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A semigroup which is a band of groups is called a cryptogroup (see [4]). Let P be a C-set
in a cryptogroup S. Then, S(P) is 2-regular (see [11]). In this case, we simply say that S(P)
is a 2 -cryptogroup. In this paper, the structure of 2 -cryptogroups is investigated.

§1. Introduction

Let S be a regular semigroup, and Es the set ofidempotents of S. Let P be a subset of
Eg such that PNL # ] and PNR# [ for every P-class L and &-class R of S (where &
and 2 are Green’s L -and R-relations respectively). If the pair (S. P) of S and P satisfies

(C.1) (1) P*cE;,
(2) qPqcP for gqeP,

then we say that S(P) is weakly P-regular. If (S, P) further satisfies
(3) for any xeS, there exists x*e V' (x) (where ¥ (x) denotes the set of all
inverses of x) such that xP'x*, x*P'xc P (where P! is the adjunction
of 1 to P),
then S(P)is called 2-regular. In this case, x* above is called a P-inverse of x, and the set
of all #-inverses of x is denoted by Vz(x).

If S(P) is P-regular and if V»(q) < P for every geP, then S(P) is called strongly 2-
regular. _

In a regular semigroup S, a subset P of Eg s called a full subset of Esif PN\L # [ and
PN\R# [ forevery #-class L and R-class Rof S. Further, a full subset P of E s called
left [right] minimal if PNL [PNR] consists of a single element for every #-class L [£-
class R] of S. A full subset P of Eg is called a C-set in S if it satisfies (1)—3) of (C.1).

For example, if S is a regular semigroup then S (Eg) is P-regular if and only if S is
orthodox. As another example, if S is a regular semigroup with special involution #
(that is, a regular #-semigroup having # as its special involution; see [8]) and if Q is the set
of all projections of S, then S(Q) is #-regulr and Q is a both left and right minimal full
subset of Es. Conversely, if S(Q) is a #-regular semigroup and if Q is a both left and
right minimal full subset of Eg, then every element x of S has a unique Z-inverse x*,and S
becomes a regular *-semigroup having Q as its projections under the special involution #
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defined by “x+# =(the Z-inverse of x)”. Hereafter, such a regular *-semigroup having #
and Q as its special involution and the projections respectively is denoted by S(Q;
#). From the examples above, it is easy to see that the class of 2-regular semigroups
contains both the class of orthodox semigroups and that of regular *-semigroups. The
following shows a part of the connection between orthodox semigroups, inverse
semigroups, regular *-semigroups and strongly #-regular semigroups:

THEOREM 1.1. Let S(P) be a P-regular semigroup. Then:

(1) P=Esifand only if P is closed with respect to the multiplication. Hence, in this
case S is orthodox.

(2) S(P) is strongly P-regular if and only if pqe P implies qpe P for every p, geP.

(3) S(P) is a regular x-semigroup having P as its projections if and only if pge P
implies gpe P and pq=qp for p, geP.

(4) S(P) is an inverse semigroup if and only if pqg=qp for p, geP.

Proor. (1) Obvious. (2): The “if” part: Let pe P, and ge V»(P). Let pg=uand
gp=v. Then,u,veP. Since uveEg, uv Zu and uv & v, we have p=uv. Similarly, vu
=gq. Since uveP, it follows that vueP. Hence, geP, that is, S(P) is strongly -
regular. The “only if” part: Let gpeP for p,qeP. Then, every P-inverse of pq is
contained in P. Hence, gpe P since gp is a P-inverse of pq.

(3): The“if” part: We need only to show that Pis a p-system (see [8]). Suppose
that p & g for p,qe P. Then, pg=peP. Therefore, pg=qp. Hence, p=q. Thus, each
of L P and RNP consists of a single element for every #-class L and %-class R. This
implies that Pisa p-systemin S. (4): The “if” part: Let p, ge P.  Since pgpe P, pqp = ppq
=pqeP. Therefore, Eg= P> P, that is, P= Eg. Thus, ef =fefor e, fe Es. That is, S(P)is
an inverse semigroup. :

The “only if” part: For p, ge P, pg=pgpe P. Thus, P> < P, and hence Eg= P by (1).
Since S(P) is an inverse semigroup, pqg=gp for p, gc Es=P.

Further, we have the following:

THEOREM 1.2.  Let S(P) be a P-regular semigroup. Then, S(P) is strongly P-regular
if and only if p, q, he P and g & h R p imply that there exists ue P such thatp £ u R q.

Proor. The “if” part: Let peP, and p* a P-inverse of p. Let pp*=gq and p*p
=h. Then,q,hePandgZp ¥ h. Hence,thereexists ue Psuchthatq X u®#h. Now,
gh=p and hq=u. Since p* =hg=ue P, S(P) is strongly #-regular. The “only if” part:
Let p, g, he P, and q.% h%&p. There exists ue V (h) such that p LuRq. Now, hu=p and uh
=gq. Since pg=h and gp=u and since pge P, it follows that gpeP. Then, ucP.

The basic properties of a #-regular semigroup and the structures of some special 2-
regular semigroups have been studied in the previous papers [11] and [12]. A regular
semigroup is called a cryptogroup ifit is a band of groups (see [4]). In this paper, we shall
investigate the structure of #-regular cryptogroups (abbrev., Z-cryptogroups).
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§2. Fundamental properties

A completely regular semigroup S is uniquely decomposed into a semilattice 4 of
completely simple subsemigroups {S;: Ae4}. This decomposition is called the structure
decomposition of S, and is denoted by S~ Z{S,: Ae4}. In this case 4 is unique up to
isomorphism, and is called the structure semilattice of S.

It has been shown in [6] that an orthodox cryptogroup S is isomorphic to the spined
product (hence, of course a subdirect product) of Eg and a Clifford semigroup C (see [6]).
That is, there exists a Clifford semigroup C whose structure semilattice 4 is the same as
that of Eg, such that S is isomorphic to the spined product Eg>eC of Egand C. Thatis,
let Eg~Z{E,: AeA} and C~ZX{C;: AeA} be the structure decompositions of Eg and
C. Then,

EgeaC=ZX{E, x C, (direct product). AeA} (where X means disjoint sum), and the

multiplication is given by

(e, a) (f, b)=(ef, ab),
and S~ Eg5eC.

It is obvious that any 2-regular semigroup is weakly #-regular. Conversely,

LeMMA 2.1.  For a cryptogroup S, S(P) is P-regular if and only if it is weakly P-regular.

PrOOF. The “only if” part is obvious. The “if” part: Let S(P) be a band A of
groups {G,: Aed}. Of course, each G, is an S -class (where & denotes Green’s H-
relation) of S(P). Let e, be the identity of G,. Let xeH,, (the s#-class containing e;;
hence H,, = G,). Then, there exist p, g such that pg=e,. There exists x*e V (x)NH .
Now, xx*=p and x*x=gq. For any heP, (xhx*)?>=xhx*. There exist G,, G; such that
heG, and x*eG; Then, xhx*eG,, and pghgpeG,; Hence, xhx* =pqhqpeP.

Similarly, x*hxeP. Thus, x*eVs(x). Therefore, S(P) is P-regular.

Thus, for cryptogroups, weakly 2-regularity and #-regularity are just the same. It is
well-known that a regular semigroup is an inverse semigroup if and only if every element
has a unique inverse. Similarly, the following is interest as a characterization of a
regular *-semigroup:

THEOREM 2.2. A P-regular semigroup S(P) is a regular *-semigroup S(P; ¥) if and
only if every element x of S(P) has a unique P-inverse.

Proor. The “only if” part: Suppose that S(P) is a regular x-semigroup S(P;
#). Then, it is easy to see that x* is a unique #-inverse of x for any element xeS(P) (see
[8]). The “if” part: Assume that every element x of the P-regular semigroup S(P)hasa
unique #-inverse x¢. Suppose that a certain #-class L contains two different elements
p, g of P. Since pg=p and gp=gq, we have pPq=pqPqp=pPpcP and qPp=qpPpq
cgPgcP. Since geV (P), q is a P-inverse of p, and hence p=gq. This is a
contradiction. Thus, each #-class contains a unique element of P. Similarly, each #-
class contains a unique element of P. Therefore, P is a both left and right minimal full
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subset of Eg, and accordingly S(P) becomes a regular *-semigroup S(P; #).

§3. Completely simple #-regular semigroups
First, we have:

THEOREM 3.1.  Let B be arectangular band, and P a full subset of B. Then, P is a C-set
in B, and accordingly B(P) is P-regular.

Proor. Since gPg={q} =P for geP, B(P) is weakly P-regular. Since B is of
course a crypptogroup, it is also #-regular.

COROLLARY. if B is a square band (see [8]), and P a both left and right minimal full
subset of B. Then, B(P) is P-regular, and it becomes a regular x-semigroup B(P; ¥) under the
special involution ¥ defined by x*= (the P-inverse of x).

Next, we shall investigate the completely simple (weakly) Z-regular semi-
groups. Let S'be a completely simple semigroup. Then we can assume that S'is a Rees
I'x J matrix semigroup over a group G with sandwich matrix Q; that is, S= M(G; I, J;: Q)
(see [1]). Let Q=[p;] (jeJ, iel).

LeMMA 3.2. For a completely simple semigroup S=M(G; I, J; Q) and for
idempotents [p;*1ij, [Pa* Jis the following (1), (2) are equivalent:

(1) [pﬁl]ij[ps—l—cl]kseES and [l’s;l]ks[Pﬁl]ijEEs-

2 [pﬁl]ij[pgcl]ks[pﬁl]ijz[pj_il:lij'

PROOF. (1)==(2): Itisobvious that [pg'],[p;'];;is aninverse of [p; ' 1;[pa Tis
Hence, [p;i*1y[pu’ Tuslpa' Jislpii* 1= [pji ' 1P Juslpji ' Jis€ Es. Then, we have
o) l]ij[pszl]ks[pj—i_ 1]ij= [pji 1]ij' (2)==(1): Obvious. '

By the result above, we have:

LemMmA 3.3.  Let S be a completely simple semigroup, and P a full subset of Es.  Then,
the following (1) and (2) are equivalent:

(1) P cE;.

(2) For any qeP, qPq={q}.

Further, S(P) is P-regular if and only if it satisfies one of (1) and (2).

ProoF. The first part follows from Lemma 3.2. It is obvious that if S(P) is £-
regular then P satisfies (1) and (2). Conversely, suppose that P satisfies (1) or(2). Then,
S(P) is weakly #-regular. Since S is a cryptogroup, S(P) is P-regular.

Suppose that P is a C-set in S=M(G, I, J; Q). Let T={(i, j)eIx J: [p;;'1;;€P}.
Then, of course
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(C.3) (1) for any iel, there exists jeJ such that (i, j)eT, and
(2) for any jeJ, there exists ie/ such that (i, j)eT.

Since P iS a C'Seta [p]_l l]ij[p;;cl]ks= [p; 1]1’5 fOI' (15.])9 (ka S)ET' Hence:pj—i ! p];(I p.‘;(l
=pg ', thatis, p* pp=pa’ P
Thus, Q= [p,,] satisfies the following:

(C'4) pﬁl pjk=p.s:;1 Dsk for any (19 ])5 (k9 S)GT'

Conversely, suppose that T is a subset of I x J such that it satisfies (C.3). In this
case, if O = [ P,,] satisfies (C.4), then S(P) is weakly #-regular, and hence #-regular, with
respect to P={[p;'1;;: (G, )eT}.

First, it is obvious that P is a full subset of Es. For any [p;'1i, [pa'lis€Ps
(7 1ylpa T =[pji* Pi* P’ Jo=[pi'Tis (by (C4)eEs. Hence, it follows from
Lemma 3.3 that S(P) is weakly #-regular, and accordingly #-regular. Thus, we have:

THEOREM 3.4. Let S=M(G; I, J; Q) be a completely simple semigroup, and Q
=[p,,]. Let T be a subset of IxJ such that

(1) T satisfies (C.3), and .
(2 P={[p;'l: G j)eT} satisfies (C.4),

then S(P) is P-regular. Further, every completely simple P-regular semigroup is
constructed in this fashion.

Let S(P) be a P-regular semigroup. Let T be a regular subsemigroup of S, and put
U=PNT. Then, T(U) is called a P-regular subsemigroup of S(P) if T (U) is Z-
regular. Let S,(P,) and S,(P,) be P-regular semigroups, and f: S;(P;)—S,(P;) a
homomorphism. Then, f is called a 2-homomorphism if P, f= S, f\P,. Let S(P) be a
P-regular semigroup, and t a congruence on S(P). Let xt=x for xeS, and X={x:
xeX} for asubset X of S. Then, S(P)is a P-regular semigroup, which we call the factor
P-regular semigroup of S(P) modt and denote by S(P)/()». Hereafter, this congruence
© is especially called a 2-congruence. Hence, a congruence and a #-congruence
are essentially the same. A bijective 2-homomorphism is called a Z-isomorphism.
Hereafter, a #-regular band is simply called a #-band. Let E(P), S(Q) be a rectangular
#-band and a completely simple 2-regular semigroup, and E(P)x S(Q)=T (U) the
direct product of E(P) and S(Q), where U={(p, q): peP and geQ}. Then, T (U) is Z-
regular. This T (U) is called a P-direct product of E(P) and S(Q) (for the general case,
see §5). Let V be a subdirect product of Eand S. Let (e, x)e V. Then, there exists ( f
x~1)eV, where x~! is the group inverse of x and feE. Then (e, x) (f; x™1)=(ef; h),
where h=xx"1. Similarly, (f, x™!) (e, x)= (fe, h). Hence, (ef, k) (f,x~ ") (fe, )= (e,
x~1)eV. Hence, V is a completely simple semigroup. Let K={(p, ¢)eV: peP and
geQ}. 1If V(K) is P-regular, then V(K) is a Z-regular subsemigroup of E(P)>S(Q)
=T (U), where E(P) >;S‘(Q) denotes the 2-direct product of E(P)and S(Q). This V' (K)
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is called a P-subdirect product of E(P) and S(Q).

We shall show later the following: Any completely simple 2-regular semigroup S(U)
is Z-isomorphic to a #-subdirect product of a rectangular #-band E(P)and a completely
simple *-semigroup T'(Q; #). Conversely, a -subdirect product S(U) of a rectangular
&-band E(P) and a completely simple *-semigroup T(Q; #) is a completely simple 2-
regular semigroup.

ExaMPLEs. 1. Let S=M(G; I, J; Q) be a completely simple semigroup such that Q
=[pji], where p;;=1 for all (j, i)eJx I Then, Eg={[1];: (i, j))eIxJ}. Let T be a
subset of / x J, and assume that T satisfies (C.3). Then, P={[1];;:(i,j)eT }isa C-setin S,
and S(P) is #-regular. In particular, S(Es) is 2-regular and is orthodox.

2. Let §be a completely simple semigroup: S= M(G; I, J;Q). Let Tbe a subset of
Ix J, and assume that T satisfies (C.3). Further, assume that Q =[p,,] satisfies pi=1
for (i, j)e T and py;=py* for (i, j), (k, s)eT. Put P={[1];;: (i, j)eT}. Then, S(P)is 2-
regular. In particular, consider the case where I=J and p;;=1 for all (;, i)el x I and p,,
=p; Hforall(i,1)eIx 1. Let T=1IxILand P={[1];: (i,i)e T'}. Then, Tsatisfies (C.3) and
S(P)is #-regular. Infact,in this case S(P)is a regular *-semigroup S(P; #). Further, it
has been shown in [5] that every completely simple regular *-semigroup is constructed in
this fashion.

§4. 2-Bands

Let B be a band, and B~ X{B,: leA} the structure decomposition of B. Let P
<=B. If B(P)is #-regular, then B;(P,), where P, = B,(\P, is also 2-regular, that i, P,is
afull subset of B,. Conversely, let P, be a full subset of B, forall ieA. Then, B,(P;)is
P-regular, but P=X{P,: AeA} is not necessarily a C-set in B, and hence B(P) is not
necessarily #-regular. However, we can construct the least C-set 0, containing P as
follows:

Let py, ps, -, p,€ P, and consider the element p,p,---p, 1\PnPn-1""P2P1- Let Q,be
all these elements, that is, 0, ={p;p,-+*p,— 1Pupu_ 1---psp; (n arbitrary): pePforalli=1,
2,.., n}. Then, clearly 99,9<=Q, for any qeQ,. Hence, Q,is a C-set in B and Q,
>P. Itisobvious that any C-set (in B) containing P contains Q,. Therefore, Q, is the
least C-set containing P. Of course, if Pitselfis a C-set in B, then 0Q,=P. Hence, wehave:

THEOREM 4.1.  Let B be a band, and P a full subset of B.

Let Q,={p1D2'**Pn—1PuPu-1***P2D:1 (n arbitrary): p,e P for i=1,2, ..., n}. Then,Q,is
the least C-set containing P, and B(Q ) is P-regular.  Further, every P-band is constructed
in this fashion.

Consider special kinds of bands, in particular the class of regular bands and that of
normal bands. Let B be a regular band, and define multiplication ° in B as follows:

(C.5) a°b=aba for a, beB.
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Then, B(~)is also a band. Let P be a full subset of B (not of B(°)). Then, itis easy
to see that pPp < Pif and only if P(°)is a subband of B(). Hence, Pisa C-setin Bifand
only if P(c) is a subband of B(e).

Therefore, we have:

THEOREM 4.2. Let B be a regular band, and P a full subset of B.  Then, P is a C-set in
B if and only if P(°) is a subband of B(°). ‘

Next, let B be a normal band. It is well-known that B is a strong semilattice 4 of
rectangular bands {B,: e A}. Thatis, there exists a transitive system { ¢f: o>, o, fe A}
of homomorphisms ¢%: B,— By such that the product of ae B, and beB; is given by ab
= (a¢p}s) (bd3;) (see [10]). In this case, denote B by B=%(B,; A; ¢j). Then we have:

THEOREM 4.3. Let P be a full subset of a normal band B= % (B;; A; ¢}). Let P\B,
=P, foreachieA. Then, B(P)isP-regular if and only if P,¢§ < Py for a, fe Awitha> p.

Proor. The “if” part: Obvious. The “only if” part: Let pe P, and «> . Since
B(P) is P-regular, pPyp<= P, Hence, pgp= (p#5)q(p$s)=pds < Py for ge Py

§5. 2-Cryptogroups

Let S(P) and V(Q) be P-regular semigroups. Consider the direct product W of §
and V; thatis, W=Sx V. Let K={(p,q)eSxV:peP and geQ}. Then, W(K)is -
regular. This W (K) is called the P-direct product of S(P) and V' (Q), and denoted by
S(P)>xV(Q). Let T (Pr)be a P-regular subsemigroup of W(K)=S(P)>V(Q), where
Py=TNK. Ifthe first and second projections of T'(Pr) to S(P) and V' (Q) are surjective
#-homomorphisms, then T(P;) is called a P-subdirect product of S(P) and
V(Q). Now, we consider the special case where S(P) and V(@) are #-cryptogroups.

Let A(P) and B(Q) be ?-cryptogroups, and A~ X{A,: AeA} and B~ Z{B;: e}
be the structure decompositions of 4 and B respectively, and put P,=PNA4; and Q,
=Q\B, for Ae A (we assume that 4 and B have the same structure semilattice 4). Then,
each A,(P,) [B,;(Q,)] is P-regular. Let S(U)=2Z{4,(P;) 3<B;(Q,)- AeA}, where U
=X{P,x Q, (cartesian product): AeA}. Then, of course S(U) is also a cryptogroup
under the multiplication (a, b) (¢, d)= (ac, bd). Now, let (¢, f)eP, x Q; and (A, NeP;

x 0, Then,itis easy to see that (e,f) (h,t)e Esand (e,f) (h, t) (e, f)eU. Hence, S(U)is
weakly #-regular, and accordingly #-regular. This S(U) is called P-spined product of
A(P) and B(Q), and denoted by A(P)s=B(Q). Now, let T(V) be a P-regular
subsemigroup of A(P)szB(Q) such that

(C.6) (1) the first and second projections of S(U)=A(P) 2 B(Q) are surjective
#-homomorphisms of 7 (V) onto A(P) and B(Q) respectively, and
) (a, b)eT (V) implies (@, b~1)eT(V), where a~*, b~ ! are the group
inverses of a, b respectively,
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then T'(V) is called a P-subspined product of A(P) and B(Q), and denoted by
A(P)3=B(Q), etc.

Now, let S(P)be a P-cryptogroup, and S~ X{S, : e A} the structure decomposition
of S. Let S;\P=P, for each AeA. Then, S,(P,) is a completely simple #-regular
semigroup. Now, S(P)is a band of groups { G,: yel'}, where I'is a band and each G,is
an J#-class (where # is Green’s H-relation). Let I'~X{I;: Aed} the structure
decomposition of I'.  Let v be the least strong #-congruence on S(P). Thisis given as
follows (see [1i]): Let v be the transitive closure of the relation v° defined by v ={(a,
b)eSx S: Va(a)\Wa(b)# O}. Then, it follows from [12] that v is the least strong £-
congruence on S(P) which makes S(P) to a regular *-semigroup S(P: )=S(P)/ )z,
where xv=% and ¥={%: xeX} for any subset X of S(P). Now, S§(P)= u{G,:
yel’}. Further, it follows from [11] that x v y implies x, yeS, for some leA. Since a
homomorphicimage of a completely simple semigroup is completely simple (see [3]), S, /v
is completely simple. ~ Therefore, S(P) has the structure decomposition 3(P)~ ={5,(B,):
Ae A}, and each §)(P)is a completely simple *-semigroup 5(,; #). Since 5(P)= U{G,:
yel}, S(P)is also a band of groups. Hence, §(P; #)is a #-cryptogroup (that is, a regular
*-semigroup which is a cryptogroup). Next, define p on S(P) as follows: x pyifand only
ifx,yeG, forsomeyel. Lete, betheidentityof G, Letxp=xand ¥= {x:xeX}for X
=S(P). Then,itis easy to see that S(P)=S(P)/(p)» is a #-band, and ee;=¢,;5. Hence,
S(P)={é,: yel} is isomorphic to I . Now, let x, y€S,(P;) and assume that
x(pN\v)y. Then, x, yeG; for some 6el. Since xy~'v yy~!, we have xy~l=e; and
hence x=y. Therefore, f: S(P)—S(P)>=3(P; #) defined by xf=(% %) is a 2-
isomorphism of S(P) to S(P)f={(%, X): xeS(P)} = S(Py=S(P; #). Let S(P)f=T(Q),
where Q={(p,p). peP}. Then,itiseasy tosee that T (Q)is a Z-regular subsemigroup of
S(P)>=3(P; ) and is a 2-subspined product of § (P)and §(P;#). Conversely, let E(P)be
a P-band, and T(Q; #) a =-cryptogroup. Then, T (Q; #) is a band I of groups {T,.
yel'}. Assume that E(P) and T (Q; #) have the same structure semilattice A, and E
~Z{E;: AeA} and T~ Y {T,: Ae A} the structure decompositions of E and T respectively,
and put P, =E;NPand Q,=0NT,foreachled. LetS(U)bea P-subspined product of
E(P)and T (Q; #); that is, S(U) = E(P)%T (Q; #). Then, S(U)is of course a P-regular
semigroup. For any ee E(P), there exists ae S(U) such that (e, x)=a for some xeT,.
Now, let S, ,={(e, x)eEx T,: (e, x)eS(U)}. Let (e, x), (e, y)eS,,. Then, (e, x) (e, y)
=(e,xy)eS(U). Hence, (e,x) (e, y)ES,,,. Further, e, x have groupinversese ! =eand
x~'in E and T, respectively.  Therefore, (¢, x~!)eS(U )NS,,,. Thus, S,, is a
group. Hence, S(U)=2{S,,: ecE and yel} such that S.,,# 0. Further, for (e,
a)eS, ,and (f, b)eS;;, (e, a) (f, b)= (ef, ab)eS, ;s thatis, S, ,S; ;= S,/ ,5 Therefore,
S(U)is a band of the groups {S, ,: ee Eand yel such that S.,#0}. Thus, S(U)isa 2-
cryptogroup.

By the result above, we have:

THEOREM 5.1.  Every P-cryptogroup is P-isomorphic to a P-subspined product S(U)
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of a P-band E(P) and a #-cryptogroup T (Q; #). Conversely, any P-subspined product
S(U) of a P-band E(P) and a x-cryptogroup T (Q; %) is a P-cryptogroup.

The structure of #-cryptogroups has been clarified in [9]. The theorem above is a
generalization of the structure theorem (Theorem 4, [6]) for strictly inversive semigroups
(that is, orthodox cryptogroups) to the class of #-regular cryptogroups. In fact: Let S be
an orthodox cryptogroup, and S~ X{S, : AeA} the structure decomposition of S. Then,
Eg has the structure decomposition Eg~Z{E,;: AeA}, where E;=S,NEs. Further,
S(Eg) and S,(E,) are P-regular. Now let xp =% and xv=X for xeS, and X={x: xeX}
and ¥={&: xeX} for XcS. Then, §(Es)=S(Es)/(p), is isomorphic to the band
E;.  On the other hand, the least strong #-congruence v on S(Es) is the least inverse
semigroup congruence on S (see [2], [7]), and hence S(Es)= S(Es)/(v)is a Clifford semi-
group. Further, each 5,(E)) is a group. Let T={(%, x) xeS}. Then, it follows
from the result above that S is isomorphic to T'= S(ES)XS(ES) Now, letT,l—{ (%,%):
xeS,} for led. Let (% J)eS;x 3. Then, (%, 7)=(xx"tyxx~!, xx"lyxx~1)eT,
Therefore, T,=S5,x5,. Hence, T is the spined product 5> of S and 5. Now,
S~FE Therefore, S is isomorphic to the spined product of Eg and the Clifford
semigroup 5. This is just the structure theorem for strictly inversive semigroups given
by [6].

As a special case of the theorem above, if S(P) is a completely simple &-regular
semigroup, then the structure semilattice of S consists of a single element. Therefore, we
have the following as a corollary to Theorem 5.1:

COROLLARY. A completely simple P-regular semigroup S(P) is P-isomorphic to a
P-subdirect product of a rectangular P-band E(Q) and a completely simple *-semigroup
T (K; #). Conversely, a P-subdirect product S(P) of a rectangular P-band E(Q) and a
completely simple x-semigroup T (K; ¥) is a completely simple P-regular semigroup.

§6. Strongly #-regular cryptogroups

Let Bbe a band, and P a C-setin B. Then, B(P)is #-regular. Let v be the least
strong #-congruence on B(P). Then, B(P)=B(P)/(v),is the regular x-semigroup
having P as the projections, where %= xv and X = {%: xe X} for X< B. Let Q,={ecB: &
=g for some ge P}.

Then,

LemMma 6.1.  B(Q,) is strongly P-regular.

Proor. Let eeQ,. Then, there exists ge P such that §=& Hence, g v ¢, and
geP. Let feVes(e) in B(Q,). Then, éPfcJ,=P and similary fPéc P. Further,
JeV (#). Hence,feVs(é)in B(P). Since B(P)isa regular - -semigroup, a P-inverse of &
=) is unique, and hence f=§=&. Therefore, f€Q,. Further, ere éPe= qchP
and accordingly eQ,ecQ,. Thus, Q,is a C-set. Therefore, B(Q,) is strongly #-regular.

Conversely,



30 Miyuki YAMADA

LemMmA 6.2.  Let B(U) be a strongly P-regular semigroup, and v the least strong P-
congruence on B(U). Let B(U)=B(U)/(v)> where xv=% and ¥= {x: xeX} for X
cB. Then, U={xeB: %=ii for some ueU}.

ProoF. This follows from [11].
Thus, we have:

THEOREM 6.3. Let B be a band, and P a C-set in B. Let v be the least strong P-
congruence on the ?-band B(P). Let xv=% and X={%: xe X} for X< B. Let 0, = {x€B:
X=§ for some qeP}.

Then, B(Q,) is strongly P-regular. Every C-set U such that B(U) is strongly 2-
regular is obtained in this fashion.

Next, let S be a cryptogroup. Assume that S(P) is strongly #-regular. In this case,
each s -class is a group. Of course, S'is a band I" of groups {G,: yel'}. Let e, be the
identity of G, for each yeI. Then, S(P)/(#)s=S(P), where x5# =X and X={x: xe X}
for X< S, is isomorphic to I'; an isomorphism g is given by X g=yif xeG,. LetA={pg:
peP}. Then, clearly I(4) is #-isomorphic to S(P). Now, let p.Lufj, where p, u,
geP. Since S(P)is strongly 2-regular, piu=p and ap=u. Hence, pu # p and up # u,
and accordingly p.# u. Similarly, u # q. Hence, there exists ve P such that p Z v &
q. Therefore, p # v &% ¢. Similarly, p # 4 ¥ G implies that p ¥ & # § for some
veP. Thus, S(P) is strongly #-regular, and hence I'(4) is strongly #-regular.

From the results above, we easily obtain the following;

THEOREM 6.4. Let S(P) be a strongly P-regular semigroup. Then, S(P) is P-
isomorphic to a P-subspined product of a strongly P-regular band T (Q) and a *-
cryptogroup W (U, #).
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