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I solve the one-dimensional three-body bound state problem interacting pairwise ~ func-

tion. I find symmetric conditions on the masses and the interaction strengths for the existence 

of a simple type of exact solutions. I find also a symmetric form of the Fourier transform of 

the bound state wave function. 

Several years ago, McGuirel) showed that for N particles of equal mass and with 

equal strength, interacting with a pairwise 6 function in one dimension, the bound state 

problem is solvable exactly. This model had been very useful and given rise to a great 

deal ofinterest2). For the problem of unequal masses, Kiang and Ni6gawa3) solved for 

the case of N = 3 and found two conditions on the masses and the coupling strengths for 

the existence of a simple type of exact solution. At first sight their conditions are not 

symmetric between three particles. So I treat the same problem in a somewhat different 

manners from theirs and find symmetric conditions. I have verified that these 

conditrons are equivalent to those of them. I also find symmetric forms of the Fourier 

transform of the bound state wave function. 

The Hamiltonian for three particles in the c.m. system interacting with a pairwise ~ 

function in one dimension is 

H=K- ~ 9v8(x x ) 
j>i=1 

with 

K ~ ~ p~/2mi - P212M. 

i=1 

In Eq. (2) P = ~i3= I Pi is the total momentum and M = ~i3= I mi 

convemence we use three sets of canonical variables; 

xa = xl - (m2x2 + m3x3)/(m2 + m3), 

x23 x2-x3, 

(1) 

(2) 

For the sake of the later 

(3a) 



64 Yasuo MUNAKATA 
xb = x2 - (m3x3 + mlxl)/(m3 + ml)' 

x = x3 -(mixl + m2x2)/(ml + m2)' 

In Eq. (3), a, b and c designate three channels4) and, for example, a means I + (2, 3) where 

(i, j) is the bound state of particles i and j. I assume that all coupling constants gij are 

positive in order to have single bound state for each channels. I also define canonical 

conJugate momenta to Eq. (3) as follows; 

p. = - ialax. = m~[pl/ml ~ (p2 + p3)/(m2 + m3)] , 

p2 3 = - ia/ax23 = m23(p2/m2 - p3/m3), (4a) 
and the cyclic permutations of(a, b, c) and (1, 2, 3) of Eq. (4a). In Eq. (4a), m..=mimj/(mi 

' J 

+ mj) and m. = ml(m2 + m3)/M. There exist following linear relations among these three 

sets of canonical variables; 

x. = - xbm23/m3 - x3 Im3 1/m -= x,m2 3/m2 + xl 2ml 2/m 

x23 = xb - x3 Im3 l/m3 -= x* - x 1 2m 1 2/m2 ' (8a) 
and the cyclic permutations of the above relations. There exist also linear relations 

between canonical momenta 

p. = - pbm3 1/m3 - p31 = - p,ml2/m2 + pl2 ' 

p23 = pbm2 3/mb - p3 Im23/m3 = - p.m2 3/m. - pl 2m23/m2 , (9a) 

and the cyclic permutations of them. By the use of(4a) etc., the kinetic energy K defined 

by (2) is rewritten as follows; 

K = p~12m~ + p2 312m2 3 = p~/2mb + p3 l/2m3 1 = p~l2m. + pl 2/2ml 2 ' ( I O) 

Next I define the Hamiltonian of the partial system by 

H K - g23~(x23) , (1 Ia) 
and the cyclic permutation ofthe above equation. For this Hamiltonian the particle I is 

free and the channel momentum p. becomes a constant ofmotion. As is well known this 

Hamiltonian allows a bound state with the eigenvalue E23= -9~3m23/2, and the 
ergenf unction 

~B(x23) = N.e ~923~23 t *23 1 (12) 
In the followings I show that the product of the eigenfunctions of the partial system 

becomes the eigenfunction of H, given by Eq. (1), provided two conditions (1 5) below are 

satisfied. I define 
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~B(x., x23)E N e~g23~23 1 *23 1 e~g31~31 1 *31 1 e~gl2~12 1 *12 1 . (13) 

Operating K to ~B(x., x23)' I can freely choose an appropriate form of K given by Eq. (10), 

according to each factor of Eq. (13). The calculation is straightforward and the resuslt is 

K ~B(x., x23) = [ - 9~3m23/2 - g~ Im3 l/2 - g~2ml 2/2 + g23~(x23) + 93 1 8(x31) 

+ gl 26(x 1 2)]~B(x., x23) + {92 3e(x23)[93 Im3 Im238(x3 1)/m3 

+ 91 2ml 2m238(x 1 2)/m2] + 93 18(x3 l)9 1 2ml 2m3 18(x 1 2)/m I }~B(x., x2 3) ' ( 1 4) 

In Eq. (14) 8(x) is the sign function. In order that ~B(x., x23) becomes eigenfunction ofH, 

the term in the curly bracket of the r.h.s. of Eq. (14) must become a constant. These 

conditions are easily found and given by 

(15) 923/(m2 + m3) = g3 1/(m3 + ml) = 91 2/(ml + m2) ~~ 11K. 

If the conditions (15) are satisfied the value of the curly bracket rs shown to be 

- mlm2m31lc2. Therefore ~B(x., x23) satisfy 

(H - E)~B(x., x23) = O, (16) 
and E is given by 

E = -(ml + m2) (m2 + m3) (m3 + m )121( (17) 

I have verified that the conditions (15) are equivalent to Eqs. (2.24) and (2.25) in the 

reference 3). 

It should be noted that, for N particles of equal mass and with coupling strength, 

McGuire's Solutionl) has the similar fGrm to Eq. (13). But, it turned out that it is 

impossible to get an exact sol･ution of similar form for the case of unequal masses and N 

= 4. 

Finally I calculate the Fourier transform of Eq. (13) thereby use the Dirac's bra-cket 

symbols. I set ~B(x., x23)=(x*x23 1 B), and denote the eigenvalues of various momenta 

with the corresponding capital letters. I define as follows; 

ipB(Pa' P23) = dxadx23(PaP23 1 Xaa23) (XaX23 1 B) 

N g3 Im31 1 xa+x23m23/m3 I dx23 dx e t(Paxa+p23x23)e g23m23lx23le-
~ 21C 

N x e 912~12 I*~~*23~23/~2 1 ;27z:1. (18) 
In Eq. (18) I make use of the cyclic permutations of Eq. (8a). The calculation oflis rather 

tedious and I write the result only. 
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I = 4mlm2m3K ~ 2[(In~ + m~ + mim2 + m3ml ~ m2m3)P~/(m2 + m3) - 2(m2 - m3)P~P23 

+ (m2 + m3)P23 + (ml + m2) (m2 + m3) (m3 + ml) (mim2 + m2m3 + m3ml)/1c2] 

x (P~ + 9~3m~) - I [(P23 - P~m23/m3)2 + g3 im~] ~ 1 

x [(P23 + p~m23/m2)2 + g~2m~] ~ I (19) 
By making use of the cyclic permutations of Eq. (9a) with capital letters, the last two 

factors of I can be rewritten as (P~ + 9~ Im~) ~ I (P~ + 9~2m~) ~ I and so the denominator of I 

is symmetnc between three particles. Notice that the free bras satisfy (P*P231 = (PbP311 

= (P*P12 l. It is interesting that the quadratic form of P. and P23 in the first bracket ofl 

is form invariant under the transformations (9a) etc. with corresponding capital 

letters. Namely, I can easily show that 

(m~ + m~ + Inlm2 + m3ml ~ m2m3)P~/(m2 + m3) - 2(m2 - m3)P*P23 + (m2 + m3)P~3 

= (m~ + m~ + m2m3 + mlm2 - m3ml)P~/(m3 + ml) ~ 2(m3 - ml)PbP3 1 + (m3 + ml)P~ 1 

= (m~ + In~ + m3ml + m2m3 - mlm2)P~/(ml + m2) - 2(ml ~ m2)P.PI 2 + (ml + m2)P~2 ' 

(20) 

At last, by the use of Eqs. (1 8) and (19) with P~ = P23 = O, the normalization constant in Eq 

(13) is determined; 

N = [mlm2m31(~ 2(ml + m2) (m2 + m3) (m3 + ml) (Inlm2 + m2m3 + m3ml)~ I]l/2 (21) 

I am most grateful to Professor T. Ino for calling my attention to this problem and 

also to Professor Y. Nogami for informing me the reference 3) 
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