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In this paper, firstly the concept of P-regularity, which is a generalization of both the
concept of “orthodox” and the concept of “(special) involution” (see [7]), is introduced in the
class of regular semigroups, and secondly the structure of P-regular semigroups is discussed.

§1. Imtroduction

Let S be a regular semigroup, and Eg the set of idempotemts of S. Let P be a
subset of Eg such that P2c Eg and gP'gc P for all g € P, where P! is the adjunction
of the identity 1 to P. Let V(a) be the set of inverses of a for each ae S. Let Qp(S)=
{a € S: There exists a* € V(¢) such that aPla*<P and a*Plac P}. Then, it is easy
to see that Qp(S) satisfies the following:

(C.1.1) (1) Qp(S) is regular subsemigroup of S.
(2) PcQKS). v
(3) Every (Green’s) L-class [R-class] of Qp(S) contains at least one
element of P.
(4) For any ae Qy(S), there exists a* € V(a) such that a* e Qp(S) and
aPla*, a*Plac P. ‘

Let T be a regular semigroup, and P a subset of Eq. If T satisfies

(C.1.2) (1) each L-class of T contains an element of P; and each R-class of T
contains an element of P,
(2) P2cEp, and
(3) forqgeP, qP'qcP,

then T'is called a weakly P-regular semigroup. For ae T, an element a* e T such
that a* e V(a), aPla*<P and a*PlacP is called a P-inverse of a (of course, such a
P-inverse a* not necessarily exists for a given a e T), and (a, a*) is called a P-regular
pair. Let Vp(a) be the set of all P-inverses of a.

If a weakly P-regular semigroup T further satisfies
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(C.1.3) foranyaeT, Vp(a)# O,
then Tis called a P-regular semigroup.

The subsemigroup Qp(S) of S is a P-regular semigroup. Hence, it is obvious
that if S is a weakly P-regular semigroup then Qu(S) is a full P-regular subsemigroup
of S. It is easily seen as follows: It is already seen that Qy(S) is P-regular. Let fe E;.
Then, there exist p, g € P such that f ¥p, f#q, where & and # are Green’s L- and
R-relations respectively. Now, pqe Es, and pg%q, pqZp. Hence, qp=f. Thus,
Eg;c P2 This implies P?=Eg, and hence EgcQx(S).

Further, in this case Qp(S) is the greatest P-regular subsemigroup of S. If a
regular semigroup S is [weakly] P-regular for a subset P of Eg, then the set P is called
a [weak] characteristic set (abbrev., a [weak] C-set) in S. This concept of a C-set
is a generalization of both the concept of a P-system (see [8]) in a regular semigroup
and the concept of the set of projections (see [6]) in a regular *-semigroup. In Nordahl
and Scheiblich [4], it has been firstly noted that every L-class [R-class] of a regular
*-semigroup contains just one projection.

If {P;:iel}=Q is a set of [weak] C-sets in a regular semigroup S, then S is
called [weakly] {P;: i e I}-regular or, sometimes simply, [weakly] Q-regular.

ExampLE. Let S be a regular semigroup, and let Pc Eg. Consider the following
special cases:

(C.1.4) (1), Each L-class of S contains just one element of P.
(1), Each R-class of S contains just one element of P.
(2) P=E;.

If S is P-regular, and P satisfies
I (C14),(®2
II " ’ (1)19 (l)r
, then S is
III " s (2)’ (1)1[(2), (l)r]
IV " s (2), (1)1’ (l)r
I orthodox
II a regular *-semigroup having P as its projections (see [8])

ITI a left inverse [a right inverse] semigroup (see [5])

IV an inverse semigroup

respectively.
Further, it is easy to see that if S is a {P,, P,}-regular semigroup and if P, and
P, satisfy (C.1.4), (2) and (C.1.4), (1),, (1), respectively, then S is an orthodox *-semi-



P-Regularity in Semigroups 49

group having P, as its projections.

As was seen in Example above, the class of orthodox semigroups and the class
of regular *-semigroups are contained in the class of P-regular semigroups. In this
paper, we shall study the structure of P-regular semigroups, and also that of weakly
P-regular semigroups.

§2. Basic properties

As was shown above, if S is a weakly P-regular semigroup, Qp(S)={aeS: a has
a P-inverse} is the greatest P-regular subsemigroup of S and contains Eg. This Qp(S)
is called the inner part of S, and in particular it is denoted by Ny(S).

TuroreM 2.1. The inner part Np(S) of a weakly P-regular semigroup is P-
regular. Accordingly, every P-regular semigroup can be obtained as the inner
part of a weakly P-regular semigroup.

Proor. Obvious.

ProPOSITION 2.2. For a P-regular semigroup S, the following two conditions
are equivalent:

(1) P=E;.

) P2cP.

Proor. Assume that P2cP. For feEg, there exists f*e Vp(f). Hence, f*=
FHff*e P2cPcEg Thus, f=ff*f*feP. Hence, P=Es; Conversely, if P=Eg
then P2cEg=P.

PropoSITION 2.3.  Let f: S—T be a homomorphism of a [weakly] P-regular
semigroup S onto a regular semigroup T. Let P={qf: ge P}. Then, Tisa [weakly]
P-regular semigroup.

PrOOF. Assume that S is weakly P-regular. Since PcEg, PfcEgf=E;. That
is, PcEy. For qfeP, qfP'qf=(af)P'fNqf)=(qP'q)fcPf=P. Foranya=afeT,
there exist p, g € P such that a.#p and a2 q. Then, af £ pf and af Zqf, and pf, qf € P.
Therefore, every L-class of T contains an element of P; and every R-class of T contains
an element of P. Thus, T is weakly P-regular. Next, assume that S is P-regular.
Of course, T'is weakly P-regular as was shown above. Let afe T. Then, there exists
a*e Ve(a). Now, (af)a*f)=(aa*)fe P. Similarly, (a*f)af)=(a*a)fe P. For any
afeP, (af)af)Na*f)=(aqa*)feP and (a*/)qf)Naf)=(a*qa)feP. Since a*fe
V(af), a*fe Vi(af).

PrOPOSITION 2.4. Let S be a regular semigroup, and P a subset of Eg such that
PnL#[ and PnR# O for each L-class L and R-class R of S. Then, the following
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(1)~(3) are equivalent:

(1) S is weakly P-regular.

(2) For any g€ P, gP'q<P; and if (a, a*), (b, b*) are regular pairs such that
aPla*, a*Plac P and bP'b*, b*P'bc P, then (ab, b*a*) is a regular pair such that
abP'b*a*cP and b*a*Plabc P.

(3) Forany p,qeP, pgqpe P and qpe V(pq).

Proor. (1)=>(2) and (2)=>(3) are obvious. (3)=>(1): Since pqe V(qp) for p, g€
P, pg(gp)pg=pq. Hence, (pg)’=pq. Thus, P2cEz. Since pP'p<P for peP,
S is weakly P-regular.

ProrosiTioN 2.5. In a weakly P-regular semigroup,
(1) P*=Eq,
(2) for feEg, f*eVu(f) implies f* € Es.

Proor. Let f*eVp(f). Then, f*=f*{ff*e P2cEs;. Hence, f=jf*f*fe P2
That is, Eg= P2,

PrROPOSITION 2.6. Let S be a P-regular semigroup, and let aeS. Let e, [ be
elements of P such that eRa%? f. Then, there exists a unique a* e Vyp(a) such that
aa*=e and a*a=f.

ProOOF. Since S is a regular semigroup, there exists a’ € V(a) such that aa’'=e
and a’a=f. Since S is P-regular, there exists a € Vp(a) such that aP'acP and aPlac
P. Now, aPla’=aa’aa’aP'a’adaa’ aa’aPdaa’cePecP, Similarly, a’PlacP.
Hence, a’ € Vy(a).

CoROLLARY. Let a, b be two elements of a P-regular semigroup S. Then,

as#’b (where 5¢ is Green’s H-reglation) if and only if there exist a’ € Vp(a) and b’ e
Vp(b) such that aa’ =bb' and a’a="b'b.

§3. The semigroup of P-regular pairs
Let S be a P-regular semigroup. Let S*={(a, a*): a€S, (a, a*) is a P-regular
pair}. Then,

ProrosiTION 3.1. (1) S* is a regular *-semigroup under the binvry oﬁeration °
and the unary operation ¥ defined by

(a, a*)e(b, b*)=(ab, b*a*),
(a, a*)*=(a*, a).

(2) The set of all projections of the regular *-semigroup S* is P*={(p, p):
pEP}.
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Proor. (1): By Proposition 2.4, it is obvious that S* is a semigroup. Since
(a, a*) e S* implies (a*, a)e S*, S* is regular and # satisfies (i) ((a, a®)®*=(a, a*),
(i) ((a, a®)e(b, b*))*=(b, b*)*e(a, a*)¥, and (i) (a, a*)(a, a*}*=(a, a*)=(a, a*).
Hence, S* is a regular *-semigroup.

(2): Every element of P* is obviously a projection. Conversely, let (a, a*)
be a projection. Then, (a, a*)=(a*, a), and hence a=a* and a is an idempotent.
Hence, a=aa* e P. That is, (a, a*) e P*.

PROPOSITION 3.2. If S is a band [an orthodox semigroup], then S* is also a band
[an orthodox semigroup].

Proor. Obvious.

Let f be the mapping of S* to S defined by (a, a*)f=a. Then, f is clearly a
homomorphism, and af~!={(a, a*): a*e Vp(a)}. Therefore, if we define af~! by
CVi(a), then 5% ={Cl}(a): a € S} becomes a regular semigroup under the multiplication

Vpla)Tpb)=Cpab)  for a, beS,

and is isomorphic to S.
From the results above,

TueoreM 3.3.  For any regular P-semigroup S, there exist a regular *-semigroup
S* and a homomorphism f of S* onto S such that P*f=P, where P* is the set of
projections of S*. Accordingly, every P-regular semigroup is a homomorphic
image of a regular *-semigroup.

Let {P;: iel} be a family of C-sets in a regular semigroup S; hence, S is {P;:
i e I}-regular. Consider a P;-regular semigroup S; for each i, where 5;=S as a regular
semigroup. Let [1{S;: ieI}=T be the direct product of P;-regular semigroups S;.
Denote an element of T by (x,),; (the i-th coordinate is x; € S; for all i e I).

Consider & ={((*)icr» (*HicD): (x)ier€ T, and each x} is a Pqinverse of X;}.
Then, & becomes a regular *-semigroup under the following binary operation o and
the unary operation #:

((xiers CFieD(Viers ie)
=((xYier» VFXHied) »
(Dier EHieD)® =(xFier> ddier) -

Now, consider the mapping ¢: (xier, (*1)ie)® = (Xier-

Then, ¢ is a surjective homomorphism of & onto [1{S;: ieI}=T. Since y: S—
T defined by xy =(x;);e;, Where x;=x for all i€, is an injective homomorphism, we
have the following result:

TueoreM 3.4. If S is a {P;: ie I}-regular semigroup, then S is embedded in a
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homomorphic image of a regular *-semigroup.

§4. Construction

As was shown in §3, every P-regular semigroup can be obtained as a homomorphic
image of a regular *-semigroup. Hence, the problem of constructing all possible
P-regular semigroups is reduced to the following two problems:

I.  Description of all congruences on a given regular semigroup.
Il. Construction of regular *-semigroups.

The first problem I is too routine to state here. We may only consider the usual
description of congruences on general semigroups (for example, see [1]). The second
problem II has been completely solved by the previous papers [6] and [7] of one of
the authors (for the construction of fundamental regular *-semigroups, see also Imaoka
[2]). In particular, it has been shown in [6] that every fundamental regular *-semi-
group is obtained as a full regular *-subsemigroup of the Munn semigroup Ty over a
fundamental regular warp F. Further, it has been also shown in [7] that a general
regular *-semigroup can be obtained as a *-regular product of a fundamental regular
*-semigroup and a certain special partial groupoid which is a union of groups.

Next, let S be a P-regular semigroup. Then, we have the following result which
is a generalization of the description of the maximum idempotent-separating con-
gruence for a regular *-semigroup (see [3], [6]).

ProposiTioN 4.1, The maximum idempotent-separating congruence © on S
is given by

(C.4.1) acbif and only if there exist a* € Vp(a) and b* e Vu(b) such that axa*=
bxb* and a*xa=>b*xb for all xe P.

PrOOF. Let us denote the given relation by p. It is easy to see that p is reflexive
and symmetric. Suppose that apb and buc. Then, there exist a’ e Ve(a), b’, b* e
Ve(b) and c* € Vp(c) such that a’xa=>b'xb, axa’ =bxb’', b*xb=c*xc and bxb*=cxc*
for all xe P. By simple calculation, we have aa'b=b, ab'b=a, bb'a=a, cc*b=D>,
cb*b=c and bb*c=c. Let a=b*ba’bb’. Then, by using the results above it is easy
to see that e Vp(a). Let ¢=>b*bc*bb’. Then, similarly ¢e Vy(c). Now, it follows
by simple calculation that axd=cx¢ and dxa==zxc for xe P. Hence, p is an equi-
valance relation. It is easy to see that a ub implies ac pbc and ca pcb for any ceS.
Thus, p is a congruence. Next, we prove that p is idempotent-separating. Suppose
that e, fe Eg and euf. Then, exe’=fxf’ and e'xe=f"xf for some ¢’ € Vp(e), /' € Ve(f)
and forall xe P. Hence, f'(¢'e)f=¢'(¢'e)e=e’e. Now, ef=ee'ef=ce'(e'e)ef = ef'(ee)f
=ef'e'ef=cee’e=e. On the other hand, e(ff")e'=fff'f'=ff'. Hence, ef=ef( f'f=
ee(ff')e'e=e(ff")e'f=ff'f=f Thus, e=f. Therefore, pu is idempotent-separating.
Finally, let p be any idempotent-separating congruence on S. If apb then as#b.
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Then, by Corollary to Proposition 2.6 it follows that aa’=bb’ and a’a=1>b’b for some
a’'eVp(a) and b’ e Vp(b). Then, a’=a’aa’=a’'bb’, a’ab’=b'bb’=b'. Therefore, apb
implies a’'ab’pa’bb’. This shows that b'pa’. Since p is a congruence, apb and
b'pa’ imply axa’ pbxb’ and a’xapb'xb for xe P. Since axa’, bxb’, a’xa and b’'xb
are idempotents, we have axa'=bxb’ and a'xa=0b'xb for xeP. Hence, pcpu.
Consequently, p is the maximum idempotent-separating congruence on S.

Let S be a fundamental P-regular semigroup. Then, S* is a regular *-semigroup
and the set of projections is P*={(p, p): pe P}. Hence, S* is a P*-regular semigroup.
Let 7 be the maximum idempotent-separating congruence on S*, and assume that a7
for o, fe S*. Let a=(a, a*) and f=(b, b*). Then, for any (p, p) € P*, (a, a*)(p, p)-
(a*, a)=(b, b*)p, p)(b*, b) and (a*, a)(p, p)a, a*)=(b*, b)(p, p)(b, b*). Hence,
(apa*, apa*)=(bpb*, bpb*) and (a*pa, a*pa)=(b*pb, b*pb). Therefore, apa*=
bpb* and a*pa=>b*pb for all pe P. Since S is fundamental, it follows from Propo-
sition 4.1 above that a=b and a*=b*. Hence, (a, a*)=(b, b*). Thus, S* is funda-
mental. Since S is a homomorphic image of S*, we have the following:

THEOREM 4.2. A fundamental P-regular semigroup is a homomorphic image
of a fundamental regular *-semigroup.
Finally, we obtain the following from the results above:

THEOREM 4.3. Let S be a fundamental regular *-semigroup, and P the set of
projections of S. Let & be a congruence on S, and let P={p: pe P}, where p=pt.
Then, S|¢ (=85) is a P-regular semigroup. If t is the maximum idempotent-
separating congruence on 5, then S/t is a fundamental P-regular semigroup, where
P={pt: peP}.

Conversely, every fundamental P-regular semigroup can be obtained in this
fashion.
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