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Left loops and their projective transformations are considered on analytic manifolds. It is 

shown that there exists a one-to-one correspondence between the isomorphism classes of the 

images of the abelian Lie group R" under projective transformations of left loops and the 

isomorphism classes of real Lie algebras of dimension n (Theorem 1). For any left loop in 

projective relation with R", the correspondence between normal left subloops and ideals of the 

tangent Lie triple algebra is established (Theorem 2) 

S1. Imtroduction 

A set G with a multiplication // : G x G-> G, denoted by xy = ~(x, y) for x, ye G, will be 

called a left loop if it satisfies 

i) the multiplication /1 has a (two-sided) unit e, 

ii)L each left translation L*: G->G; L*y = xy, is a bijection of G onto itself 

A Ioop is defined to be a left loop satisfying the additional condition 

ii)R each right translation is a biJection 

With each left loop (G, 14), a ternary operation n : G x G x G->G is associated by 

settmg 

n(x, y, z) = L.//(L(x, y), L(x, z)) (1.1) 

for x, y, zeG, where 

L(x, y) = L, Iy. 

This ternary operation satisfies the following equalities 

(1.2) n(x, x, z) =z, 

(1.3) n(x, y, x)=y, 
(1.4) n(e, x, n(e, y, z))=n(x, n(e, x, y)~ n(e, x, z)) 

for x, y, zeG, where e is the unit. The multiplication p is expressed by n as follows; 
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(1.5) /1 (x, y) = n (e, x, y). 

Assume that (G, /l) is a left loop with the left inverse property (left I. P. Ieft loop), that 

is, 1~ 1 = L*-1 holds for every xeG, where x~1 = I~ Ie. Then the tenary operation n 

above satisfies the additional equality 

(1.6) n(e, x, n(x, e, y)) =n(x, e, n(e, x, y)) =y. 

Conversely, Iet n: G x G x G-> G be a ternary operation on a set G satisfying the equalities 

(1.2), (1.3), (1.4) and (1.6) for some fixed element eeG. Then, the multiplication /1 on G 

given by (1.5) makes G a left I.P. Ieft loop whose associated ternary operation is n 

itself. That is to say, every left I. P. Ieft loop (G, p) is uniquely determined by the ternary 

system (G, n) satisfying (1.2), (1.3), (1.4) and (1.6) under the interrelations (1.1) and 

(1.5). Inmvestigating left loops, we shall often use the associated ternary systems instead 

of the muultiplications 

A Ieft I. P. Ieft loop (G, p) is said to be homogeneous if the associated ternary operation 

n is a homogeneous system in the sense of [1], i.e., if n satisfies the following equality (1.7) 

instead of (1.4): 

(1.7) n(x, y, ~(u, v, w)) = n(n(x, y, u), n(x, y, v), n(x, y, w)). 

Note that this equality is equivalent to 

(1.8) n(e, x, n(u, v, w))=n(n(e, x, u), n(e, x, v), n(e, x, w)), 

or to the condition 

(H) Every left inner map L.,y = L.~ylL.Ly is an automorphism of (G, p) 

In the preceding paper [3] we have introduced the concept of the canonical 

connection of analytic loops by means of the associated ternary operation satisfying (1.2), 

(1 .3) and (1 .4), and investigated the condition for an analytic geodesic loop to be changed 

for a homogeneous one without changing the unit and the syatem of geodesics (Theorem 

3 [3])･ Here, we note that all discussions in [3] on the canonical connections ofanalytic 

loops are available for our analytic left loops because it has not used in [3] that any right 

translation of the loops is bijective. This paper aims at determining all of the geodesic 

homogeneous left loops on R" which is in projective relation with the abelian Lie group 

(R", + ) by applying the results on analytic ternary operations in [3] (cf. Theorem 1) 

The author would like to express his thanks to Prof. T. Nono for his suggestive 

advice in oral discussion. 

S2. Projective transforrnatioms of left loops 

In the followings, we are concerned with analytic left loops. An analytic left loop 
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(G, /1) is a left loop on an analytic manifold G such that the followmg two mappmgs are 

analytic 

// : G x G -G; //(x, y)=xy, 

L: G x G -G; L(x, y)=1･ Iy. 

REMARK. Analytic left loops are local loops around their units 

In the same manner as in [3] we introduce the canonical connections on analytic left 

loops as follows: Let (G, kl) be an analytic left loop. For any analytic vector fields X 

and Y on G, we set (cf. [2] and [3]) 

(2.1) (VxY)*=X*Y-n(x, X*, Y*), xeG, 
where n is the ternary operation associated with (G, I/)･ We call the linear connection on 

G defined by (2.1) the canonical connection of the left loop (G, I/)･ The left loop (G, //) is 

said to be geodesic if, for any xeG, the geodesic local loop /1. of the canonrcal connectlon 

centered at x satisfies 

u.(y, z) = n(x, y, z) 

as far as //. is defined (cf. [3])･ From the discussions and the results in S2 of [3] we can 

conclude that the following facts are valid for any geodesic left loop (G, p): Let Xo be a 

tangent vector to G at the unit e of (G, u) and consider the analytic vector field X on G 

given by 

X*=n(e x Xo), xeG 

Then the integral curve c(t), teR, of the vector field X through e = c(O) is a geodesic of the 

cannonical connection V and it satisfies 

L.~(t + *) L.(t) L.(*) = I G (the identity map) (2.2) 

for any t, seR. This implies that any geodesic left loop has the left inverse property and 

that its canonical connection is always complete 

Now, Iet (G, ~) and (~, p) be two analytic left loops on connected analytic manifolds 

G and G, respectively. Assume that these left loops are geodesic. Then, an analytic 

diffeomorphism ~ of G onto G is said to be geodesic preserving if ~ sends every geodesic of 

the canonical connection V of (G, //) to a geodesic of the canonical connection V of (G, 

p). Ifboth of(G, p) and (G, p) are homogeneous, the geodesic preserving diffeomorphism 

~ will be called a projective transformation of the left loops provided that ~ satisfies the 

f ollowmgs 

(p.1) ~ (~x, ~y, ~n (u, v, w)) 

=~n (~~ I~ (~x, ~y, ~u), ~~ 1~ (~x, ~y, ~v), ~~ I~ (~x, ~y, ~w)), 
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(P.2) ~n (X, y, ~~ 1~ (~u, ~V, ~W)) = ~(~n(X, y, u), ~n(X, y, V), ~n(X' y. W)) 

for any x, y, u, v, weG, where n (resp. ~) is the homogeneous system associated with the 

homogeneous left loop (G, //) (resp. (~, p)). It is clear that any analytic isomorphism ~ 

of (G, //) onto (G, p) is a projective transformation of left loops. For an analytic 

diffeomorphism ~ of G onto G, Iet V' be the linear connection on G induced from V under 

~, that is, 

(2.3) V 'x Y= ~~ I~~*x~* Y 

for any vector fields X and Y on G, where ~* denotes the differential of ~ 

PROPOSITION 1. Let(G, //) and(G, p) be geodesic homogeneous left loops on connected 

analytic marafolds G and G, respectively, and ~ a projective transformation of(G, //) onto (~, 

p). For the canonical connection V of(G, /l) and the linear connection V'on G inducedfrom 

the canonical connection of (~, p) under ~, the (1, 2)-tensor fields T= V- V' and - T= V' 

- V on G are affine homogeneous structures (cf. [3]) of V and V ' respectively. 

PROOF. Let (G, /!) be the left loop on G induced from (G, p) under ~, i.e., l! 

= ~ ~ I .p.~ x ~. Then (G, /!) is a geodesic homogeneous left loop whose canonical 

connectron rs V'. The identity map of G is a projective transformation of(G, /l) onto (G, 

If), that is, the systems of geodesics of V and V' are coincident and the associated 

homogenous systems n and rf of (G, //) and (G, l!), respectively, satisfy the following 

relations; 

(2.4) rf(x, y, n(u, v, w)) = n(rf(x, y, u), rf(x, y, v), rf(x, y, w)), 

(2.5) n(x, y, rf(u, v, w)) = rf(n(x, y, u), n(x, y, v), n(x, y, w)). 

The relation (2.4) shows that any displacement rf(x, y) of nf is an automorphism of n 

Hence, the torsion tensor S of V; 

(2.6) S*(X*, Yx)=n(x, X*, 'Y*)-n(x, Y*, X*), xeG, 

(cf. [2]) satisfies the equation 

(2.7) Sy(rf(x, y, X*), nf(x, y, Y*)) = rf(x, y, S*(X*, Y*)), x, yeG, 

for any vector fields X and Yon G. By Lemma in [2] we can see that the equation (2.7) 

nnplies V'S=0. In the same way, VS' = O follows from (2.5), where S' denotes the torsion 

tensor of the connection V'. As noted in S1 we can apply Theorem 3 in [3] for geodesic 

left loops. Since (G, p) and (G, //) are assumed to be homogeneous, this theorem assures 

that T= V - V' (resp. - T= V' - V) is an affine homogeneous structure of V (resp. V') if and 

only if V'S = O (resp. VS' = O). Thus the proof is completed. q.e.d 



Projectivity of Left Loops on R" 37 

Now, applying Theorem 5 in [3] to geodesic left loops, we have 

COROLLARY. Under the same assumption as in Proposition 1, the (1, 2)-tensorfield T 

satisfies the equations VT= O, V'T= O and 

(2.8) T(X, X) = O 

(2.9) T(X, S(Y, Z)) = S(T(X, Y), Z) + S(Y, T(X, Z)) 

(2. I O) T(X, R(Y, Z)W)=R(T(X, y), Z)W+ R(Y, T(X, Z))W 

+R(Y. Z)T(X, W) 

(2.11) T(X, T(Y, Z)) = T(T(X, Y), Z)+ T(Y, T(X, Z)) 

(2.12) R(X, Y)T(Z, W) = T(R(X, Y)Z, W) + T(Z, R(X, Y)W) 

for any vectorfields X, Y, Z, W on G. 

S3･ Projective relatiom im R" 

We restnct ourselves to mvestrgating geodesic homogeneous left loops which are 

images of the abelian Lie group R" under projective transformations of left loops. The 

isomorphism classes of such left loops are characterized by their tangent Lie triple 

algebras, all of which will be found in the sequel 

In what follows we denote the real affine n-space by V= R". The abelian Lie group 

R" = (V, + ) can be regarded as a geodesic homogeneous (left) Ioop with the associated 

homogeneous system 

(3.1) no(x, y, z) = y-x+z 

whose canonical connection V o is the natural fiat connection of the afline space Vwith the 

torsion SO = O and the curvature RO = O. Let ( V, 11)be a geodesic homogeneous left loop 

on V It will be called to be in projective relation with (V, + ) if the identity map of Vis a 

projective transformation of(V, + ) onto (V, 11). Let (G, p) be a geodesic homogeneous left 

100p such that there exists a projective transformation of ( V, + ) onto (G, p). Then, we 

can choose a unique geodesic homogeneous left loop (V, kt) on Vwith the unit Oe Vwhich is 

isomorphic to (G, p) under the projective transformation, say ~. In fact, the 

multiplication u is given on V by 

(3.2･) p(x, y)=~-1~(O~ ~x, ~y), x, yeV, 

where O = ~ (O) and ~ is the homogeneous system associated with (G, p). The left loop 

(V, ke) obtained above is in projective relation with (V, + ). Therefore, to find an 

isomorphism class of those geodesic homogeneous left loops which are Images of ( V, + ) 

under projective transformations of left loops, it is sufficient to find a left loop ( V, ~) on V 

which is in projective relation with ( V, + ) and which has the unit O as above 
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Hereafter, we identify the vector space V with the tangent space of the affine space V 

at O. 

PROPOSITION 2. Let ( V, /1)be a geodesic homogeneous loop on V inprojective relation 

with the abelian Lie group R" = ( V, + ). LetVO denote the naturalflat linear connection on 

R". For the canonical connection V of ( V, p), the (1, 2)-tensor field T=VO-V has the 

constant components (Cjk) with respect to the canonical coordinates in R". The bracket 

operation given by [x, y] = To (x, y) makes V a real Lie algebra ~u = ( V; To ) with the 

structure constrants (C;k), where To denotes the skew-symlnetric (1, 2)-tensor on the vector 

space V inducedfl'om T at the origin O. 

PROoF. In Corollary to Proposition I we replace G, //, kt' with V, + , u, 
respectively. Then, the equation VOT= O means that the tensor field Thas the constant 

components on R". Since the torsion and the curvature of VO vanish on R", the 

equalities (2.8~(2.12) evaluated at the origin of R" are reduced to 

To(x, x)=0 (3.3) 

To(x, To(y, z))= To(To(x, y), z) + To(y, To(x, z)) (3.4) 

for x, y, zeV Hence the bracket [x, y] = To(x, y) makes Va Lie algebra. q, e. d 

PROPOSITION 3. Let ( V, //) and ( V, p) be geodesic homogeneous left loops on V which 

are in projective relation with R" = (. V, + ) and ~p (resp. ~~ be the Lie algebra corresponding 

to (V, u) (resp. (V, p)) by Proposition 2. The left loops ( V, /4) and ( V, p) are isomorphic tf 

and only tf the corresponding Lie algebras ~~p and ~l are isomol'phic. 

PROoF. Let V and V denote the canonical connections of (V, /1) and (V, p), 

respectively. Set T=Vo_V and T=V0_~. Denote ~;p (resp. (~;~ the tangent Lie 

triple algebra of ( V, ~) (resp. ( V, p)) with the bilinear operation xy (resp. (xy) * ) and the 

trilinear operation [x y z] (resp. [x y z]~). We apply Theorem 3 in [3] to these left 

loops. Then, the operations of the tangent Lie triple algebras are obtained respectively 

as follows; 

(3.5) x_v=2To (x, y), [x y z] = - To (TO (x, y), z) 

(3.6) (xy) ~ = 2To(x, y), [x y z] ~ = - To (TO (x, y), z). 

By Theorem 2.2 in [1-Il], the geodesic homogeneous left loops (V, /1) and (V, p) are 

isomorphic if and only if their tangent Lie triple algebras ~5u and ~~ are isomorphic. It 

follows from (3.5) and (3.6) that the tangent Lie triple algebras are isomorphic if and only 

if the corresponding Lie algebras are isomorphic. Thus the proof is completed 

q. e. d. 

Let ~} = ( V; [ , I ) be an n-dimensional real Lie algebra with the undelying vector 

space V. For any xeV we write A(x)=exp adx eGL(V), where ad is the adjoint 

i
p
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operation of the Lie algebra ~. 

PROPOSITION 4. The binary operation /1 on V given by 

(3･7) /1(x, y) = x + A(x)y 
forms an analytic left loop with the unit O. The ternary operation associated with ( V, 11) is 

given by ' 
(3.8) n(x, y, z) = x + //(y- x, z-x). 
Moreover, ( V, /1) is a geodesic homogeneous left loop which is in projective relation with the 

abelian Lie group R" = (V, + ) and the corresponding Lie algebra ~u in Proposition 2 is 

coincident with the given Lie algebra ~. 

PROoF. It is easy to check that ( V, /1)is a left loop with the unit O. We can also 

show that any geodesic of the canonical connection V of ( V, //) is a straight line in V and 

that each left translation L * of ( V, //) induces the parllel displacement of vectofs along the 

strarght line c(t)=tx, teR, with respect to the connection V. Moreover, a direct 

calculation shows (3.8) for the associated ternary operation n. Since n satisfies (1.8) in S1, 

(V, //) is homogeneous. In fact, Ieft inner mappings of (V, //) are given by 

L.,y = A( - //(x, y))A(x)A(y), 

which are automorphisms of the Lie algebra ~. This shows that every L*,y is an 

automorphism of the left loop (V, /4). Let no be the homogeneous system of(V, + ) given 

by (3.1). Then, the equalities (2.4) and (2.5) for n and no are easily checked. Thus, (V, Il) 

is in projective relation with (V, + ). Since 

n(x, X*, Y*) = adX*Y* 

holds for any xe V and X., Y.e T.( V ) ( = V ), the canonical connection V of ( V, // ) is given 

by 

(3.9) (Vx Y)* = X* Y- [X*, Y*] 
o v has its value at the origin and the (1, 2)-tensor T= V -

(3.10) To(X, Y) = [X, Y], 

that is, ~u=(V; To)= ~;. q.e.d. 
S4. Main theorems 

Now we state our main theorems 

THEOREM 1. There exists a one-to-one correspondence between the isomorphism 
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classes ofgeodesic homogeneous left loops which are images of the abelian Lie group R" 

under projective transformations of left loops and the isomorphism classes of real Lie 

algebras of dimension n. 

PROOF. Let V denote the affine space of dimension n. Assume that there exists a 

projective transformation ~ of the Lie group R" = ( V, + ) onto a geodesic homogeneous 

left loop (G, p). Then, by Proposition 2, there corresponds an n-dimensional real Lie 

algebra ~p to the left loop (V, pt) obtained from (G, p) by (3.2). Proposrtion 3 assures that 

this correspondence is one-to-one. Conversely, for any real Lie algebra ~ of dimension 

n, we can construct a geodesic homogeneous left loop (V, p) on V by (3.7). By 

Proposition 4, ( V, p:) is in projective relation with R" = ( V, + ) and the Lie algebra 

corresponding to (V, kt) by Proposition 2 is coincident with the given~ Lie algebra 

q. e. d. ~ . Therefore, the theorem is proved. 

Now, we check the tangent Lie triple algebra ~ of the geodesic homogeneous left 

loop (V, u) considered in S3･ From (3.5) and (3.10) we obtain the tangent Lie triple 

algebra ~ = (V; xy, [x y z]) as follows: 

(4.1) xy = 2[x, y], [x y z] = - [[x, y], z], 

where [ , I denotes the Lie bracket of the Lie algebra ~u = (V; [ , I ). 

PROPOsmoN 5. A Iinear subspace H of V(as the tangentspace to Vat the origin) is an 

ideal of the tangent Lie triple algebra of the geodesic homogeneous left loop ( V, /1 ) tf and 

only tf ~ = (H; [ , l) is an ideal of the Lie algebra ~p = (V; [ , l) 

PRooF. By definition, a subsystem ~ of the Lie triple algebra ( = general Lie triple 

system) ~ = (V; xy, [xyz] ) is an ideal ofR if~5~c~ and [~5 ~ ~] c ~ (cf. [4]). Hence, 

if ~ = (H; hg, [h gf J ) is an ideal of (~;, then by (4. 1) we get [x, h] =~xheHfor any xe Vand 

heH, i.e., ~ = (H; [ , l)is an ideal ofthe Lie algebra ~p = (V; [ , l). The converse is 

also shown by using (4.1). q.e.d 
A normal subsystem ([1-IIl]) of a homogeneous system (G, n) is a subsystem (H, 

n I H) satisfying 

n (xH, yH, zH) = n (x, y, z)H 

for any x, y, zeG, where 

xH=n(H, x, H), xeG. 

Let (G, //) be a homogeneous left loop with the associated homogeneous system 

(G, n). Aleft subloop (H, I/lH) of (G, //) is normal if the homogeneous system associated 

with (H, // IH) is a normal subsystem of the homogeneous system (G, n ) 

For normal left subloops of left loops on V in projective relation with R" = (V, + ), 
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we have the following; 

THEOREM 2. Let ( V, Il)be a geodesic homogeneous left loop on the affine space V=R" 

with the tangent Lie triple algebra ~ = ( V; xy, [x y z] ), and let (H, ,l I H ) be an analytic left 

subloop of (V, I/)･ Assume that (V, pe) is inprojective relation with the abelian Liegroup R" 

= (V, + ). Then, (H, plH) is a norma/ Ieft subloop of (V, //) tfand only tfits tangent Lie 

triple algebra ~ = (H; hg, [h g f] ) is an ideal of the Lie triple algebra R 

PRooF. Since (V, //) is assumed to be in projective relation with R" = (V, + ), without 

loss of generality, we can assume that (V, /1) is given by (3.7.) for some n-dimensional real 

Lie algebra ~ = (V; [ , l) (cf. Proof of Theorem 1). Then, any analytic left subloop (H, 

// I H) has an affine subspace H of Vas its undelying submanifold. We identify H with its 

tangent space at the unit O (vector subspace of V). Suppose that ~ = (H;hg, [h gf])is an 

ideal of the tangent Lie triple algebra (~. By Proposition 5, ~ = (H; [ , l) is an ideal of 

the Lie algebra ~ = (V; [ , l)･ Since the associated homogeneous system (G, n) is given 

by (3.8), we get 

p (x+H, y+H)= {x+ u+A(x+u) O)+ v) I u, veH} 

= /1(x, y) + H 

and xH= n (H, x, H)= {x+A(x-u) (v-u) I u, veH} 

=x+H. 
Therefore, we have 

n(xH,yH, zH)=x+H+pl(y-x+H z x+H) 

= n(x, y, z) + H 

= n(x, y, z)H, 

that is, (H, // I H) is a normal left subloop of (V, Il) 

Conversely, Iet (H, // I H) be a nomal left subloop of ( V, 11). Then, the homogeneous 

system (H, ~ I H) associated with (H, p I H) is a normal subsystem of (V, p). Since H is closed 

m V, we can apply Theorem 3 in [1-IIl], which asserts that the tangent Lie triple algebra 

~ = (H; hg, [h g f]) of (H, IllH) is an ideal of the Lie triple algebra ~ = (V~ xy, [x y z]). 

q. e. d. 
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