Free Products and Amalgamation of Generalized Inverse *-Semigroups

Dedicated to Professor Hisao Tominaga on his 60th birthday

Teruo Імаока

Department of Mathematics, Shimane University, Matsue, Japan (Received September 5, 1987)

The author showed that the class of [left, right] normal bands has the stong amalgamation property [4]. In his paper [1], T. E. Hall proved that the class of [left, right] generalized inverse semigroups has the strong amalgamation property by using the concept of a bundled semilattice which is firstly introduced in [7]. By similar argument, we show that the classes of normal *-bands and generalized inverse *-semigroups have the strong amalgamation property. Also we give the structures of normal *-bands and generalized inverse *-semigroups and the free products in the variety of normal *-bands.

§1. Introduction

Let \mathscr{A} be a class of algebras. For a family of algebras $\{A_i: i \in I\}$ from \mathscr{A} , each having an algebra $U \in \mathscr{A}$ as a subalgebra, the list $(\{A_i: i \in I\}; U)$ is called an *amalgam* from \mathscr{A} . We say that an amalgam $(\{A_i: i \in I\}; U)$ is *strongly embeddable* (or is *strongly embedded*) in an algebra B if there are \mathscr{A} -monomorphisms $\phi_i: A_i \rightarrow B, i \in I$, such that

- (i) $\phi_i | U = \phi_i | U$ for all $i, j \in I$,
- (ii) $A_i\phi_i \cap A_j\phi_i = U\phi_i$ for all $i, j \in I$ with $i \neq j$,

where $\phi_i | U$ denotes the restriction of ϕ_i to U. We say that a class \mathscr{A} of algebras has the strong amalgamation property if every amalgam from \mathscr{A} is strongly embeddable in an algebra from \mathscr{A} . If $A_i = A_j$ for all $i, j \in I$, $(\{A_i: i \in I\}; U)$ is called a special amalgam from \mathscr{A} . We say that \mathscr{A} has the special amalgamation property if each special amalgam from \mathscr{A} is strongly embeddable in an algebra from \mathscr{A} . It is well-known (see [9]) that in a class of algebras closed under isomorphisms and the formation of the union of any ascending chain of algebras, each amalgamation property follows from the case in which |I|=2. If |I|=2, we write an amalgam ($\{A_1, A_2\}; U$) by $(A_1, A_2; U)$.

A semigroup S with a unary operation $*: S \rightarrow S$ is called a *regular* *-semigroup if it satisfies

- (i) $(x^*)^* = x$,
- (ii) $(xy)^* = y^*x^*$,
- (iii) $xx^*x = x$.

Let S and T be regular *-semigroups. A homomorphism $\phi: S \to T$ is called a *-homomorphism if $x^*\phi = (x\phi)^*$ for all $x \in S$. A relation θ on S is called a *-relation if $(x, y) \in \theta$ implies $(x^*, y^*) \in \theta$. An idempotent e in S is called a projection if $e^* = e$. By P(S) and E(S), we denote the sets of projections and idempotents, respectively, of S. The following result is used frequently throughout this paper.

RESULT 1. ((i) due to [10] and (ii) due to [8]). Let S be a regular *-semigroup. Then we have

(i) each \mathcal{L} -class and each \mathcal{R} -class contain one and only one projection,

(ii) $E(S) = P(S)^2$. More precisely, for any idempotent e, there exist projections f and g such that $e\mathcal{R}$ f, $e\mathcal{L}g$ and e=fg.

A regular *-semigroup is called an *orthodox* *-semigroup [*-band] if it is an orthodox semigroup [band]. An orthodox *-semigroup [*-band] S is called a *gener-ralized inverse* *-semigroup [normal *-band] if E(S) [S itself] satisfies the identity axya = ayxa. In section 2, we determine the structures of normal *-bands and generalized inverse *-semigroups by using a transitive system of mappings for the set of projections, which are slightly different from [11] and [13].

The author gave useful forms of the free products in the variety of [left, right] normal bands [3]. In section 3, we give the free products in the varieties of normal *-bands.

For an amalgam $(E_1, E_2; U)$ of semilattices, a semilattice E is called a *bundled* semilattice of it if $(E_1, E_2; U)$ is strongly embedded in E by monomorphisms ϕ_i : $E_i \rightarrow E$, i=1, 2, say, such that for $e_i \in E_i$ and $e_j \in E_j$ with $i \neq j$, if $e_i \phi_i \leq e_j \phi_j$ (in E) then $e_i \leq u$ (in E_i) and $u \leq e_j$ (in E_j) for some $u \in U$. Let $(S_1, S_2; U)$ be an amalgam of inverse semigroups. Then the amalgamated product $E(S_1)*_{E(U)}E(S_2)$ in the class of semilattices is a bundled semilattice of $(E(S_1), E(S_2); E(U))$ [7], but $E(S_1)*_{E(U)}E(S_2)$ does not embed in the amalgamated product $S_1*_US_2$ in the class of inverse semigroups, in general [1]. In [7], the author showed that if the following result is true, the class of [left, right] generalized inverse semigroups has the strong amalgamation property. And Hall has proved the following.

RESULT 2 (due to [1]). Any amalgam (S, T; U) of inverse semigroups is strongly embedded in an inverse semigroup A such that E(A) is a bundled semilattice of the amalgam (E(S), E(T); E(U)) of semilattices.

In section 4, we show that the varieties of normal *-bands and generalized inverse *-semigroups have the strong amalgamation property.

The notation and terminology are those of [2] and [12], unless otherwise stated.

§2. Structures

Let Δ be a semilattice and P a disjoint union of subsets P_{α} , $\alpha \in \Delta$. For α , $\beta \in \Delta$

56

with $\alpha \ge \beta$, let $\tau_{\alpha,\beta}$: $P_{\alpha} \to P_{\beta}$ be a mapping. The family of mappings $\{\tau_{\alpha,\beta} : \alpha \ge \beta, \alpha, \beta \in \Delta\}$ is called a *transitive system of mappings for* $P = \bigcup_{\alpha \in \Delta} P_{\alpha}$ if it satisfies

- (i) $\tau_{\alpha,\alpha}$ is the identity mapping of P_{α} for all $\alpha \in \Delta$,
- (ii) $\tau_{\alpha,\beta}\tau_{\beta,\gamma} = \tau_{\alpha,\gamma}$ for $\alpha, \beta, \gamma \in \Delta$ with $\alpha \ge \beta \ge \gamma$.

THEOREM 1. Let Δ be a semilattice and $\{\tau_{\alpha,\beta}: \alpha \geq \beta, \alpha, \beta \in \Delta\}$ a transitive system of mappings for $P = \bigcup_{\alpha \in \Delta} P_{\alpha}$. Let $B = \{(e, \alpha, f): e, f \in P_{\alpha}, \alpha \in \Delta\}$ and define its multiplication and unary operation by

$$(e, \alpha, f)(g, \beta, h) = (e\tau_{\alpha,\alpha\beta}, \alpha\beta, h\tau_{\beta,\alpha\beta}),$$
$$(e, \alpha, f)^* = (f, \alpha, e),$$

Then B becomes a normal *-band with $P(B) = \{(e, \alpha, e): \alpha \in \Delta\}$ and its structure semilattice is Δ . Hereafter, we denote it by $B \sim \mathcal{T}(\Delta, P; \{\tau_{\alpha,\beta}\})$.

Conversely, every normal *-band is obtained by this fashion.

PROOF. We can easily obtain the first half of the theorem. Let E be a normal *-band and $E \equiv \sum \{E_{\alpha} : \alpha \in \Delta\}$ its structure decomposition. For any $\alpha \in \Delta$, let $P_{\alpha} = P(E) \cap E_{\alpha}$ and $P = \bigcup_{\alpha \in \Delta} P_{\alpha}$. It is obvious P = P(E). For any $\alpha, \beta \in \Delta$ with $\alpha \ge \beta$, define $\tau_{\alpha,\beta}$ as follows: let e be any element of P_{α} , and let a and b be any elements of E_{β} . Since E is a normal *-band, it is clear that $ea \Re eb$. By Result 1 (i), there exists one and only one element $f \in P_{\beta}$ such that $f \Re ea$. We define it by $e\tau_{\alpha,\beta} = f$. Then we can easily see that $\{\tau_{\alpha,\beta} : \alpha \ge \beta, \alpha, \beta \in \Delta\}$ is a transitive system for $P = \bigcup_{\alpha \in \Delta} P_{\alpha}$. Let $B \sim \mathcal{T}(\Delta, P; \{\tau_{\alpha,\beta}\})$ and define a mapping $\phi : E \rightarrow B$ by $a\phi = (aa^*, \alpha, a^*a)$ for $a \in E_{\alpha}$. By Result 1 (i), ϕ is a bijection. Let $a \in E_{\alpha}, b \in E_{\beta}$. By the similar argument above, there are uniquely $e, f \in P_{\alpha\beta}$ such that $e\Re(aa^*)x$ and $f \mathcal{L}x(b^*b)$ for any $x \in E_{\alpha\beta}$. Then

$$(ab)\phi = ((aa^*)(a^*abb^*))((a^*ab^*b)(b^*b))\phi$$
$$= ((eu)(uf)\phi \quad \text{for some } u \in P_{\alpha\beta},$$
$$= (ef)\phi \quad \text{since } E_{\alpha\beta} \text{ is rectangular},$$
$$= (e, \alpha\beta, f)$$
$$= ((aa^*)\tau_{\alpha,\alpha\beta}, \alpha\beta, (b^*b)\tau_{\beta,\alpha\beta})$$
$$= (aa^*, \alpha, a^*a)(bb^*, \beta, b^*b)$$
$$= (a\phi)(b\phi).$$

Thus ϕ is an *-isomorphism, and hence we have the theorem.

Next, we shall determine the structure of a generalized inverse *-semigroup. If Γ is an inverse semigroup and $E(\Gamma) = \Delta$, we denote it by $\Gamma(\Delta)$.

THEOREM 2. Let $\Gamma(\Delta)$ be an inverse semigroup, P a set of disjoint union of subsets $P_{\alpha}, \alpha \in \Delta$, and let $\{\tau_{\alpha,\beta} : \alpha \geq \beta, \alpha, \beta \in \Delta\}$ be a transitive system of mappings for $P = \bigcup_{\alpha \in \Delta} P_{\alpha}$. Let

$$S = \{ (e, \alpha, f) \colon \alpha \in \Gamma, \ e \in P_{\alpha\alpha}^{-1}, f \in P_{\alpha}^{-1} \},\$$

and its multiplication and unary operation are defined by

$$(e, \alpha, f)(g, \beta, h) = (e\tau_{\alpha\alpha}^{-1}, _{\alpha\beta(\alpha\beta)}^{-1}, \alpha\beta, h\tau_{\beta}^{-1}{}_{\beta,(\alpha\beta)}^{-1}{}_{\alpha\beta}),$$

$$(e, \alpha, f)^* = (f, \alpha^{-1}, e).$$

Then S is a generalized inverse *-semigroup with $P(S) = \{(e, \alpha, e): \alpha \in \Delta, e \in P_a\}$ and its structure inverse semigroup is $\Gamma(\Delta)$. Hereafter, we denote it by $S \sim \mathcal{T}(\Gamma(\Delta), P, \{\tau_{\alpha,\beta}\})$.

Conversely, every generalized inverse *-semigroup is obtained by this fashion.

PROOF. By Theorem 1 above and Lemma 5 and 6 in [12], we can easily obtain the theorem.

§3. Free products

In this section, we shall describe the free product of normal *-bands. Let $\{B_i: i \in I\}$ be a family of normal *-bands. By Theorem 1, $B_i \sim \mathcal{T}(\Delta_i, P_i, \{\tau_{\alpha,\beta}^i\})$ for all $i \in I$. To construct the free product of the B_i in the variety of normal *-bands, we can assume without loss of generality that $B_i \cap B_j = \Box$, $\Delta_i \cap \Delta_j = \Box$ and $P_i \cap P_j = \Box$ if $i \neq j$. Let $\Delta = \{(\alpha_i)_{i \in I}: \alpha_i \in \Delta_i^{(1)}, i \in I, \text{ only finitely many but at least one } \alpha_i \text{ are different from 1}\}$, where $\Delta_i^{(1)}$ denotes $\Delta_i \cup \{1\}$ obtained by adjoining an identity 1 to Δ_i whether or not it already has an identity. It is well-known [5] that such Δ is the free product of the Δ_i in the variety of semilattices. For convenience, we write simply (α_i) instead of $(\alpha_i)_{i \in I}$. Let

 $B = \{ (a, (\alpha_i), b) \colon a \in P_{\alpha_i} \text{ and } b \in P_{\alpha_k} \text{ for some } \alpha_j \neq 1 \text{ and } \alpha_k \neq 1 \text{ of } (\alpha_i) \in \Delta \}.$

If $a \in P_{\alpha_j}$ and $b \in P_{\alpha_k}$, we sometimes denote $(a, (\alpha_i), b)$ by $(a, (\alpha_i; j, k), b)$. Define a multiplication and a unary operation on B by

 $(a, (\alpha_i; j, k), b)(c, (\beta_i; m, n), d) = (a\tau^j_{\alpha_i, \alpha_i\beta_i}, (\alpha_i\beta_i; j, n), d\tau^n_{\beta_n, \alpha_n\beta_n}),$

 $(a, (\alpha_i; j, k), b)^* = (b, (\alpha_i; k, j), a).$

THEOREM 3. B is the free product of the B_i in the variety of normal *-bands.

PROOF. It is clear that B is a normal *-band. For each $i \in I$, define a mapping $\phi_i: B_i \rightarrow B$ by

Free Products and Amalgamation of Generalized Inverse *-Semigroups

$$(e, \alpha_i, f)\phi_i = (e, (\hat{\alpha}_i), f)$$
 if $e, f \in P_{\alpha_i}, a_i \in \Delta_i$,

where $(\hat{\alpha}_i)$ denotes the element of Δ with the *i*-th entry equal to α_i and others equal to 1. It is obvious that each ϕ_i is a *-monomorphism, $i \in I$, and that $B = \langle \bigcup \{B_i \phi_i : i \in I\} \rangle$, the *-subsemigroup generated by $\bigcup \{B_i \phi_i : i \in I\}$.

Let E be any normal *-band and $\psi_i: B_i \rightarrow E, i \in I$, any *-homomorphisms. Define a mapping $\mu: B \rightarrow E$ as follows:

For any $(a, (\alpha_i; j, k), b) \in B$ such that only $\alpha_i, \alpha_k, \alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_n}$ are not equal to 1,

$$(a, (\alpha_i; j, k), b)\mu = ((a, \alpha_j, c))\psi_j)((e_1, \alpha_{i_1}, f_1)\psi_{i_1})$$

 $\cdots \cdots ((e_n, \alpha_{t_n}, f_n)\psi_{t_n})((d, \alpha_k, b)\psi_k),$

where $c \in P_{\alpha_i}$, $d \in P_{\alpha_k}$ and e_{i_s} , $f_{i_s} \in P_{\alpha_{i_s}}$ for s = 1, 2, ..., n. It is clear that μ is a *-homomorphism satisfying $\phi_i \mu = \psi_i$, $i \in I$. Hence B together with the ϕ_i is the free product of the B_i in the variety of normal *-bands.

By the construction of the free product in the variety of normal *-bands, we can easily have the following

COROLLARY 4. Let $\{B_i: i \in I\}$ be a family of normal *-bands, and let B together with the *-monomorphisms ϕ_i be the free product of the B_i in the variety of normal *-bands. If F_i is a *-subband of B_i , $i \in I$, then $\langle \cup \{F_i\phi_i: i \in I\}\rangle$ is the free product of the F_i in the variety of normal *-bands.

§4. Amalgamation

Firstly, we shall show that the variety of normal *-bands has the strong amalgamation property. Let $(B_1, B_2; U)$ be an amalgam of normal *-bands. By Theorem 1,

$$B_{i} \sim \mathcal{T}(\Delta_{i}, P_{i}; \{\tau_{\alpha,\beta}^{i}\}), \quad P_{i} = \bigcup_{\alpha \in \Delta_{i}} P_{\alpha}^{i}, \quad i = 1, 2,$$
$$U \sim \mathcal{T}(\Lambda, Q; \{\tau_{\alpha,\beta}\}), \quad Q = \bigcup_{\alpha \in \Lambda} Q_{\alpha}.$$

We can assume without loss of generality that $\Delta_1 \cap \Delta_2 = \Lambda$, $P_{\alpha}^1 \cap P_{\alpha}^2 = Q_{\alpha}$ and $\tau_{\alpha,\beta}^1 | Q_{\alpha} = \tau_{\alpha,\beta}^2 | Q_{\alpha} = \tau_{\alpha,\beta}$ for all $\alpha, \beta \in \Lambda$ with $\alpha \ge \beta$. Let $P = P_1 \cup P_2$.

Take any bundled semilattice Ω of the amalgam $(\Delta_1, \Delta_2; \Lambda)$, and assume that Δ_1 and Δ_2 are subsemilattices of Ω such that $\Delta_1 \cap \Delta_2 = \Lambda$. Let $\Gamma = \{\alpha \in \Omega : \alpha \leq \beta \text{ for some } \beta \in \Delta_1 \cup \Delta_2\}$. It is obvious that Γ is an ideal of Ω and it is also a bundled semilattice of $(\Delta_1, \Delta_2; \Lambda)$. Let

$$B = \{(a, \alpha, b) \in P \times \Gamma \times P \colon a \in P_{\beta}^{i}, b \in P_{\gamma}^{j}, \beta \ge \alpha, \gamma \ge \alpha\},\$$

and define a multiplication and a unary operation of B by

$$(a, \alpha, b)(c, \beta, d) = (a, \alpha\beta, d)$$
$$(a, \alpha, b)^* = (b, \alpha, a).$$

It is clear that B is a normal *-band whose structure semilattice is Γ . Define a relation θ_1 on B by $\theta_1 = \{((x\tau_{\xi,\gamma_1}^i, \alpha, y\tau_{\eta,\gamma_2}^j), (x\tau_{\xi,\delta_1}^m, \alpha, y\tau_{\eta,\delta_2}^n)): \alpha \in \Gamma, i, j, m, n \in \{1, 2\}, \xi \in \Delta_i \cap \Delta_m, \eta \in \Delta_j \cap \Delta_n, x \in P_{\xi}^i \cap P_{\eta}^m, \gamma \in P_{\eta}^j \cap P_{\eta}^n, \xi \ge \gamma_1 \ge \alpha, \eta \ge \gamma_2 \ge \alpha, \xi \ge \delta_1 \ge \alpha$ and $\eta \ge \delta_2 \ge \alpha\}$. We can easily see that θ_1 is a reflexive, symmetric and compatible *-relation. Let $\theta = \theta_1^i$, the transitive closure of θ_1 . Then θ is a *-congruence and B/θ is a normal *-band whose structure semilattice is Γ .

LEMMA 5. Let $\alpha \in \Delta_i$, $i = 1, 2, \beta \in \Gamma$, $a, b \in P^i_{\alpha}$, $c \in P^m_{\gamma_1}$ and $d \in P^n_{\gamma_2}$. If $(a, \alpha, b)\theta$ (c, β, d) , then $\alpha = \beta$ and the following conditions are satisfied.

(i) there exist $\mu \in \Delta_i \cap \Delta_m$, $u \in P^i_{\mu} \cap P^m_{\mu}$ and $v \in \Delta_m$ such that $\mu \ge v \ge \alpha$ (in Γ), $\gamma_1 \ge v$ (in Δ_m), $a = u\tau^i_{\mu,\alpha}$ and $c\tau^m_{\gamma_1,\nu} = u\tau^m_{\mu,\nu}$,

(ii) there exist $\varepsilon \in \Delta_i \cap \Delta_n$, $v \in P^i_{\varepsilon} \cap P^n_{\varepsilon}$ and $\delta \in \Delta_n$ such that $\varepsilon \ge \delta \ge \alpha$ (in Γ), $\gamma_2 \ge \delta$ (in Δ_n), $b = v\tau^i_{\varepsilon,\alpha}$ and $d\tau^n_{\gamma_2,\delta} = v\tau^n_{\varepsilon,\delta}$.

PROOF. We prove by induction. Assume that (c, β, d) satisfies the statement of the lemma and let $(c, \beta, d) \theta_1(e, \omega, f)$, $e \in P_{\rho_1}^j$, $f \in P_{\rho_2}^k$. Firstly, we prove (i). By the definition of θ_1 , $\alpha = \beta = \omega$ and there exist $\xi \in \Delta_m \cap \Delta_j$ and $x \in P_{\xi}^m \cap P_{\xi}^j$ such that $\xi \ge \gamma_1$, $\xi \ge \rho_1$, $c = x\tau_{\xi,\gamma_1}^m$ and $e = x\tau_{\xi,\rho_1}^j$.

Case 1: i = m = j (see Fig. 1). Since $x \in P_{\xi}^{i}$, we have

$$\begin{aligned} x\tau^{i}_{\xi,\alpha} &= ((x\tau^{i}_{\xi,\gamma_{1}})\tau^{i}_{\gamma_{1},\gamma_{\nu}})\tau^{i}_{\nu,\alpha} = (c\tau^{i}_{\gamma_{1},\nu})\tau^{i}_{\nu,\alpha} \\ &= (u\tau^{i}_{\mu,\nu})\tau^{i}_{\nu,\alpha} = a, \\ e\tau^{i}_{\rho_{1},\rho_{1}\nu} &= (x\tau^{i}_{\xi,\rho_{1}})\tau^{i}_{\rho_{1},\rho_{1}\nu} = x\tau^{i}_{\xi,\rho_{1}\nu}. \end{aligned}$$

Fig. 2

Case 2: $i = m \neq j$ (see Fig. 2). Since $\rho_1 \ge \alpha$ (in Γ) and Γ is a bundled semilattice of $(\Delta_1, \Delta_2; \Lambda)$, there exists $\lambda \in \Lambda$ such that $\rho_1 \ge \lambda$ (in Δ_j) and $\lambda \ge \alpha$ (in Δ_i). Then

$$e\tau_{\rho_1,\lambda}^{j} = (x\tau_{\xi,\rho_1}^{j})\tau_{\rho_1,\lambda}^{j} = x\tau_{\xi,\lambda}^{j}.$$

By the same calculation in the case 1, we have $a = x \tau_{\xi,a}^i$.

Case 3: $i \neq m = j$ (see Fig. 3). Since $v \ge \alpha$ (in Γ) and Γ is a boundled semilattice, there exists $\lambda \in \Lambda$ such that $v \ge \lambda$ (in Λ_m) and $\lambda \ge \alpha$ (in Λ_i). Then

$$x\tau_{\xi,\lambda}^{m} = ((x\tau_{\xi,\gamma_{1}}^{m})\tau_{\gamma_{1},\nu}^{m})\tau_{\nu,\lambda}^{m} = (c\tau_{\gamma_{1},\nu}^{m})\tau_{\nu,\lambda}^{m}$$
$$= (u\tau_{\mu,\nu}^{m})\tau_{\nu,\lambda}^{m} = u\tau_{\mu,\lambda}^{m} \in Q_{\lambda},$$

since $u \in Q_{\mu}$ and $\mu, v \in \Lambda$. So we have

$$(u\tau_{\mu,\lambda})\tau^{i}_{\lambda,\alpha} = u\tau^{i}_{\lambda,\alpha} = a,$$

$$e\tau^{m}_{\rho_{1},\rho_{1}\lambda} = (x\tau^{m}_{\xi,\rho_{1}})\tau^{m}_{\rho_{1},\rho_{1}\lambda} = x\tau^{m}_{\xi,\rho_{1}\lambda}$$

$$= (x\tau^{m}_{\xi,\lambda})\tau^{m}_{\lambda,\alpha,\lambda} = (u\tau_{\mu,\lambda})\tau^{m}_{\lambda,\alpha,\lambda}$$

Case 4: $i \neq m \neq j$ (=i) (see Fig. 4). Since $v \ge \alpha$ (in Γ) and Γ is a bundled semilattice, there exists $\lambda \in \Lambda$ such that $v \ge \lambda$ (in Λ_m) and $\lambda \ge \alpha$ (in Λ_i). Then

$$\begin{aligned} x\tau^{m}_{\xi,\alpha} &= (x\tau_{\xi,\lambda})\tau^{i}_{\lambda,\alpha} = (((x\tau^{m}_{\xi,\gamma_{1}})\tau^{m}_{\gamma_{1},\nu})\tau^{m}_{\nu,\lambda})\tau^{i}_{\lambda,\alpha} \\ &= ((c\tau^{m}_{\gamma_{1},\nu})\tau^{m}_{\nu,\lambda})\tau^{i}_{\lambda,\alpha} = ((u\tau^{m}_{\mu,\nu})\tau^{m}_{\nu,\lambda})\tau^{i}_{\lambda,\alpha} \\ &= ((u\tau_{\mu,\lambda})\tau^{i}_{\lambda,\alpha} = u\tau^{i}_{\mu,\alpha} = a, \\ e\tau^{i}_{\rho_{1},\alpha} &= (x\tau^{i}_{\xi,\rho_{1}})\tau^{i}_{\rho_{1},\alpha} = x\tau^{i}_{\xi,\alpha} \end{aligned}$$

Thus we have (i). Similarly, we have (ii), and hence we obtain the lemma.

Let $\phi_i: B_i \rightarrow B/\theta$, i=1, 2, be mappings defined by

$$(a, \alpha, b)\phi_i = (a, \alpha, b)\theta$$
 for $a, b \in P^i_{\alpha}, \alpha \in \Delta_i$.

By using Lemma 5, we can easily obtain that every ϕ_i is a *-monomorphism such that $\phi_1 | U = \phi_2 | U$ and $B_1 \phi_1 \cap B_2 \phi_2 = U \phi_1$. And so $(B_1, B_2; U)$ is strongly embedded in B/θ whose structure semilattice is Γ . By the similar method of [6], we can embed E/θ into a normal *-band whose structure semilattice is Ω . Now we have the following theorem.

THEOREM 6. Let $(B_1, B_2; U)$ be an amalgam of normal *-bands, and let

$$B_{i} \sim \mathcal{T}(\Delta_{i}, P_{i}; \{\tau_{\alpha,\beta}^{i}\}), \quad P_{i} = \bigcup_{\alpha \in \Delta_{i}} P_{\alpha}^{i}, \quad i = 1, 2,$$
$$U \sim \mathcal{T}(\Lambda, Q; \{\tau_{\alpha,\beta}\}), \quad Q = \bigcup_{\alpha \in \Lambda} Q_{\alpha}.$$

Let Ω be a bundled semilattice of the amalgam $(\Delta_1, \Delta_2; \Lambda)$. Then the amalgam $(B_1, B_2; U)$ is strongly embedded in a normal *-band E whose structure semilattice is Ω and $P^i_{\alpha} \subset R_{\alpha}$ for every $\alpha \in \Delta_i$, where $E \sim \mathcal{T}(\Omega, R; \{\tau'_{\alpha,\beta}\}), R = \bigcup_{\alpha \in \Omega} R_{\alpha}$. Therefore, the variety of normal *-bands has the strong amalgamation property.

REMARK 1. If the assumption that Ω is a bundled semilattice of $(\Delta_1, \Delta_2; \Lambda)$ is weakened to that $(\Delta_1, \Delta_2; \Lambda)$ is strongly embedded in Ω , the theorem above is not true (see [6]).

REMARK 2. We have another proof of that the variety of normal *-bands has the strong amalgamation property. Let $(B_1, B_2; U)$ be an amalgam of normal *-bands. Let $B=B_1*B_2$, the free product of B_1 and B_2 in the variety of normal *-bands. We use the notation above. We denote $(\alpha_i)_{i \in \{1,2\}}$ in $\Delta_1*\Delta_2$ by (α_1, α_2) . Define a relation θ on B as follows:

For $a, b \in B$, $a \theta_0 b$ if and only if

$$a = x(u, (\sigma, 1), v)y,$$

$$b = x(u, (1, \sigma), v)y,$$

for some $x, y \in B^1$, $\sigma \in \Lambda$ and $u, v \in Q_{\sigma}$. Let $\theta_1 = \theta_0 \cup \theta_0^{-1} \cup \iota$ and let $\theta = \theta_1^t$. Then B/θ is the free product of B_1 and B_2 amalgamating U in the variety of normal *-bands and its structure semilattice is the free product of Δ_1 and Δ_2 amalgamating Λ in the variety of semilattices.

A *-band is called *regular* if it satisfies the identity axaya = axya. The variety of regular *-bands has the special amalgamation property, but it does not have the strong amalgamation property.

62

COROLLARY 7. Let \mathscr{A} be the variety of *-bands defined by an identity P = Q. Then \mathscr{A} has the strong amalgamation property if and only if \mathscr{A} is one of the following varieties:

- (i) one element semigroups;
- (ii) semilattices;
- (iii) rectangular *-bands;
- (iv) normal *-bands.

Next, we shall show that the variety of generalized inverse *-semigroups has the strong amalgamation property. Let $(S_1, S_2; V)$ be an amalgam of generalized inverse *-semigroups. By Theorem 2,

$$S_{i} \sim \mathcal{F}(\Gamma_{i}(\Delta_{i}), P_{i}, \{\tau_{\alpha,\beta}^{i}\}), \quad P_{i} = \bigcup_{\alpha \in \Delta_{i}} P_{\alpha}^{i}, \quad i = 1, 2,$$
$$V \sim \mathcal{F}(\Xi(\Lambda), Q; \{\tau_{\alpha,\beta}\}), \quad Q = \bigcup_{\alpha \in \Lambda} Q_{\alpha},$$

such that $\Gamma_1 \cap \Gamma_2 = \Xi$, $\Delta_1 \cap \Delta_2 = A$, $P_{\alpha}^1 \cap P_{\alpha}^2 = Q_{\alpha}$ and $\tau_{\alpha,\beta}^1 | Q_{\alpha} = \tau_{\alpha,\beta}^2 | Q_{\alpha} = \tau_{\alpha,\beta}$ for all $\alpha, \beta \in A$. Let $B_i \sim \mathcal{T}(\Delta_i, P_i; \{\tau_{\alpha,\beta}^i\})$, i = 1, 2, and $U \sim \mathcal{T}(\Lambda, Q; \{\tau_{\alpha,\beta}\})$. Then $(B_1, B_2; U)$ is an amalgam of normal *-bands.

It follows from Result 2 that the amalgam $(\Gamma_1, \Gamma_2; \Xi)$ is strongly embedded in an inverse semigroup $\Sigma(\Omega)$ such that Ω is a bundled semilattice of $(\Delta_1, \Delta_2; \Lambda)$. By Theorem 6, the amalgam $(B_1, B_2; U)$ is strongly embedded in a normal *-band B whose structure semilattice is Ω . Let $B \sim \mathcal{T}(\Omega, P; \{v_{\alpha,\beta}\})$, and consider the generalized inverse *-semigroup $\mathcal{T}(\Sigma(\Omega), P, \{v_{\alpha,\beta}\}) \sim T$, say. Then it is clear that the amalgam $(S_1, S_2; V)$ is strongly embedded in T. Thus we have the main theorem.

THEOREM 8. The variety of generalized inverse *-semigroups has the strong amalgamation property.

References

- [1] T. E. Hall, Amalgamation for inverse and generalized inverse semigroups, to appear.
- [2] J. M. Howie, An introduction to semigroup theory, L.M.S. Monographs, No. 7, Academic Press, London, New York, 1974.
- [3] Teruo Imaoka, Free products of orthodox semigroups, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci. 10 (1976), 1-6.
- [4] —, Free products with amalgamation of bands, ibid., 7–17.
- [5] ——, Free products with amalgamation of commutative inverse semigroups, J. Austral. Math. Soc. 22 (1976), 246-251.
- [6] ——, The embedding of generalized inverse semigroup amalgams, Mem. Fac. Sci., Shimane Univ. 12 (1978), 1–4.
- [7] ——, The embedding of regular semigroup amalgams, Proc. of a Symposium on Regular Semigroups, Northern Illinois Univ., De Kalb, Ill., 1979, 92-100.
- [8] —, On fundamental regular *-semigroups, Mem. Fac. Sci., Shimane Univ. 14 (1980), 19-23.

- [9] B. Jónsson, Extensions of relational structures, Theory of Models (Proc. Internat. Sympos. Berkeley, 1963), North Holland, Amsterdam, 1965, 146–157.
- [10] T. E. Nordahl and H. E. Scheiblich, Regular *-semigroups, Semigroup Forum 16 (1978), 369-377.
- [11] H. E. Scheiblich, Projective and injective bands with involution, to appear.
- [12] Miyuki Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392.
- [13] P-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.

64