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The author showed that the class of [left, right] normal bands has the stong amalgamation
property [4]. In his paper [1], T. E. Hall proved that the class of [left, right] generalized inverse
semigroups has the strong amalgamation property by using the concept of a bundled semilattice
which is firstly introduced in [7]. By similar argument, we show that the classes of normal
x-bands and generalized inverse *-semigroups have the strong amalgamation property. Also
we give the structures of normal *-bands and generalized inverse *-semigroups and the free
products in the variety of normal *-bands.

§1. Imtroduction

Let o be a class of algebras. For a family of algebras {4;: iel} from «, each
having an algebra U € o as a subalgebra, the list ({4;: i€ I}; U)is called an amalgam
from /. We say that an amalgam ({4;: iel}; U) is strongly embeddable (or is
strongly embedded) in an algebra B if there are .«/-monomorphisms ¢;: 4,—~B, iel,
such that

(i) ¢:|U=¢;|U foralli,jel,

(i) ApinA;jp;=Ug; foralli,jel with iz#],
where ¢;| U denotes the restriction of ¢; to U. We say that a class &/ of algebras has
the strong amalgamation property if every amalgam from .« is strongly embeddable
in an algebra from «/. If A;=A; for all i, jel, ({4;: iel}; U) is called a special
amalgam from «f. We say that « has the special amalgamation property if
each special amalgam from ¢ is strongly embeddable in an algebra from «/. Itis
well-known (see [9]) that in a class of algebras closed under isomorphisms and the
formation of the union of any ascending chain of algebras, each amalgamation property
follows from the case in which |[I|=2. If |I|=2, we write an amalgam ({4, 4,}; U)
by (4;, 4,; U).

A semigroup S with a unary operation *: S—S is called a regular x-semigroup
if it satisfies

(i) *)*=x,

(ii)  Cey)*=y*x*¥,

(iil) xx*x=x.



56 Teruo Imaoka

Let S and T be regular =-semigroups. A homomorphism ¢: S—Tis called a #-homo-
morphism if x*¢ =(x¢p)* for all xe S. A relation 6 on S is called a #-relation if (x, y) &
0 implies (x*, y*)e 0. An idempotent e in S is called a projection if e¥*=e. By P(S)
and E(S), we denote the sets of projections and idempotents, respectively, of S. The
following result is used frequently throughout this paper.

ResuLT 1. ((i) due to [10] and (ii) due to [8]). Let S be a regular %-semigroup.
Then we have

(i) each #-class and each #-class contain one and only one projection,

(ii)) E(S)=P(5)*. More precisely, for any idempotent e, there exist projections
fand g such that eZ f, eZg and e=fg.

A regular #-semigroup is called an orthodox %-semigroup [#-band] if it is an
orthodox semigroup [band]. An orthodox s-semigroup [#-band] S is called a gener-
ralized inverse x-semigroup [normal =-band] if E(S) [S itself Jsatisfies the identity
axya=ayxa. In section 2, we determine the structures of normal =-bands and
generalized inverse #-semigroups by using a transitive system of mappings for the
set of projections, which are slightly different from [11] and [13].

The author gave useful forms of the free products in the variety of [left, right]
normal bands [3]. In section 3, we give the free products in the varieties of normal
=-bands.

For an amalgam (E,, E,; U) of semilattices, a semilattice E is called a bundled
semilattice of it if (E,, E,; U) is strongly embedded in E by monomorphisms ¢;:
E,~E, i=1, 2, say, such that for ¢;e E; and e; € E; with i#}], if ¢;p;<e;¢; (in E) then
e;<u (in E;) and u<e; (in E;) for some ue U. Let (§;, S,; U) be an amalgam of
inverse semigroups. Then the amalgamated product E(S,)+py)E(S,) in the class
of semilattices is a bundled semilattice of (E(S,), E(S,); E(U)) [7], but E(S,)*gw,E(S,)
does not embed in the amalgamated product S;#,S, in the class of inverse semigroups,
in general [1]. 1In [7], the author showed that if the following result is true, the class
of [left, right] generalized inverse semigroups has the strong amalgamation property.
And Hall has proved the following.

RESULT 2 (due to [1]). Any amalgam (S, T; U) of inverse semigroups is strongly
embedded in an inverse semigroup A such that E(A) is a bundled semilattice of the
amalgam (E(S), E(T); E(U)) of semilattices.

In section 4, we show that the varieties of normal #-bands and generalized inverse
x-serigroups have the strong amalgamation property.
The notation and terminology are those of [2] and [12], unless otherwise stated.

§2. Structures

Let A be a semilaitice and P a disjoint union of subsets P,, ae 4. For a, fed
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with «>p, let 7, 4: P,— Py be a mapping. The family of mappings {7, 5: «>p, a, fe 4}
is called a transitive system of mappings for P=\U,., P, if it satisfies

(i) 7, is the identity mapping of P, for all a € 4,

(i) 7,475, ="Ta, fOr a, B, ye d with a>p>7.

THEOREM 1. Let 4 be a semilattice and {t,4: a>p, a, fe A} a transitive system
of mappings for P=\U,., P,. Let B={(e, o, f): e, f€ P,, € 4} and define its multi-
plication and unary operation by

(6, a, f) (g’ B: h)=(eta,aﬂs Olﬁ, htp,aﬁ) ’
(ea aaf)*=(f’ o, e)a

Then B becomes a normal x-band with P(B)={(e, a, e): we 4} and its structure
semilattice is A. Hereafter, we denote it by B~ 7 (4, P; {1,4}).
Conversely, every normal =-band is obtained by this fashion.

Proor. We can easily obtain the first half of the theorem. Let E be a normal
s-bandand E= Y {E,: a € 4} its structure decomposition. For any aed, let P,=
P(EYNE, and P=\U,., P,. Ttis obvious P=P(E). Foranyua, fedwith a>p, define
7,,p as follows: let e be any element of P,, and let a and b be any elements of E;.  Since
E is a normal #-band, it is clear that ea%Zeb. By Result 1 (i), there exists one and
only one element f'€ P, such that f Zea. We define it by e, ;=/. Then we can easily
see that {7, ,: a>p, a, fed} is a transitive system for P=\U,., P,. Let B~Z(4,
P; {t,,}) and define a mapping ¢: E—B by a¢p=(aa*, o, a*a)foraeE,. By Result 1
(i), ¢ is a bijection. Let a €E,, be E;. By the similar argument above, there are
uniquely e, f€ P,; such that e22(aa*)x and f £x(b*b) for any x € E,;. Then

(ab)¢p =((aa*)a*abb™))((a*ab*b)(b*b))d
=((eu)(uf)¢ for some ueP,,
=(ef)¢ since E,; is rectangular,
=(e, «B, f)
=((aa*)teup, &P, (b*b)7g0p)
=(aa*, a, a*a)(bb*, B, b*b)
=(a¢)(be).

Thus ¢ is an *-isomorphism, and hence we have the theorem.

Next, we shall determine the structure of a generalized inverse =-semigroup.
If I is an inverse semigroup and E(I")=4, we denote it by I'(4).
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THEOREM 2. Let I'(4) be an inverse semigroup, P a set of disjoint union of
subsets P,, a4, and let {1, 5: > B, «, p€ 4} be a transitive system of mappings for
P=\U,, P, Let

S={(e,a, f): ael,eeP,,, feP, "1},
and its multiplication and unary operation are defined by
(e, &, f)(g, B, W) =(eT0 ™" upiapy™ts #Bs hTp™ 5 () ap) »
(e, o, f)*=(f, 0%, ). |

Then S is a generalized inverse s-semigroup with P(S)={(e, a, e): a4, ec P,} and
its structure inverse semigroup is I'(4). Hereafter, we denote it by S~ 7(I'(4),
P, {t,4}).

Conversely, every generalized inverse x-semigroup is obtained by this fashion.

Proor. By Theorem 1 above and Lemma 5 and 6 in [12], we can easily obtain
the theorem.

§3. Free products

In this section, we shall describe the free product of normal #-bands. Let {B;:
iel} be a family of normal *-bands. By Theorem 1, B;~ .9 (4;, P;, {7} z}) for all
iel. To construct the free product of the B; in the variety of normal x-bands, we
can assume without loss of generality that B;n B;=[, 4;n4;=0 and P;n P;=[]
ifistj. Let A={(0)ir: o; € 41, i eI, only finitely many but at least one «; are different
from 1}, where 4{") denotes 4; U {1} obtained by adjoining an identity 1 to 4; whether
or not it already has an identity. It is well-known [5] that such 4 is the free product
of the 4; in the variety of semilattices. For convenience, we write simply (¢;) instead
of (o). Let

B={(a, («;), b): ae P,, and be P, for some a;31 and ;1 of () e 4}.

If aeP,, and be P,,, we sometimes denote (a, (), b) by (a, (&; j, k), b). Define a
multiplication and a unary operation on B by

(a: (Ct,-; j’ k)a b) (Ca (ﬁi; m, n)a d)=(a7£j,a,ﬂ,-’ (aiﬂi;j’ N), dtg,,,a,.ﬁ,.)s
(aa (ai; ja k)a b)*=(bs (ai; k’ ])9 a)'
THEOREM 3. B is the free product of the B; in the variety of normal s-bands.

Proor. It is clear that B is a normal #-band. For each iel, define a mapping
¢;: Bi—~B by
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(ea %y f)¢i=(es (&i), f) if e,fe Pap aieAi,

where (&) denotes the element of 4 with the i-th entry equal to «; and others equal
to 1. Tt is obvious that each ¢; is a *-monomorphism, i eI, and that B={ U {B;};:
ielI}), the x-subsemigroup generated by U {B;p;: iel}.

Let E be any normal *-band and ¥;: B,—~E, i€, any *-homomorphisms. Define
a mapping p: B—E as follows: '

For any (a, (%; j, k), b) € B such that only o}, &, &, &,,..., &, are not equal to 1,

(a, (%3 J, k), Dp=((a, a;, W) (e, %,> S:,)
""" ((em at,,’ fn)')l’r,.) ((d: Qg5 b)'»[’k)a

where ceP,,deP, and € Jo, € Pay, for s=1,2,...,n.
It is clear that p is a *-homomorphism satisfying ¢,u=y;, icl. Hence B together
with the ¢, is the free product of the B; in the variety of normal *-bands.

By the construction of the free product in the variety of normal *-bands, we
can easily have the following

COROLLARY 4. Let {B;: icI} be a family of normal x-bands, and let B together
with the =-monomorphisms @; be the free product of the B; in the variety of normal
x-bands. If F; is a =-subband of B, i€l, then (U {F¢;: icI}) is the free product
of the F; in the variety of normal -bands.

§4. Amalgamation

Firstly, we shall show that the variety of normal s-bands has the strong amal-
gamation property. Let (B, B,; U) be an amalgam of normal #-bands. By Theorem
L,

B~ (4;, Pi; {7l 5}), Pi= \U P}, i=1,2,
aed;

U~.7(A, Q; {Ta,ﬁ})s Q= a\ejAQa.

We can assume without loss of generality that A, n4,=4, PN P:=Q,and 1} 4| Q,=
12,4|Q,=1,, for all «, e A with a>p. Let P=P, UP,.
Take any bundled semilattice Q of the amalgam (4y, 4,; A), and assume that
4, and 4, are subsemilattices of Q such that 4, n4,=4. Let I'={aeQ: a<p for
some fed; Ud,}. Itis obvious that I is an ideal of Q and it is also a bundled semi-
lattice of (44, 4,; A). Let

B={(a,a, bye PxI'xP:ae P, be P}, >0, y>a},
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and define a multiplication and a unary operation of B by
(a, a, b) (¢, B, d)=(a, af, d),
(a, a, b)*=(b, a, a).

It is clear that B is a normal #-band whose structure semilattice is I. Define a relation
6, on B by 0,={((x1i,, yr{;,h), (xrgél, o, yrr s el i, j, m, ne{l, 2},
664”’] Ams ﬂEAjnAm xepéi n Pg, yGP{, ﬂPZ, 52')’120(, N>y, 20, 62512(1 and
n>6,>a}. We can easily see that 0, is a reflexive, symmetric and compatible #-
relation. Let 6=40}, the transitive closure of 6,. Then 0 is a #-congruence and
B/6 is a normal =-band whose structure semilattice is I'.

LemMa 5. Letoaed,, i=1,2,fel,a,bePi, ceP™ and deP?,. If(a,a b)0
(c, B, d), then a=f and the following conditions are satisfied.
(i) there exist ped,n4,, uePinPr and ved, such that p>v>a (in I),
y12v (in 4,,), a=ut} , and ct? ,=ut? ,,

(ii) there exist ee A;N4,, ve Pin P! and € 4, such that ¢6>« (inT), y,>6
(in 4,), b=vti , and dz7, s=vtl ;.

Proor. We prove by induction. Assume that (c, B, d) satisfies the statement
of the lemma and let (c, B, d)0, (e, , f), eeP), fePk. Firstly, we prove (i).
By the definition of 0, «=f=w and there exist {€ 4, n4; and xe P¥n Pé such that
E>yy, E=py, e=x77, and e=x1} .

Case 1: i=m=j (see Fig. 1). Since x € P, we have
xrig,a"_‘((x‘[é,yl)’tg'.,,v)ri',a=(cril,v)ﬂ:,a
"_‘(uTi ,v)Tl;',az =a,

i = i i — eri
€Tpy,p1v _(xrlf.pn)tm,pnv =XTe pyve

Fig. 1 Fig. 2
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Case 2: i=m#j (see Fig. 2). Since p;>a (in I') and I is a bundled semilattice
of (4,, 4,; A), there exists A€ A such that p; >A (in 4;) and 1>« (in 4;). Then

I =(xrd Yo =yl
eTpl,l_(xré,.ﬂl)rm,l—xté‘,l'
By the same calculation in the case 1, we have a=x1i ,.

Case 3: i#m=j (see Fig. 3). Since v>a (in I') and I is a boundled semilattice,
there exists A € A such that v> A1 (in 4,,) and A >« (in 4;). Then

xtg  =((x72,, )7y, )y =(cty, ),
=(uty )ty 2 =uty ;=ut, ;€ Q;,
sinceueQ, and p, ve A. So we have
(uty,)th o =uth ,=a,
e‘c';l,ml=(xT’§n,m)TZth1)-=xT?.ml

=Xt D7 o2 =T, DTF oy

¢
AL
rd ~N
/, \\
Y1
“ T\\ ,"( /> P
~ /’ rd
1 b //
/ .
A .
rd
~. P
S
piA
[+4
Fig. 3 Fig. 4

Case 4: i#m#j (=i) (see Fig. 4). Since v>a (in I') and I' is a bundled semi-
lattice, there exists A€ A such that v>4 (in 4,) and A>a (in 4;). Then

X7 o =(x7g, )5, o =(((x77,, )75, )70 D740
=((c}, )0 DTk o =((uT] )77, )74 0
=((ut,, Jth, . =ut, =4,

eth ,=(xt% , )% ,=x1k ,

Thus we have (i). Similarly, we have (ii), and hence we obtain the lemma.
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Let ¢;: B;—~B/0, i=1, 2, be mappings defined by
(a, o, b)p;=(a, a, )6 for a,bePi, aed;.

By using Lemma 5, we can easily obtain that every ¢; is a *-monomorphism such that
¢,|U=¢,|U and B ¢, N B,¢,=U¢;. And so (B,, B,; U) is strongly embedded in
B/ whose structure semilattice is I'. By the similar method of [6], we can embed
E/0 into a normal *-band whose structure semilattice is 2. Now we have the following
theorem.

THEOREM 6. Let (B, B,; U) be an amalgam of normal =-bands, and let

B;~7(4;, P;; {Ti,ﬁ})a P= U P, i=1,2,
acd;
UNy(As Q: {Ta,ﬁ})9 Q= az\eJA Qa'

Let Q be a bundled semilattice of the amalgam (4., 4,; A). Then the amalgam
(B, B,; U) is strongly embedded in a normal #-band E whose structure semilattice
is Q and PicR, foreveryo e d;, where E~7 (R, R; {7, 4}), R=\U,co R,. Therefore,
the variety of normal #-bands has the strong amalgamation property.

ReMARK 1. If the assumption that Q is a bundled semilattice of (4,, 4,; A)

is weakened to that (4,, 4,; A) is strongly embedded in ©, the theorem above is not
true (see [6]).

ReEMARK 2. We have another proof of that the variety of normal -bands has
the strong amalgamation property. Let (B,, B,; U) be an amalgam of normal #-bands.
Let B=B,*B,, the free product of B, and B, in the variety of normal *-bands. We
use the notation above. We denote (&;),c(;,2 in 4,%4, by (a4, a;). Define a relation
0 on B as follows:

For a, b € B, a8,b if and only if

a—_-x(ua (0', 1)’ U)y,
b=x(u’ (1’ 0’), U)y,

for some x, ye B!, ge A and u, veQ,. Let 6;,=0,U 05! U ¢ and let 0=01.
Then B/ is the free product of B; and B, amalgamating U in the variety of normal
x-bands and its structure semilattice is the free product of 4, and 4, amalgamating
A in the variety of semilattices.

A #-band is called regular if it satisfies the identity axaya=axya. The variety
of regular *-bands has the special amalgamation property, but it does not have the
strong amalgamation property.
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COROLLARY 7. Let o7 be the variety of #-bands defined by an identity P=Q.
Then ¢ has the strong amalgamation property if and only if &/ is one of the
following varieties:

(i) one element semigroups;

(ii) semilattices;

(iii) rectangular *-bands;

(iv) normal =-bands.

Next, we shall show that the variety of generalized inverse #-semigroups has the
strong amalgamation property. Let (S;, S,; V) be an amalgam of generalized inverse
x-semigroups. By Theorem 2,

S;~T([T(4y), P, {7t 5}, P;i= \U Pi, i=1,2,
acd;
VT (EA), O {Tp}), Q= \J Qas

such that I'ynI',=8, 4, nd,=4, P.nP2=Q, and 1} ,|0,=124|0,=1,5 for all
a, peA. Let Bi~T(4;, Py; {7} 4}), i=1,2, and U~T(4, Q; {1,4}). Then (B,
B,; U) is an amalgam of normal =-bands.

It follows from Result 2 that the amalgam (T, I',; E) is strongly embedded in an
inverse semigroup Y. () such that Q is a bundled semilattice of (4,, 4,; 4). By
Theorem 6, the amalgam (B,, B,; U) is strongly embedded in a normal *-band B
whose structure semilattice is Q. Let B~.7(Q, P; {v,,}), and consider the generalized
inverse #-semigroup 7 (2 (Q), P, {v,5})~T, say. Then it is clear that the amalgam
(84, S,; V) is strongly embedded in . Thus we have the main theorem.

THEOREM 8. The variety of generalized inverse =-semigroups has the strong
amalgamation property.
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