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Abstract. In this paper, it is shown that the construction of Lie algebras “Id, ®Der
J®T®Anti-Der JOW®J” due to U. Hirzebruch can be modified to a construction of Lie
superalgebras.

Introduction

In [12], J. Tits constructed a Lie algebra from the tensor product Y®4 of a Lie
algebra Y and a Jordan algebra A.  This construction is investigted by U. Hirzebruch in
[3] and generalized for the tensor product W®J, where W is a two dimensional Jordan
triple system and J is any Jordan triple system. In this paper, it is shown that the
construction can be modified to get a construction of a Lie superalgebra.

The aim of our article is to introduce a class of triple systems defined by certain
identities and to construct an anti-Lie triple system from it. We shall obtain a
construction of Lie superalgebras by the standard imbedding of anti-Lie triple systems.

In §1, we introduce a class of triple systems, called anti-Jordan triple systems and give
some examples. We study correspondence of polarized anti-Jordan triple systems with
anti-Jordan pairs.

In §2, we define a bilinear form on an anti-Jordan triple system and consider
it. Also we study the bilinear form for an anti-Lie triple system and the Lie superalgebra
which is related to an anti-Jordan triple system.

In §3, we study a construction of Lie superalgebras by a slightly different method
than in §2.

We shall be concerned with algebras and triple systems which are finite dimensional
over a field of characteristic different from 2 or 3, unless otherwise specified.

* This research was partially supported by a Grant-in-Aid for Scientific Research (No 59540041)
from the Ministry of Education, Japan.
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1.

A triple system is a vector space V over a field K together with a K-linear map V' x V
x V—V. We consider a triple system V as satisfying;

1) {xyz} = —{zyx}
e fevzun}y = {{xyzYuo) + (= {ymu}o) + {zu{xyo}).
for all x, y, z, u, veV

and call it an anti-Jordan triple system. This notion first appeared in [2]. Also this
triple system can be regarded as a Freudenthal-Kantor triple system with e=1,6=—1
and K(a, b)=01n [14]. We use the following notation in an anti-Jordan triple system;

S(a, b):=L(a, b)+ L (b, a),

A(a, b):=L(a, b)—L(b, a),
where L (a, b)c={abc}.
Then by straightforward calcuulations, we get
3) [S(a, b), L(c, d)]1=L(S(a, b)c, d)+ L(c, S(a, b)d)
) [A(a, b), L(c, d)]=L(A(a, b)c, d)—L(c, A(a, b)d),
that is to say;

S(a, b)isa derivation and A4 (a, b) is an anti-derivation of the anti-Jordan triple system. (cf.
[6, 14])

ExamPLE 1. Let V' be a vector space with an anti-symmetric bilinear form < —, —
>. Then {xyz}= <x, y>z+ <y, z>x defines on V an anti-Jordan triple system.

ExampLE 2. Under the assumption of Example 1. {xyz}=<x,y>z+ <y, z>x
— <z, x>y defines on ¥ an anti-Jordan triple system.

ExamMpLE3a. Let g be the standard nondegenerate anti-symmetric bilinear form on
K?" and 5. K*"—K*" an orthogonal reflection, ie. s is orthogonal and satisfies s2
=Id. Then {xyz} =q(x, y)z+q(y, z)x—q(z, sx)y defines on K*" an anti-Jordan triple
system. Especially, if s=id, this reduces to Example 2.

ExamPLE 3b. One defines on (K@ K)*" a triple product {xyz} =q(x, 7)z+q(J, z)x
—q(z, x)y, where q is the standard non-degenerate anti-symmetric bilinear form on
(K®K)*™and (x,*, x{ 7, X0ty X2 )=(xy 7, X, ,++, X3n ", X5, 7). From this triple
product, we obtain an anti-Jordan triple system.

ExampPLE 4. For an anti-Jordan triple system V, we put T=V@V, where Vis a
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of V. Then T becomes an anti-Jordan triple system with respect to the trilinear product
defined by

Xy Y1 Zy L(xy, y2)z,
) =
X2 Y2 Z3 x5, y1)z2
We recall an anti-Lie triple system defined by J. R. Faulkner and J. C. Ferrar that
satisfies

(6) [xyz]=[yxz]
(7) [xyz]+[yzx]+ [zxy]=0
@ [xy[uvz]]—[uvlxyz]]= [[xyulvz] + [ulxyvlz].

X, ¥, z, U, v€T.
The starting point of this paper is the following fundamental theorem.

Turorem 1.1, If(V,{—, —, —.}) is an anti-Jordan triple system, then(V,[—, —, =)
with

) - [xyz]={xyz} +{yxz}
is an anti-Lie triple system.

We denote the anti-Lie triple system induced from an anti-J ordan triple system V" by
V.
For 6= + 1, we consider the following identities;

{xyz}=6{zyx}
{xy{uwvw}} = {{xyu}ow} — S{u{yxviw} + {uv{xyw}}

In the case 6= 1, these reduce to those of a Jordan triple system, while in the case 6= —1
they reduce to those of an anti-Jordan triple system.

For 6= +1, we put [xyz]={xyz} —8{yxz}. If (V; { }) is an anti-Jordan triple
system (8= — 1), then (V*,[—, —, —,1) becomes an anti-Lie triple system. If(V,{ })isa
Jordan triple system (6= +1), then (V", [—, —, —7) becomes a Lie triple system.

Hence we have the following correspondences.

Jordan triple system:----- Lie triple system------ o=1

(resp. anti-) oo (resp. anti-) e o=—1

Next we shall discuss a relation of an anti-Jordan pair to a polarized anti-J ordan triple
system.

A polarized anti-Jordan tripple system is ananti-Jordan system V together with a
direct sum decomposition V=V, @V_ into submodules ¥ such that
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(VY3 =0, (VV,V_ }={V,V_ V_,} =0
and {V,V_,V,}<V,
holds for o=+
In this case, we have
{xyzy={x,y_z,}@®{x_y,z_}
for x=x,®x_,y=y,.@®y_,z=z,®z_.
As in [11, Th A.3], we can show that;

PROPOSITION 1.2. Let V=V .@V_and W= W ,@® W _ be two simple polarized anti-
Jordan triple system and B=(V ., V_) resp. W= (W .., W_) the corresponding anti-Jordan
pairs. Then the followings are equivalent; ,

i) Vand W are isomorphic
i) B is isomorphic to W or to WP,

where WP =(W_, W,).

We now consider the correspondence between polarized anti-Jordan and anti-Lie
triple systems. We begin with the definition. An anti-Lie triple system T is called
polarized if it has a direct sum decomposition T=T, @ T_ satisfying

[LTLTI=[T,T,T-,]1=0
and [T,T_,T]cT, for o=4+.
In this case, we have
Leyzl=[x+py-z: I+ [x-y+z: 1@ [x-y oz 1+ [x,y_z_].
Hence we have the following proposition.

ProposiTioN 1.3.(a) Let T=T,@®T- be a polarized anti-Lie triple system. Define
a new triple product on T by {x,@®x_, y,@®y_, z,@®z_}=[x,y_z,1®[x_y,z_].
Then (T, { }) is a polarized anti-Jordan triple system.
(b) Conversely, if V is a polarized anti-Jordan triple system, then V’r is a polarized anti-
Lie triple system.

Therefore from the above proposition and Proposition 5.1 in [2], we obtain the
following.

THEOREM 1.4.  There exists a one to one correspondence between each pair of the
following classes:

()  equivalence classes of simple anti-Jordan pairs.
(i) -isomorphism classes of simple polarized anti-Jordan triple systems and
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(iii) isomorphism classes of simple polarized anti-Lie triple systems.
These correpondences are given by

Vs, V) V=V, ®V_V*.

2

Let Vbe an anti-Jordan triple system. Then we can define an anti-Lie triple system
on V@V with respect to the triple product defined by

X z L(xy, y5)z; +L(y1, X5)z
(10) ( 1>(J’1) 1> =((1)’2)1 (1 z)1>
X2 V2 Zy L(x3, y1)z2+ L(ys, x1)25 /.
This anti-Lie tripple system is obtained from Example 4 and Theorem 1 by

straightforward calculation. We call it the anti-Lie triple system associated with an
anti-Jordan triple system. Using the notation S(a, b), A(a, b) of Section 1, we have

( 2L(a,b) 0 ) S(a, b)+ A(a, b) 0 >

0 2L(b, a) < 0 S(a, b)— A(a, b) /.
Hence the inner derivations of the anti-Lie triple system are determined by derivations
and anti-derivations of the anti-Jordan triple system. This construction s parallel to the
construction of Lie algebras from Jordan triple systems in [8, 10]. On the other hand,

these constructions of Lie algebras was extended to get all simple Lie algebrasin [6,7, 13].
As in [6], we may define a bilinear form y(x, y) of an anti-Jordan triple system by

(11) yx, yr=1/2 Tr{L(x, y)—L(y, x)}.
PROPOSITION 2.1.  For the bilinear form y of an anti-Jordan triple system V, we have
@ 7z, {pxw})+y({xyz}, w)=0
(ii) 7, {yzw})+ ({xwz}, y)=0
for all x, y, z, weV.
If y is nondegenerate, this implies
@y L(x,yy*=—L(, x)
(i) R(z, w)*=—R(w, z)
where * denotes the adjoint relative to y.

Proor. (i) We have the following identity in anti-Jordan triple system:
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[L(x, y), Lz, w)]=L(L(x, y)z, w)+ L(z, L(y, x)w).
Therefore we get TrL (L (x, y)z, w)= —TrL (z, L (y, x)w), so we obtain (i) of Lemma.
@(i): From {yxw}= —{wxy} and (i), it is clear.H

It should be noted that (i) and (ii) of the above proposition coincide with identities
(10) in [2].
Next we shall define a bilinear form a(x, y) on an anti-Lie triple system T by

(12) oAx, yy:=1/2 TH{R(x, y)=R(y, x)}, ~ where R(x, y)z=[zxy].

The correspondence between the bilinear form of an anti-Jordan triple system Vand the
bilinear form of the anti-Lie triple system T associted with it is given by

ProrosiTION 2.2.

X1 N1 .
(13) “(( ) ( )) =7(x1, y2) +9(x2, ¥1)
X2/ s\ V2

wherey (, ) is the bilinear form of the anti-Jordan triple system, and o ( , ) is the bilinear
form of the anti-Lie triple system.

ProOF. From the definition of the anti-Lie triple system associated with an anti-
Jordan triple system we have

Z X1 Y1 )] Z Y1 ) X1 ]
[<22>(x2)<y2 [(Zz)(h (xz)
(L(zv X2)y1 +LUxy, 2)y:1 — Uzy, y2)x — LYy, 22)% )

- L(zy, X1)y2+LUX5, 21)y2— Lza, y1)X3— LAY2, 21)X2

L(xla ,Vz)_L(,Vp x2) K(xla yl) > < Zy )
=< K(x3, y2) Lxy, y)—Lya x1) ) \ 22

where K(x, y)z={xzy}—{yzx}.
Hence we get

X1 Y1
o (( ) ( )) =p(xy, y2) + (X2 y1)- B
X2 Y2

b
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There exists an almost complex structure J =(_01 y 161> on anti-Lie triple system

assodiated with an anti-Jordantriple system. Asin [6] (cf. Remark in §4), this structure
has the following property;

L O () G

Roughly speaking, this concept corresponds to an anti-Hermite structure on

supersymmetric space.
Assume that T'is an anti-Lie triple system and D is a Lie subalgebra of derivations of

T containing the inner derivation L (7, T ). Consider L(T,D)=L,®L, with L ,=D
and L, =T and with the product given by [a;, a,1=L (a1, a3), — [a;, D;11=[D1, a;]
=D,a,,[Dy,D,1=D,D,—D,D; for a,eT, D;eD. Then from the definition of an anti-
Lie triple system, it follows that L (T, D)is a Lie superalgebra. Hence L(T,T)®Tisan
ideal of the Lie superalgebra L (T, D). We denote L (T, T)®T by L and call it the
standard imbedding Lie superalgebra of T (cf. [2]).

We consider the correspondence between the bilinear form of anti-Lie triple system
T and the bilinear form of Lie superalgebra L =L(T, T )@ T which is defined by
supertrace 8 in [5], that is, B(x, y): =strace ad x ad y, for x, yeL.

PROPOSITION 2.3.  Let a be the bilinear form of an anti-Lie triple system T and let B be
the bilinear form of the standard imbedding Lie superalgebra L =L (T, T)®T. Then

(14) alx, y)=PB(y, x)  for x,yeT
Especially, B(x, D)=0 for xeT, De (T, T).

Proor. For x, ye T, from the definition of standard imbedding Lie superalgebra of
T, we obtain

[zxy]—[zyx]
= [[Z’ x]’ }’]—[[Z» YJ, x]
=—adyadxz+adxady z.

On the other hand, if we put EndyT={a€End L| aT< T}, thenit contains ad y ad x,and ad
x ad y. Hence from the properties of supertrace in [5], we obtain

ZOK(X, y)= Tr{R(x, y)_R(ya X)}
=strace ad y ad x—strace ad x ad y

=—2strace ad x ad y

=2B(y, x).
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For x, yeT, De (T, T), we have
ad x ad D y=[x, Dyle (T, T).

Ifwe put End, T={beEnd L| bT< I(T, T)}, then ad x ad D is contained in End; T Hence,
we get

strace ad x ad D=0.H
From Proposition 2.2 and Proposition 2.3, we obtain the following theorem.

THEOREM 2.4.  Let V be an anti-Jordan triple system, T be the anti-Lie triple system

associated with V, and L be the standard imbedding Lie superalgebra of T. Lety,a,p be
the respective forms.

Then the following statements are equivalent:

(@)  the bilinear form y is nondegenerate,
(i)  the bilinear form o is nondegenerate,
(iii) the bilinear form B is nondegenerate.

3

We shall now study a construction of an anti-Lie triple system and of a Lie
superalgebra by means of a slightly different way to the construction in §2. The
conception in this chapter is a variation of the construction of Lie algebras due to U.
Hirzebruch in [3]. Following J. Tits [12], in construction of a Lie superalgebra, it is
natural for us to make tensor products Y®J of a Lie superalgebra Y with a bilinear form
< , > and Jordan algebras J. Hence, applying this idea to [3], we first consider an anti-
Jordan triple system of a two dimensional vector space W over a field K defined by

(*) {abc}:=<a, b>c+ <b, c>a—<c,a>b for a, b, ceW.

where < , > is an anti-symmetric nondegenerate bilinear form on W. (see Example
2). If we denote the map c—{abc} by l(a, b), the expression l(a, b)— <a, b>id,, is
symmetric in a and b. Since W has dimension two over K, the linear span of the
endomorphims ia, b)— <a, b>id,, has dimension one over K. Hence it follows that

[la, b), lic, d)]=0 forall a, b, c, deW.

Together with the definition of an anti-Jordan triple system, by straightforward
calculations,
we have

15) {ab{cde}} = {{abc}de}
(16) {ab{cde}}= —{c{bad}e}
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a7 {ab{cde}} = {cd{abe}}.
Now we can prove the following:

PROPOSITION 3.1. Let W be a two dimensional anti-Jordan triple system over K
defined by (*) and J be any Jordan triple system over K. Then the triple product on W@J
defined by

{a®x, by, c@z}={abc}®{xyz}

for a, b, ceWand x, y, zeJ,
is an anti-Jordan triple product on WQ@J.

Proor. It is clear that
{a®x, b®Y, c®z}=—{c®z, b®yY, a®x}.
By the definition, {a®x, b®Y, {c®z, dQu, e@v}}
— {ab{cde}} @ {xy{zuv}}
={ab{cde}} ®({{xyz}uv} — {z{yxu}v} + {zu{xyv}})
={ab{cde}} ®{{xyz}uv} — {ab{cde}} ®{z{yxu}v} +
{ab{cde}} @{zu{xyv}}
Hence, by using (15), (16) and (17) we have
{a®x, b®yY, {c®z, d®u, e@v}}
={{abc}de} ®{{xyz}uv} + {c{bad}e} ® {{z{yxu}v}
+{cd{abe}} @{zu{xyv}}
={{a®x, b®y, c®z}, d®u, e@u}+{c@z{b®y, a®x, d®u}
e®@v} +{c®z, dQu, {a®x, bRy, e@v}}.
This completes the proof. [l

REMARK 3.2. Let W be a two dimensional Jordan triple system (resp. anti-) which is
defined by

{abc}= <a, b>c+ <b, c>a—<c,a>b

where <a,b> = <b,a> (resp. <a,b>=— <b,a>). And letJ be any Jordan triple
system or anti-Jordan triple system. Then we can consider the four possibilities of
tensor product W®J as follows;
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J:J. T S. J: anti-
W:J. T 8. (A) WoJ: J. T. S. | (B) WRJ :anti-
W: anti- (C) WRJ :ant- D) WeJ:J. T. S.

Giving an anti-Jordan triple system on W®J (in the case of (B) and (C)), one gets an
anti-Lie triple system (W®J)* on the vector space W®J by symmetrizing the first two
variables in the anti-Jordan triple system. From the anti-Lie triple system one obtains a
Lie superalgebra by taking the standard imbedding (see Section 2).

For the anti-Jordan triple system W, since

{abc}— <a, b>c=<b,c>a—<c,a>b and I(a, b)—<a, b>id,

is symmetric in a, b, there are a symmetric bilinear form 7 and an endomorphism S on W
such that

la, b)=<a, b>id,+1(a, b)S.
Let J be any Jordan triple system over K. Then it can be easily seen that
L (x, y)—L (y, x)eDer J.
L (x, y)+ L (y, x)eAnti-Der J, for x, yeJ.
For the left-multiplication in the anti-Lie triple system on W®J, we get
L(a®x, b®y)+L (b®y, a®x)
=<a, b>id,®(L (x, y)—L (3, x))
+1(a, b)S®(L (x, y)+L (1, x)),
which is contained in
id,,® Der J+ S® Anti-Der J.

From the assumption that the form < , > on W is nondegenerate, there exists a basis
{eq, €5} of W such that

<ep, e >=0, <e;,e,>=0 and <e,e,>#0.
Then we have
(€1, €,)Se; = <e,, e;>e; and (e, €,)Se, = — <e,, e, >e,.

Hence it has been shown that the linear endomorphisms id, and S are linearly
independent. Therefore, by choosing an element we W such that w and Sw form a basis
of W, we can see that an element of

(id,®@ Der J)N(S® Anti-Der J) is zero on w®J+ Sw®J.
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Hence the sum
id,,® Der J+ S® Anti-Der J is direct sum.
Next we shall show that
id,® Der Je Der (WQRJ)*
S® Anti-Der Je Der (WRJ)*.
For DeDer J, we have
<a,b>id,®D
=1/2{<a, b>id,®D+1(a, b)S®D}
—1/2{<b, a>id,®D+1(b, a)S®D}
=1/2l(a, bY®D—1/21(b, a)®D
=1/2(l(a, b)—1(b, a))®D.

By straightforward calculation, we can show that (/(a, b)—I(b, a))®D is a derivation of
the anti-Jordan triple system W®J. Hence id,, ® D is a derivation of the anti-Lie triple
system on W®J. Similarly, using t(a, b)S=1I(a, b)— <a, b>id,, we get S® Anti-Der
JeDer (WQRJ)*. So we have the following,

THEOREM 3.3. Under the assumption of Proposition 3.1, there exists a natural Lie
superalgebra structure on

(18) id,,® Der J®S® Anti-Der JOW®J

such that this Lie superalgebra contains the standard imbedding of the anti-Lie triple system
on W®J.

REMARK 3.4. Theorem in [3], Remark 3.2 and Theorem 3.3 in this section suggest
that simultaneous treatment for the four cases on W®J is natural.
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