Original Paper

Zeeman Effect on ³⁵Cl NQR of TeCl₄• POCl₃

(NQR/Zeeman effect/TeCl₄-complex)

Mitsuo MISHIMA*

Temperature dependence of ³⁵Cl NQR frequencies in TeCl₄·POCl₃ giving six NQR lines was observed in the range of 77 K to 400 K. Three of the NQR lines faded out near 285 K and the others could be detected up to 360 K. The Zeeman effect on the resonance lines was examined at 253 K using a single crystal. Each of these lines gave a single zero-splitting pattern and all the asymmetry parameters for these lines were negligibly small. On the basis of the crystal symmetry and the orientations of the Te - Cl and P - Cl bonds, the molecular structure of the title compound was deduced and the assignment of the NQR lines was performed with the aid of a CNDO/2 MO calculation.

The ³⁵Cl NQR spectrum of the donor-acceptor complex, TeCl₄• POCl₃ was previously reported by Kravchenko et al.¹⁾ They deduced on the basis of the spectral pattern and the intensity ratio of the resonance lines that the orbitals on the Te atom in the complex is hybridized sp³d² and the complex has -octahedral configuration. The investigations on conductivity, vibrational spectra, and dipole moment in the solution of the 1:2 complexes, TeCl₄• 2D (D = pyridine, tetramethylthiourea, etc.) revealed that the 1:2 complexes should be formulated as [TeCl₃• 2D]⁺Cl^{-,24}

The crystal of tellurium(IV) chloride is made up of isolated tetramers, Te₄Cl₁₆, which are formed with the arrangement of alternate TeCl₃⁺ and bridged Cl⁻ ions at the apexes of the distorted cube, and the configuration around the Te atom is distorted-octahedral with three terminal Te - Cl bonds and three Te...Cl bridging bonds.⁵⁾ In the crystal of TeCl₄• AlCl₃, TeCl₃⁺ and AlCl₄⁻ ions are bridged with three Cl atoms from the AlCl₄⁻ ion and infinite chains are formed.^{6,7)} The coordination around the Te atom is also octahedral. The similar structure can be found out in the crystal structure of TeCl₄• SbCl₅.⁷⁾ It is, therefore, necessary to take into account the possibility that TeCl₄• POCl₃ may have a polymeric structure [(TeCl₃• POCl₃) *Cl⁻]ⁿ with bridging Cl atoms in addition to a discrete - octahedral structure.

Knowledge of the directions of the electric field gradient (efg) axes and other NQR parameters is helpful for investigating the molecular structure. The Zeeman effect on the NQR lines of a single crystal serves as a good tool for this purpose.

Experimental

The complex TeCl₄• POCl₃ was obtained by dissolving TeCl₄ in hot phosphoryl chloride and cooling the solution. A single crystal was grown by the Bridgeman technique. Then a small excess of POCl₃ was added to the complex to avoid decomposition of the complex. The resonance lines were observed using a superregenerative oscillator. The Zeeman effect was measured by means of the zerosplitting cone method at 253 K. The desired temperature was attained within ± 1 K by controlling the boiling rate from liquid nitrogen. The magnetic field was supplied with a Helmholtz coil with a field strength of about 20 mT.

Results and Discussion

The complex TeCl₄· POCl₃ gave a widespread ³⁵Cl NQR spectrum consisting of six resonance lines at 77 K. Temperature dependence of the NQR frequencies are shown in Fig. 1. The resonance lines are termed 1. 2, ..., from the lower frequency to the higher. The 5 lines faded out near 285 K and the re-4, and maining lines near 360 K. The 6 line was more intense 2 lines having, instead, broader linethan the 1 and widths. Although the intensity of the 6 line was estimated to be twice that of the $_1$ or $_2$ line previously,¹⁾ the area ratio of the lines seems not to be necessarily the case.

Figure 2 shows the zero-splitting patterns on the ³⁵Cl Zeeman lines in TeCl₄• POCl₃ at 253 K. A single Zeeman locus was obtained from each resonance line, suggesting that the crystal is triclinic and all of the equivalent bonds

^{*}Department of Chemistry

Fig. 1. Temperature dependence of ³⁵Cl NQR frequencies in TeCl₄·POCl₃.

are parallel or antiparallel to one another in the crystal. The NQR parameters calculated from the Zeeman loci are listed along with the frequencies in Table 1. The asymmetry parameter () for each resonance line is negligibly small. The double bond characters of the Te - Cl and P -Cl bonds, therefore, are insignificant.

Fig. 2. Zero-splitting patterns of 35 Cl lines in TeCl₄•POCl₃ at 253 K. z_i indicates the direction of the efg z axis for the _____i line.

The angles between the M - Cl bonds (M=Te or P) were deduced, assuming that the efg z axis is parallel to the bond direction. The results are shown in Table 2 where the Cl atom contributing to the $_{1}$ line is termed Cl₁. The $_{3}$, $_{4}$, and $_{5}$ lines are assigned to the Cl

Table 1. NQR aparameters for $TeCl_4 \cdot POCl_3$ at 253 K and NQR frequencies at 77 K.

Line ^{a)}	Frequency (MHz)		e ² Qqh ⁻¹		Assignment	
	77K 253K (MH		(MHz)			
1	24.830	24.717	0.048	49.419	Te - Cl	
2	26.758	26.219	0.030	52.430	Te - Cl	
3	29.573	28.893	0.017	57.783	P - Cl	
4	29.576	29.009	0.039	58.003	P - Cl	
5	29.696	28.983	0.024	57.960	P - Cl	
6	29.997	29.672	0.021	59.339	Te - Cl	

a) The frequencies at 77 K in ref. 1 are 24.282, 26.574, 29.570, 29.754, and 29.994 MHz. The line of 29.570 MHz corresponds to the $_3$ and $_4$ lines.

atoms of the POCl₃ group, because the P - Cl bonds orient nearly at the tetrahedral angle to one another and the remaining lines to the Cl atoms bonded to the Te atom. The angles, ClPCl, are 106.4° on average. These values are in good agreement with the mean values, 106.2° in SnCl₄· 2POCl₃,⁶) 106.4° in SbCl₅· POCl₃,^{9,10)} and 106.6° in NbCl₅· POCl₃.¹⁰⁾

Table 2. Angles (degrees) between the bonds in TeCl₄• POCl₃

Bond	Te - Cl ₁	Te - Cl ₂	Te - Cl ₆	P - Cl ₃	P - Cl ₄	P - Cl ₅
Te - Cl ₂	92.88					
	(87.12)*	ı)				
Te - Cl ₆	93.43	91.26				
	(86.57)	(88.74)				
P - Cl ₃	123.69	128.55	117.81			
	(86.57)	(51.54)	(62.19)			
P - Cl ₄	129.49	44.39	67.75	106.15		
	(50.51)	(135.61)	(112.25)	(52.5)		
$P - Cl_5$	54.63	64.13	135.59	106.19	106.83	
	(125.37)	(115.87)	(44.41)			
$O - P^{b)}$	122.4	62.5	134.5	112.8	112.2	112.2
	(57.6)	(117.5)	(45.5)			

a) The values in parentheses were supplementary angles.

b) Deduced from the orientations of the P - Cl bonds, assuming that the P - O bond lies on an approximate threefold axis.

The fade-out of the $_3$, $_4$, and $_5$ lines is expected for the Cl atoms of POCl₃ as a consequence of reorientation of the PCl₃ moiety around the P - O bond. The temperatures of the fade-out are near 180 K in SnCl₄· 2POCl₃ and near 260 K in SbCl₅· POCl₃.¹¹ The higher fade-out temperature in SbCl₅· POCl₃ was ascribed to the intramolecular partial donor-acceptor bonding between the P atom and the Cl atom bonded to the Sb atom.¹¹ The fade-out temperature in TeCl₄• POCl₃ is higher by about 20 K than in the complex of SbCl₅. A similar interaction appears to exist in the crystal of TeCl₄• POCl₃. The temperature coefficient of the $_1$ line is less negative than those of the other lines. It is therefore presumed that the Cl₁ atom in TeCl₄• POCl₃ may likewise participate in hindering the reorientation of the PCl₃ moiety.

Figure 3(a) shows the -octahedral structure of TeCl₄• POCl₃ previously proposed.¹⁾ The Cl-Te-Cl bond angles close to 90° appear to satisfy this structure. However, such an asymmetrical atomic arrangement should distort the octahedron, and hence the two Te - Cl bonds situated in the trans position to each other should no longer be colinear. In such a case, the $_6$ line should give two Zeeman loci close to each other, corresponding to the bond directions. Therefore, the -octahedral model is not reconciled with the results of the Zeeman effect.

Fig. 3. Assumed molecular structures of TeCl₄·POCl₃.

When the structure of $\text{TeCl}_4 \cdot \text{POCl}_3$ is formulated as $[(\text{TeCl}_3 \cdot \text{POCl}_3)^+\text{Cl}^-]_n$, it comes into question what value of n satisfies the requirement that the $\text{TeCl}_3 \cdot \text{POCl}_3$ fragments orient in the same or opposite directions to each other in the crystal. In the case of n=1, the atomic arrangement around the Te atom should be trigonal-pyramidal with a lone pair since the Te⁺ ion has five electrons in the valence shell. The results of the Zeeman effect requires that two Te - Cl bonds lie in the equatorial plane. However, any of the Cl-Te-Cl angles are too small compared with an ideal bond angle (120°) in the equatorial plane, even though any cause, like repulsion between the lone pair and the bonding pairs, considerably decreases the bond angles.

In the case of n=2, the molecule is presented as a dimer with two bridging Cl atoms. Two plausible structures with an inversion center are shown in (b) and (c) of Fig. 3, considering steric repulsion and supplemental

angles between the bonds. The structure (c) closely resembles that of $[TiCl_4 \cdot POCl_3]_2$.¹²⁾ If the bridging bonds are symmetrical with the equal Te...Cl distances, the NQR spectrum should consist of slightly separated lines and a line fairly separated from them because it is expected that the two terminal Te - Cl bonds trans to the bridging Cl atoms are alike in bond character and the Cl atom trans to the POCl₃ group is different in character from them.

In the case of $2 \le n \le 3$, a 2n-membered ring composed of the Te and bridging Cl atoms is formed. This ring cannot be composed without the TeCl₃• POCl₃ fragments different in orientation from others. This does not satisfy the requirement that the crystal is triclinic.

At first thought an infinite chain (n=) appears to be a satisfactory structure. If the bent bridging bonds connect the TeCl₃·POCl₃ fragments, a satisfactory structure cannot be obtained. This is seen by performing the following operations on the structure (b) or (c) of Fig. 3. First, the Cl₁ atom and the bridging Cl atom trans to the Cl₁ atom in one of the TeCl₃·POCl₃ fragments are inverted through the Te atom, and secondly, another fragment is rotated by 180° around its Te - Cl bond. The chain is completed by connecting the dimeric unit thus formed. However, the moved atoms, Cl₁ and Cl₂, overlap each other.

If the bridging bonds are symmetric and the bridging Cl atom lies on the inversion center, the infinite zig-zag chain can be completed. The crystal composed of such chains is no longer triclinic because a two-fold screw axis exists within the chains, and, in addition, two of the terminal Te - Cl bonds are equivalent. The molecular structure satisfying the results of Zeeman effect, therefore, is restricted to the dimers.

Another problem is determining which Cl atom contributes to which resonance line. Unfortunately, this problem cannot be solved only on the basis of the results of the Zeeman effect. With the aid of CNDO/2 MO calculations,¹³⁾ the assignment of the NQR lines to particular Cl atoms was tried for two types of the dimers. The orientations of the TeCl₃ and PCl₃ moieties were deduced on the basis of the angles between the bonds. Taking into account the supplementary angles between the Te - Cl and P - Cl bonds, two typical configurations arise from the relative orientations of the TeCl₃ and PCl₃ moieties, as shown in Fig. 3.

The bond lengths (in pm) and bond angles (in degree)

were assumed by reference to those of the related compounds^{5-8,14,15)} as follows;

Te - Cl=236, Te - O=234, P - O=146, P - Cl=195, Te...Cl=277 and 287;

Cl₆TeO=173, TeClTe=98, TeOP=137, Cl₁TeO=92.6.

The Cl₁ atom is situated in the position trans to the short Te...Cl bonds. The CNDO/2 parameters were calculated by a previously described method.^{16,17)} The field gradients were calculated using the method described by Kaplansky and Whitehead.¹⁸⁾ As a rule, semi-empirical MO calculations tend to give higher NQR frequencies than the observed ones. The highest-frequency lines for the models (b) and (c) were 36.27 and 36.50 MHz, respectively. The frequencies shown in Fig. 4 are normalized in such a way that in each model the calculated highest frequency accords with the observed highest one at 77 K.

Fig. 4. Observed and calculated ³⁵ Cl NQR spectra of [TeCl₄•POCl₃]₂. The bold lines correspond to the NQR lines of the Cl atoms bonded to the Te atom and the dashed lines to the lines of the Cl atoms bonded to the P atom. The calculated spectra of (b) and (c) correspond to the structures of (b) and (c) in Fig. 3.

The MO calculations on the two types of the dimers with the asymmetrical bridging bonds reproduce qualitatively the observed spectrum with respect to the Cl atoms of the Te-Cl bonds. One cannot say on the basis of the calculated spectra which of the structures (b) and (c) is plausible because of the assumed molecular geometry, though the whole spectrum for the structure (c) resembles the observed one in pattern. It is, however, clear that the NQR frequencies of the Cl atoms depend on the coordination positions of the Cl atoms with respect to the Te - Cl bonds. The 6 line is assigned to the Cl atom trans to the POCl₃ molecule, and the 1 and 2 lines are assigned to the Cl atoms trans to the shorter and longer Te ...Cl bonds, respectively. As seen from the difference in frequency between 1 and 2, more charges flow from the bridging atom to the Cl₁ atom than to the Cl₂ atom. The resonance of the bridging Cl atom was not observed because the frequency was too low: the frequency was calculated to be nearly 6 MHz.

The ³⁵Cl frequencies in free POCl₃¹⁹⁾ and the corresponding frequencies in TeCl₄• POCl₃ average 28.97 MHz and 29.62 MHz at 77 K, respectively. On complexing, the charge transferred from the Cl atoms of POCl₃ to the Te atom is estimated to be -0.04*e*. The corresponding charges in SnCl₄• POCl₃ and SbCl₅• POCl₃ were estimated to be -0.08*e* and -0.10*e*, respectively.¹¹⁾ Therefore, the acceptor ability of TeCl₄ is fairy inferior to those of SnCl₄ and SbCl₅.

References

- E.A.Kravchenko, T.L. Novoderezhkina, O.N.Gilyanov, B.N.Kulovskii, and B.G.Lebedev, Zh. Neoorg. Khim., 25, 1720, 1980.
- 2) N.N.Greenwood, B.P.Straughan, and A.E.Wilson, J. Chem. Soc. (A), 1968, 2209.
- 3) N.Katsaros and J.N.George, J. Nucl. Chem., 31, 3503, 1969.
- 4) I.P.Goldshtein, E.N.Gur'yanova, A.F.Volkov, and M.E. Peisakhova, Zh. Obshch. Khim., 43, 1669, 1973
- 5) B.Buss and B.Krebs, Inorg. Chem., 10, 2795, 1971.
- 6) B.Krebs, B.Buss, and D.Altena, Z. anorg. allge. Chem., 386, 257, 1971.
- 7) H.Christian, J.J.Collins, R.J.Gellespie ,and J.F.Sawyer, Inorg. Chem., 25, 777, 1986.
- 8) C.-I.Brändén, Acta Chem. Scand., 17, 759, 1963.
- 9) I.Lindqvist and C.-I.Brändén, Acta Crystallogr., 12, 642, 1959.
- C.-I.Brändén and I.Lindqvist, Acta Chem. Scand., 17, 353, 1963.
- 11) M.Mishima, J. Sci. Hiroshima Univ, Ser. A, 46, 41, 1982.
- 12) C.-I.Brändén and I.Lindqvist, Acta Chem. Scand., 14, 726, 1960.
- J.A.Pople and D.L.Beveridge, "Approximate Molecular Orbital Theory," McGrow-Hill, New York, 1970.
- 14) B.Krebs and V.Paulat, Z. Naturforsh., 34b, 900, 1979.
- B.Krebs, B.Buss, and W.Berger, Z. anorg. allge. Chem., 397, 1, 1973.
- 16) H.L.Hase and S.Schweig, Theoret. Chim. Acta (Berl), 31, 215, 1973.
- 17) J.Hinze and H.H.Jaffé, J. Phys. Chem., 67, 1501,

4	000	
L	yn.	
	JUL	

- 19) R.Livingston, Phys. Rev., 82, 289, 1959.
- M.Kaplansky and M.A.Whitehead, Trans. Faraday Soc., 65, 641, 1969.