = O 

(8) [xy[uvz]] - [uv[xyz]] = [[xyu]vz] + [u[xyv]z] . 

x, y, z, u, veT 

The starting point of this paper is the following fundamental theorem. 

with THEOREM 1.1. If(V, { - , - , -,}) is an anti-Jordan triple system, then (V, [ -, - , -]) 

(9) [xyz] = {xyz} + {yxz} 
is an anti-Lie triple system. 

V+ We denote the anti-Lie triple system induced from an anti-Jordan triple system V by 

For 6 = :!~ 1, we consider the following identities; 

{xyz} = 6 {zyxl 

{xy{uvw}} = { {xyu}vw} - ~{u{yxv} w} + {uv{xyw}} 

In the case ~ = 1, these reduce to th'ose of a Jordan triple system, while in the case ~ = - 1 

they reduce to those of an anti-Jordan triple system. 

For 6 = ~ 1, we put [xyz] = {xyz} - ~{yxz}. If (V, { }) is an anti-Jordan triple 

system (6 = - 1), then (V+, [_ , _ , -,]) becomes an anti-Lie triple system. If(V, { })is a 
Jordan triple system (6 = + 1), then (V~, [-, - , 

- J) becomes a Lie triple system 
Hence we have the following correspondences 
Jordan triple system" ' . . . Lie triple system " . . . . 

6=1 
(resp. anti-) (resp anti ) """ . - ""･･~= - 1 

Next we shall discuss a relation of an anti-Jordan pair to a polarized anti-Jordan triple 

system. 

A polarized anti-Jordan tripple system is ananti-Jordan system V together with a 

direct sum decomposition V= V+ ~) V_ into submodules Vsuch that 
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{V.VcVa}=0,{V.V.V_.}={VV V } O 

and {V.V_.V.}cV. 

holds for a=+ 

In this case, we have 

{x yz} = {x + y _Z + } ~) {x _ y + z _ } 

for x=x+~)x_,y=y+~fy_,z=z+~)z_ 

As in [11, Th A.3], we can show that 

PROPOSITION 1.2. Let V= V+ el V_ and W= W+ e) W_ be two simplepolarizedanti-

Jordan triple system and ~; = ( V+ ' V_ ) resp. ~~ = ( W+ ' W_) the corresponding anti-Jordan 

pairs. Then the followings are equivalent,' 

i) V and W are isomorphic 

ii) ~} is isomorphic to ~~ or to ~13"P 

where ~~"P=(W_, W+)' 
We now consider the correspondence between polarized anti-Jordan and anti-Lie 

triple systems. We begin with the definition. An anti-Lie triple system T is called 

polarized if it has a direct sum decomposition T= T+ e) T_ satisfying 

[T.TcT.] [T.TcT_.] = O 

and [T.T_.T.]cT. for 6r=+ 

In this case, we have 

[xyz] = [x+y-z+ I + [x_y+z+ I ~ [x_y+Z- I + [x+y-z_ J . 

Hence we have the following proposition 

PROPOSITION 1.3.(a) Let T= T+ e) T_ be a polarized anti-Lie triple system. Define 

a new triple product on T by {x+ex_, y+~y-, z+ez_}= [x+y-Z+]e) [x_y+z_]. 
Then (T, { }) is a polarized anti-Jordan triple system. 

(b) Conversely, tf V is a polarized anti-Jordan triple system, then V+ is a polarized anti-

Lie triple system. 

Therefore from the above proposition and Proposition 5.1 in [2], we obtain the 

following. 

THEOREM I .4. There exists a one to one correspondence between each pair of the 

following classes: 

(i) equivalence classes of simple anti-Jordan pairs. 

(ii) isomorphism classes of simple polarized anti-Jordan triple systems and 
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(iii) isomorphism classes of simple polarized anti-Lie triple systems. 

These correpondences are given by 

(V+' V_)~>V= V+eV_~>V+ 
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2
 

Let Vbe an anti-Jordan triple system. Then we can define an anti-Lle triple system 

on V~) V with respect to the triple product defined by 

( I O) 
yl zl L(xl' y2)zl + L(yl' x2)zl 

y2 Z2 L(x2' yl)Z2 +L(y2' xl)z2 

This anti-Lie tripple system is obtained from Example 4 and Theorem I by 
straightforward calculation. We call it the anti-Lie triple system associated with an 

anti-Jordan triple system. Using the notation S(a, b), A (a, b) of Section 1, we have 

2L(a, b) S(a, b) + A(a, b) O
 

O
 

2L(b, a) S(a, b) - A(a, b) 

Hence the inner derivations of the anti-Lie triple system are determined by derrvations 

and anti-derivations ofthe anti-Jordan triple system. This construction is parallel to the 

construction of Lie algebras from Jordan triple systems in [8, 10]. On the other hand 

these constructions of Lie algebras was extended to get all simple Lie algebras in [6, 7, 1 3] 

As in [6], we may define a bilinear form v(x, y) of an anti-Jordan triple system by 

(11) y(x, y): = 1/2 Tr{L(x, y) - L(y, x)} . 

PROPosmON 2.1. For the bilinearform y ofan anti-Jordan triple system V, we have 

(i) y (z, {yxw} ) + v ({xyz}, w) = O 

(ii) y(x, {yzw} ) + ({xwz}, y) = O 

for all x, y, z, we V. 

If y is nondegenerate, this implies 

L (x, y)* = -L O/, x) (i)' 

R(z, w)* = -R(w, z) (ii)' 

where * denotes the adjoint relative to y. 

PROOF. (i): We have the following identity in anti-Jordan triple system: 
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[L(x, y), L(z, w)] = L(L(x, y)z, w) + L(z, L(y, x)w) . 

Therefore we get TrL (L (x, y)z, w)= - TrL (z, L O/, x)w), so we obtain (i) of Lemma 

(ii): From {yxw} = - {wxy} and (i), it is clear. ~ 

It should be noted that (i) and (ii) of the above proposition coincide with identities 

(10) in [2]. 

Next we shall define a bilinear form Qc(x, y) on an anti-Lie triple system T by 

( 1 2) oc(x, y): = 1/2 Tr {R(x, y) - R(y, x)}, where R(x, y)z = [zxy] . 

The correspondence between the bilinear form of an anti-Jordan triple system Vand the 

bilinear form of the anti-Lie triple system T associted with it is given by 

PROPOSITION 2.2 

xl yl (13) Qc = y(xl' y2)+ y(x2, '1) 
x2 , y2 

where y ( , ) is the bilinearform of the anti-Jordan triple system, and oe ( , ) is the bdmea 

form of the anti-Lie triple system. 

PROoF. From the definition of the anti-Lie triple system associated with an anti-

Jordan triple system we have 

yl yl 

y2 y2 

L(zl' x2)yl +L(xl' z2)yl ~L(zl' y2)xl -L(yi, Z2)xl 

L(Z2' xl)y2 +L(x29 zl)y2 -L(Z2' yl)x2 -L(y2' zl)x2 

L(Xl' y2)-L(yl, X2) K(X1' yl) Z1 

K(X2' y2) Z2 
L(X2' yl)~L(y2' X1) 

where K(x, y)z = {xzy} - {yzx} . 

Hence we get 

xl yl 
oc y(xl' y2)+y(x2' yl)' ~ 

x2 ' y2 
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( ,~ There exrsts an almost complex structure J=1 O Id I on anti-Lie triple system 
¥-Id Ol 

assodiated with an anti-Jordantriple system. As in [6] (cf. Remark in S4), this structure 

has the following property; 

yl 

OC J J = -OC 
X2 ･ X2 y2 

y2 

Roughly speaking, this concept corresponds to an anti-Hermite structure on 
supersymmetric space. 

Assume that T is an anti-Lie triple system and D is a Lie subalgebra of derivations of 

T containing the inner derivation L (T, T ). Consider L (T. D)=Loe)L I with L o = D 

and L I = T and with the product given by [al, a2] =L (al' a2), - [al' Dl] = [Dl' al] 

= Dlal' [D1' D2] = DID2 - D2Di for aie T, DieD. Then from the definition of an anti-

Lie triple system, it follows that L (T, D ) is a Lie superalgebra. Hence L (T, T )~)Trs an 

ideal of the Lie superalgebra L (T, D). We denote L (T. T )~T by L ' and call it the 

standard imbedding Lie superalgebra of T (cf. [2]) 

We consider the correspondence between the bilinear form of anti-Lie triple system 

T and the bilinear form of Lie superalgebra L = L (T, T )~)T which is defined by 

supertrace p in [5], that is, p(x, y): = strace ad x ad y, for x, yeL. 

PRoposmoN 2.3. Let oc be the bilinearform ofan anti-Lie triple system Tand let Pbe 

the bilinear form of the standard imbedding Lie superalgebra L = L (T, T )~ T. Then 

( 1 4) oc(x, y) = P(y, x) for x, yeT 

Especially, p(x, D)=0 for xeT, DeL(T, T). 

PRooF. For x, yeT, from the definition of standard imbedding Lie superalgebra of 

T, we obtain 

[zxy] - [zyx] 

= [[z, x], y] - [[z, y], x] 

= -ad y ad x z+ad x ad y z. 

On the other hand, if we put Endo T= {aeEnd LI aTC T}, then it contains ad y ad x, and ad 

x ad y. Hence from the properties of supertrace in [5], we obtain 

20c(x, y) = Tr {R(x, y) - R(y, x)} 

= strace ad y ad x - strace ad x ad y 

= - 2 strace ad x ad y 

= 2 P(y, x) . 
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For x, yeT, DeL(T, T), we have 

ad x ad D y=[x, Dy]eL(T, T). 

Ifwe put Endl T= {beEndLl bTC L(T, T)},then adxadDrs contamed m End T Hence 

we get 

strace ad x ad D =0.~ 

From Proposition 2.2 and Proposition 2.3, we obtain the following theorem. 

THEOREM 2.4. Let V be an anti-Jordan triple system, T be the anti-Lie triple system 

associated with V, and L be the standard imbedding Lie superalgebra of T. Let y, cc, P be 

the respective forms. 

Then the following statements are equivalent.' 

(i) the bilinear form y is nondegenerate, 

(ii) the bilinear form oc is nondegenerate, 

(iii) the bilinear form P is nondegenerate. 

3
 

We shall now study a construction of an anti-Lie triple system and of a Lie 

superalgebra by means of a slightly different way to the construction in S2. The 

conception m this chapter is a variation of the construction of Lie algebras due to U 

Hrrzebruch in [3]. Following J. Tits [12], in construction of a Lie superalgebra, it is 

natural for us to make tensor products YR J of a Lie superalgebra Ywith a bilinear form 

 and Jordan algebras J. Hence, applying this idea to [3], we first consider an anti-

Jordan triple system of a two dimensional vector space W over a field K defined by 

{abc}.'= 
c+ 
a- 
b for a, b, ceW. 

(*) 

where 

 is an anti-symmetric nondegenerate bilinear form on W (see Example 2). If we denote the map c~'{abc} by l(a, b), the expression l(a, b)- 

 id~ is symmetric m a and b. Since W has dimension two over K, the linear span of the 

endomorphims l(a, b) - 

 id~ has dimension one over K. Hence it follows that 
[1(a b) l(c d)] O for all a, b, c, deW 

Together with the definition of an anti-Jordan triple system, by strarghtforward 
calculations, 

we have 

(1 5) {ab{cde}} = {{abc}de} 

(16) {ab{cde}} = - {c{bad}e} 
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(17) {ab{cde}} = {cd{abe}} . 

Now we can prove the following: 

PRoposmON 3.1. Let W be a two dimensional anti-Jordan triple system over K 

defined by (*) and Jbe any Jordan triple system over K. Then the triple product on WRJ 

defined by 

{aRx, bRy, cRz} = {abc}R{xyz} 

for a, b, ceWand x, y, zeJ, 

is an anti-Jordan triple product on WRJ. 

PROoF. It is clear that 

{aRx, b~y, cRz} = - {cRz, bRy, aRx}. 

By the definition, {aRx, bRy, {cRz, dRu, eRv}} 

= {ab{cd e} } R {xy{zuv}} 

= {ab{cde}} R({{xyz}uv} - {z{yxu}v} + {zu{xyv}}) 

= {ab{cde} } R {{xyz}uv} - {ab{cde}} R {z{ yxu}v} + 

{ab{cd e} } R {zu{x yv}} 

Hence, by using (15), (16) and (17) we have 

{aRx, bRy, {cRz, dRu, eRv}} 

= { {abc}de} R {{xyz}uv} + {c{bad }e} R {{z{yxu}v} 

+ {cd {abe} } R {zu{xyv} } 

= {{aRx, bRy, cRz}, dRu, eRv} + {cRz{bRy, aRx, dRu} 

eRv} + {cRz, dRu, {aRx, bRy, eRv}}. 

This completes the proof. ~ 

REMARK 3.2. Let W be a two dimensional Jordan tnple system (resp, anti-) which is 

defined by 

{abc} = 
c+ 
a- 
b 

where 

 = 

 (resp. 

 = - 

 ). And let J be any Jordan triple 

system or anti-Jordan triple system. Then we can consider the four possibilities of 

tensor product WRJ as follows; 
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W: J. T. S 

W : anti-
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J: J. T. S. 

(A) WRJ : J. T. S. 

(C) WR J : anti-

J : anti-

(B) WRJ:anti-

(D) WRJ: J. T. S. 

Giving an anti-Jordan triple system on WRJ (in the case of (B) and (C)), one gets an 

anti-Lie triple system ( WRJ) + on the vector space WRJ by symmetrizing the first two 

variables in the anti-Jordan triple system. From the anti-Lie triple system one obtains a 

Lle superalgebra by taking the standard imbedding (see Section 2) 

For the anti-Jordan triple system W, since 

{abc}-
c=
a-
b and l(a, b)-
id~ 

is symmetric in a, b, there are a symmetric bilinear form T and an endomorphism S on W 

such that 

l(a, b) = 

 id~ + T(a, b)S. 
Let J be any Jordan triple system over K. Then it can be easily seen that 

L (x, y)-L (y, x)eDer J. 

L (x, y)+LCy, x)eAnti-Der J, for x yeJ 

For the left-multiplication in the anti-Lie triple system on WRJ, we get 

L (aRx, bRy)+L (bRy, aRx) 

= 

 id~R (L (x, y)-L (y, x)) 
+ T(a, b)SR (L (x, y) + L O/, x)), 

which is contained in 

id~RDer J+ SRAnti-Der J. 

From the assumption that the form 

 on W is nondegenerate, there exists a basis {el' e2} of W such that 

 O 
 O and 
~0. Then we have 

T(el' e2)Sel = 

el and T(el' e2)Se2 = - 

e2' Hence it has been shown that the linear endomorphisms id~ and S are linearly 

independent. Therefore, by choosing an element weWsuch that w and Sw form a basis 

of W, we can see that an element of 

(id~RDer J)n(SRAnti-Der J) is zero on wRJ+ SwRJ. 
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Hence the sum 

id~RDer J+ SRAnti-Der J is direct sum. 

Next we shall show that 

id~RDer JeDer (WRJ)+ 

SRAnti-Der JeDer (WRJ)+. 

For DeDer J, we have 

 id~RD 

= 1/2{ 

 id~RD + T(a, b)SRD} 
- 1/2{ 

 id~RD + T(b, a)SRD} 
= 1/21(a, b)RD- 1/21(b, a)RD 

= 1/2(1(a, b)- l(b, a))RD. 

By straightforward calculation, we can show that (1(a, b) - l(b, a))RD is a derivation of 

the anti-Jordan triple system WRJ. Hence id~RD is a derivation of the anti-Lie triple 

system on WRJ. Similarly, using T(a, b)S=1(a, b)- 

 id~, we get SRAnti-Der JeDer (WRJ)+. So we have the following, 

THEOREM 3.3. Under the assumption of Proposition 3.1, there exists a natura/ Lie 

superalgebra structure on 

(18) id~RDer J~)SRAnti-Der Je WRJ 

such that this Lie superalgebra contains the standard imbedding of the anti-Lie triple system 

on WRJ. 

REMARK 3.4. Theorem in [3],Remark 3.2 and Theorem 3.3 in this section suggest 

that simultaneous treatment for the four cases on WRJ is natural 

1
.
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