Mem. Fac. Sci. Shimane Univ., 21, pp. 47–54 Dec. 20, 1987

# **P-Regularity in Semigroups**

Miyuki YAMADA and Mridul Kanti SEN

Department of Mathematics, Shimane University, Matsue, Japan and Department of Pure Mathematics, University of Calcutta, Calcutta, India (Received September 5, 1987)

In this paper, firstly the concept of *P*-regularity, which is a generalization of both the concept of "orthodox" and the concept of "(special) involution" (see [7]), is introduced in the class of regular semigroups, and secondly the structure of *P*-regular semigroups is discussed.

#### §1. Introduction

Let S be a regular semigroup, and  $E_S$  the set of idempotents of S. Let P be a subset of  $E_S$  such that  $P^2 \subset E_S$  and  $qP^1q \subset P$  for all  $q \in P$ , where  $P^1$  is the adjunction of the identity 1 to P. Let V(a) be the set of inverses of a for each  $a \in S$ . Let  $Q_P(S) =$  $\{a \in S:$  There exists  $a^* \in V(a)$  such that  $aP^1a^* \subset P$  and  $a^*P^1a \subset P$ . Then, it is easy to see that  $Q_P(S)$  satisfies the following:

- (C.1.1) (1)  $Q_P(S)$  is regular subsemigroup of S.
  - (2)  $P \subset Q_P(S)$ .
  - (3) Every (Green's) L-class [R-class] of  $Q_P(S)$  contains at least one element of P.
  - (4) For any a ∈ Q<sub>P</sub>(S), there exists a\* ∈ V(a) such that a\* ∈ Q<sub>P</sub>(S) and aP<sup>1</sup>a\*, a\*P<sup>1</sup>a ⊂ P.

Let T be a regular semigroup, and P a subset of  $E_T$ . If T satisfies

- (C.1.2) (1) each L-class of T contains an element of P; and each R-class of T contains an element of P,
  - (2)  $P^2 \subset E_T$ , and
  - (3) for  $q \in P$ ,  $qP^1q \subset P$ ,

then T is called a weakly P-regular semigroup. For  $a \in T$ , an element  $a^* \in T$  such that  $a^* \in V(a)$ ,  $aP^1a^* \subset P$  and  $a^*P^1a \subset P$  is called a P-inverse of a (of course, such a P-inverse  $a^*$  not necessarily exists for a given  $a \in T$ ), and  $(a, a^*)$  is called a P-regular pair. Let  $V_P(a)$  be the set of all P-inverses of a.

If a weakly P-regular semigroup T further satisfies

(C.1.3) for any  $a \in T$ ,  $V_P(a) \neq \Box$ ,

then T is called a P-regular semigroup.

The subsemigroup  $Q_P(S)$  of S is a P-regular semigroup. Hence, it is obvious that if S is a weakly P-regular semigroup then  $Q_P(S)$  is a full P-regular subsemigroup of S. It is easily seen as follows: It is already seen that  $Q_P(S)$  is P-regular. Let  $f \in E_S$ . Then, there exist  $p, q \in P$  such that  $f \mathcal{L} p, f \mathcal{R} q$ , where  $\mathcal{L}$  and  $\mathcal{R}$  are Green's L- and R-relations respectively. Now,  $pq \in E_S$ , and  $pq \mathcal{L} q, pq \mathcal{R} p$ . Hence, qp=f. Thus,  $E_S \subset P^2$ . This implies  $P^2 = E_S$ , and hence  $E_S \subset Q_P(S)$ .

Further, in this case  $Q_P(S)$  is the greatest *P*-regular subsemigroup of *S*. If a regular semigroup *S* is [weakly] *P*-regular for a subset *P* of  $E_S$ , then the set *P* is called a [weak] characteristic set (abbrev., a [weak] C-set) in *S*. This concept of a C-set is a generalization of both the concept of a *P*-system (see [8]) in a regular semigroup and the concept of the set of projections (see [6]) in a regular \*-semigroup. In Nordahl and Scheiblich [4], it has been firstly noted that every *L*-class [*R*-class] of a regular \*-semigroup contains just one projection.

If  $\{P_i: i \in I\} = \Omega$  is a set of [weak] C-sets in a regular semigroup S, then S is called [weakly]  $\{P_i: i \in I\}$ -regular or, sometimes simply, [weakly]  $\Omega$ -regular.

EXAMPLE. Let S be a regular semigroup, and let  $P \subset E_S$ . Consider the following special cases:

(C.1.4) (1)<sub>1</sub> Each L-class of S contains just one element of P. (1)<sub>r</sub> Each R-class of S contains just one element of P. (2)  $P = E_S$ .

If S is P-regular, and P satisfies

| Í   | (C.1.4), (2)                                                                                                                    |              |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| II  | $''$ , $(1)_l$ , $(1)_r$                                                                                                        | o, then S is |  |
| III | ", (2), (1) <sub>l</sub> [(2), (1) <sub>r</sub> ]                                                                               |              |  |
| IV  | ", (2), $(1)_l$ , $(1)_r$                                                                                                       |              |  |
| I   | orthodox<br>a regular *-semigroup having P as its projections (see [8])<br>a left inverse [a right inverse] semigroup (see [5]) |              |  |
| Π   |                                                                                                                                 |              |  |
| III |                                                                                                                                 |              |  |
| IV  | an inverse semigroup                                                                                                            |              |  |
|     |                                                                                                                                 |              |  |

respectively.

Further, it is easy to see that if S is a  $\{P_1, P_2\}$ -regular semigroup and if  $P_1$  and  $P_2$  satisfy (C.1.4), (2) and (C.1.4), (1)<sub>l</sub>, (1)<sub>r</sub> respectively, then S is an orthodox \*-semi-

group having  $P_2$  as its projections.

As was seen in Example above, the class of orthodox semigroups and the class of regular \*-semigroups are contained in the class of P-regular semigroups. In this paper, we shall study the structure of P-regular semigroups, and also that of weakly P-regular semigroups.

#### § 2. Basic properties

As was shown above, if S is a weakly P-regular semigroup,  $Q_P(S) = \{a \in S : a \text{ has } a \text{ P-inverse}\}$  is the greatest P-regular subsemigroup of S and contains  $E_S$ . This  $Q_P(S)$  is called *the inner part of S*, and in particular it is denoted by  $N_P(S)$ .

THEOREM 2.1. The inner part  $N_P(S)$  of a weakly P-regular semigroup is P-regular. Accordingly, every P-regular semigroup can be obtained as the inner part of a weakly P-regular semigroup.

PROOF. Obvious.

**PROPOSITION 2.2.** For a P-regular semigroup S, the following two conditions are equivalent:

(1)  $P=E_S$ .

(2)  $P^2 \subset P$ .

PROOF. Assume that  $P^2 \subset P$ . For  $f \in E_S$ , there exists  $f^* \in V_P(f)$ . Hence,  $f^* = f^* fff^* \in P^2 \subset P \subset E_S$ . Thus,  $f = ff^* f^* f \in P$ . Hence,  $P = E_S$ . Conversely, if  $P = E_S$  then  $P^2 \subset E_S = P$ .

PROPOSITION 2.3. Let  $f: S \rightarrow T$  be a homomorphism of a [weakly] P-regular semigroup S onto a regular semigroup T. Let  $\overline{P} = \{qf: q \in P\}$ . Then, T is a [weakly]  $\overline{P}$ -regular semigroup.

PROOF. Assume that S is weakly P-regular. Since  $P \subset E_S$ ,  $Pf \subset E_S f = E_T$ . That is,  $\overline{P} \subset E_T$ . For  $qf \in \overline{P}$ ,  $qf\overline{P}^1qf = (qf)(P^1f)(qf) \subset (qP^1q)f \subset Pf = \overline{P}$ . For any  $\overline{a} = af \in T$ , there exist  $p, q \in P$  such that  $a \mathcal{L} p$  and  $a \mathcal{R} q$ . Then,  $af \mathcal{L} pf$  and  $af \mathcal{R} qf$ , and pf,  $qf \in \overline{P}$ . Therefore, every L-class of T contains an element of  $\overline{P}$ ; and every R-class of T contains an element of  $\overline{P}$ . Thus, T is weakly  $\overline{P}$ -regular. Next, assume that S is P-regular. Of course, T is weakly  $\overline{P}$ -regular as was shown above. Let  $af \in T$ . Then, there exists  $a^* \in V_P(a)$ . Now,  $(af)(a^*f) = (aa^*)f \in \overline{P}$ . Similarly,  $(a^*f)(af) = (a^*a)f \in \overline{P}$ . For any  $qf \in \overline{P}$ ,  $(af)(qf)(a^*f) = (aqa^*)f \in \overline{P}$  and  $(a^*f)(qf)(af) = (a^*qa)f \in \overline{P}$ . Since  $a^*f \in$  $V(af), a^*f \in V_P(af)$ .

**PROPOSITION** 2.4. Let S be a regular semigroup, and P a subset of  $E_s$  such that  $P \cap L \neq \Box$  and  $P \cap R \neq \Box$  for each L-class L and R-class R of S. Then, the following

(1)-(3) are equivalent:

(1) S is weakly P-regular.

(2) For any  $q \in P$ ,  $qP^1q \subset P$ ; and if  $(a, a^*)$ ,  $(b, b^*)$  are regular pairs such that  $aP^1a^*$ ,  $a^*P^1a \subset P$  and  $bP^1b^*$ ,  $b^*P^1b \subset P$ , then  $(ab, b^*a^*)$  is a regular pair such that  $abP^1b^*a^* \subset P$  and  $b^*a^*P^1ab \subset P$ .

(3) For any  $p, q \in P$ ,  $pqp \in P$  and  $qp \in V(pq)$ .

**PROOF.** (1) $\Rightarrow$ (2) and (2) $\Rightarrow$ (3) are obvious. (3) $\Rightarrow$ (1): Since  $pq \in V(qp)$  for  $p, q \in P$ , pq(qp)pq = pq. Hence,  $(pq)^2 = pq$ . Thus,  $P^2 \subset E_S$ . Since  $pP^1p \subset P$  for  $p \in P$ , S is weakly P-regular.

**PROPOSITION 2.5.** In a weakly P-regular semigroup,

(1)  $P^2 = E_S$ ,

(2) for  $f \in E_S$ ,  $f^* \in V_P(f)$  implies  $f^* \in E_S$ .

PROOF. Let  $f^* \in V_P(f)$ . Then,  $f^* = f^* f f f^* \in P^2 \subset E_S$ . Hence,  $f = f f^* f^* f \in P^2$ . That is,  $E_S = P^2$ .

**PROPOSITION 2.6.** Let S be a P-regular semigroup, and let  $a \in S$ . Let e, f be elements of P such that  $e \mathscr{R} a \mathscr{L} f$ . Then, there exists a unique  $a^* \in V_P(a)$  such that  $aa^* = e$  and  $a^*a = f$ .

**PROOF.** Since S is a regular semigroup, there exists  $a' \in V(a)$  such that aa' = eand a'a = f. Since S is P-regular, there exists  $\bar{a} \in V_P(a)$  such that  $aP^1\bar{a} \subset P$  and  $\bar{a}P^1a \subset P$ . Now,  $aP^1a' = aa'aa'aP^1a'a\bar{a}aa'$   $aa'aP\bar{a}aa' \subset ePe \subset P$ . Similarly,  $a'P^1a \subset P$ . Hence,  $a' \in V_P(a)$ .

COROLLARY. Let a, b be two elements of a P-regular semigroup S. Then, a  $\mathscr{H}b$  (where  $\mathscr{H}$  is Green's H-reglation) if and only if there exist  $a' \in V_P(a)$  and  $b' \in V_P(b)$  such that aa' = bb' and a'a = b'b.

## §3. The semigroup of *P*-regular pairs

Let S be a P-regular semigroup. Let  $S^* = \{(a, a^*): a \in S, (a, a^*) \text{ is a } P\text{-regular pair}\}$ . Then,

**PROPOSITION 3.1.** (1)  $S^*$  is a regular \*-semigroup under the binvry operation  $\circ$  and the unary operation  $\ddagger$  defined by

$$(a, a^*) \circ (b, b^*) = (ab, b^*a^*),$$

$$(a, a^*)^* = (a^*, a).$$

(2) The set of all projections of the regular \*-semigroup  $S^*$  is  $P^* = \{(p, p): p \in P\}$ .

50

**PROOF.** (1): By Proposition 2.4, it is obvious that  $S^*$  is a semigroup. Since  $(a, a^*) \in S^*$  implies  $(a^*, a) \in S^*$ ,  $S^*$  is regular and  $\ddagger$  satisfies (i)  $((a, a^*)^{\ddagger})^{\ddagger} = (a, a^*)$ , (ii)  $((a, a^*)^{\circ}(b, b^*))^{\ddagger} = (b, b^*)^{\ddagger} \circ (a, a^*)^{\ddagger}$ , and (iii)  $(a, a^*) \circ (a, a^*)^{\ddagger} \circ (a, a^*) = (a, a^*)$ . Hence,  $S^*$  is a regular \*-semigroup.

(2): Every element of  $P^*$  is obviously a projection. Conversely, let  $(a, a^*)$  be a projection. Then,  $(a, a^*)=(a^*, a)$ , and hence  $a=a^*$  and a is an idempotent. Hence,  $a=aa^* \in P$ . That is,  $(a, a^*) \in P^*$ .

**PROPOSITION 3.2.** If S is a band [an orthodox semigroup], then  $S^*$  is also a band [an orthodox semigroup].

PROOF. Obvious.

Let f be the mapping of S\* to S defined by  $(a, a^*)f=a$ . Then, f is clearly a homomorphism, and  $af^{-1} = \{(a, a^*): a^* \in V_P(a)\}$ . Therefore, if we define  $af^{-1}$  by  $CV_P(a)$ , then  $\bar{S}^* = \{CV_P(a): a \in S\}$  becomes a regular semigroup under the multiplication

$$CV_P(a)CV_P(b) = CV_P(ab)$$
 for  $a, b \in S$ ,

and is isomorphic to S.

From the results above,

THEOREM 3.3. For any regular P-semigroup S, there exist a regular \*-semigroup S\* and a homomorphism f of S\* onto S such that  $P^*f=P$ , where  $P^*$  is the set of projections of S\*. Accordingly, every P-regular semigroup is a homomorphic image of a regular \*-semigroup.

Let  $\{P_i: i \in I\}$  be a family of C-sets in a regular semigroup S; hence, S is  $\{P_i: i \in I\}$ -regular. Consider a  $P_i$ -regular semigroup  $S_i$  for each i, where  $S_i = S$  as a regular semigroup. Let  $\prod \{S_i: i \in I\} = T$  be the direct product of  $P_i$ -regular semigroups  $S_i$ . Denote an element of T by  $(x_i)_{i \in I}$  (the *i*-th coordinate is  $x_i \in S_i$  for all  $i \in I$ ).

Consider  $\mathscr{S} = \{((x_i)_{i \in I}, (x_i^*)_{i \in I}): (x_i)_{i \in I} \in T, \text{ and each } x_i^* \text{ is a } P_i\text{-inverse of } x_i\}$ . Then,  $\mathscr{S}$  becomes a regular \*-semigroup under the following binary operation  $\circ$  and the unary operation #:

$$\begin{aligned} &((x_i)_{i\in I}, (x_i^*)_{i\in I}) \circ ((y_i)_{i\in I}, (y_i^*)_{i\in I}) \\ &= ((x_i y_i)_{i\in I}, (y_i^* x_i^*)_{i\in I}), \\ &((x_i)_{i\in I}, (x_i^*)_{i\in I})^* = ((x_i^*)_{i\in I}, (x_i)_{i\in I}). \end{aligned}$$

Now, consider the mapping  $\phi: ((x_i)_{i \in I}, (x_i^*)_{i \in I})\phi = (x_i)_{i \in I}$ .

Then,  $\phi$  is a surjective homomorphism of  $\mathscr{S}$  onto  $\prod\{S_i: i \in I\} = T$ . Since  $\psi: S \to T$  defined by  $x\psi = (x_i)_{i \in I}$ , where  $x_i = x$  for all  $i \in I$ , is an injective homomorphism, we have the following result:

THEOREM 3.4. If S is a  $\{P_i: i \in I\}$ -regular semigroup, then S is embedded in a

homomorphic image of a regular \*-semigroup.

### §4. Construction

As was shown in §3, every *P*-regular semigroup can be obtained as a homomorphic image of a regular \*-semigroup. Hence, the problem of constructing all possible *P*-regular semigroups is reduced to the following two problems:

- I. Description of all congruences on a given regular semigroup.
- II. Construction of regular \*-semigroups.

The first problem I is too routine to state here. We may only consider the usual description of congruences on general semigroups (for example, see [1]). The second problem II has been completely solved by the previous papers [6] and [7] of one of the authors (for the construction of fundamental regular \*-semigroups, see also Imaoka [2]). In particular, it has been shown in [6] that every fundamental regular \*-semigroup is obtained as a full regular \*-subsemigroup of the Munn semigroup  $T_F$  over a fundamental regular warp F. Further, it has been also shown in [7] that a general regular \*-semigroup can be obtained as a \*-regular product of a fundamental regular \*-semigroup and a certain special partial groupoid which is a union of groups.

Next, let S be a P-regular semigroup. Then, we have the following result which is a generalization of the description of the maximum idempotent-separating congruence for a regular \*-semigroup (see [3], [6]).

**PROPOSITION 4.1.** The maximum idempotent-separating congruence  $\tau$  on S is given by

# (C.4.1) $a \tau b$ if and only if there exist $a^* \in V_P(a)$ and $b^* \in V_P(b)$ such that $axa^* = bxb^*$ and $a^*xa = b^*xb$ for all $x \in P$ .

PROOF. Let us denote the given relation by  $\mu$ . It is easy to see that  $\mu$  is reflexive and symmetric. Suppose that  $a \mu b$  and  $b \mu c$ . Then, there exist  $a' \in V_P(a)$ , b',  $b^* \in V_P(b)$  and  $c^* \in V_P(c)$  such that a'xa=b'xb, axa'=bxb',  $b^*xb=c^*xc$  and  $bxb^*=cxc^*$ for all  $x \in P$ . By simple calculation, we have aa'b=b, ab'b=a, bb'a=a,  $cc^*b=b$ ,  $cb^*b=c$  and  $bb^*c=c$ . Let  $\bar{a}=b^*ba'bb'$ . Then, by using the results above it is easy to see that  $\bar{a} \in V_P(a)$ . Let  $\bar{c}=b^*bc^*bb'$ . Then, similarly  $\bar{c} \in V_P(c)$ . Now, it follows by simple calculation that  $ax\bar{a}=cx\bar{c}$  and  $\bar{a}xa=\bar{c}xc$  for  $x \in P$ . Hence,  $\mu$  is an equivalance relation. It is easy to see that  $a \mu b$  implies  $ac \mu bc$  and  $ca \mu cb$  for any  $c \in S$ . Thus,  $\mu$  is a congruence. Next, we prove that  $\mu$  is idempotent-separating. Suppose that  $e, f \in E_S$  and  $e \mu f$ . Then, exe'=fxf' and e'xe=f'xf for some  $e' \in V_P(e), f' \in V_P(f)$ and for all  $x \in P$ . Hence, f'(e'e)f=e'(e'e)e=e'e. Now, ef=ee'ef=ee'(e'e)ef=ef'(e'e)f=ef'e'ef=ee'e=e. On the other hand, e(ff')e'=fff'f'=ff'. Hence, ef=ef(ff')f'f=ee(ff')e'e=e(ff')e'f=ff'f=ff. Thus, e=f. Therefore,  $\mu$  is idempotent-separating. Finally, let  $\rho$  be any idempotent-separating congruence on S. If  $a \rho b$  then  $a \mathcal{H}b$ .

#### P-Regularity in Semigroups

Then, by Corollary to Proposition 2.6 it follows that aa' = bb' and a'a = b'b for some  $a' \in V_P(a)$  and  $b' \in V_P(b)$ . Then, a' = a'aa' = a'bb', a'ab' = b'bb' = b'. Therefore,  $a \rho b$  implies  $a'ab' \rho a'bb'$ . This shows that  $b' \rho a'$ . Since  $\rho$  is a congruence,  $a \rho b$  and  $b' \rho a'$  imply  $axa' \rho bxb'$  and  $a'xa \rho b'xb$  for  $x \in P$ . Since axa', bxb', a'xa and b'xb are idempotents, we have axa' = bxb' and a'xa = b'xb for  $x \in P$ . Hence,  $\rho \subset \mu$ . Consequently,  $\mu$  is the maximum idempotent-separating congruence on S.

Let S be a fundamental P-regular semigroup. Then, S\* is a regular \*-semigroup and the set of projections is  $P^* = \{(p, p): p \in P\}$ . Hence, S\* is a P\*-regular semigroup. Let  $\tau$  be the maximum idempotent-separating congruence on S\*, and assume that  $\alpha \tau \beta$ for  $\alpha, \beta \in S^*$ . Let  $\alpha = (a, a^*)$  and  $\beta = (b, b^*)$ . Then, for any  $(p, p) \in P^*$ ,  $(a, a^*)(p, p) \cdot$  $(a^*, a) = (b, b^*)(p, p)(b^*, b)$  and  $(a^*, a)(p, p)(a, a^*) = (b^*, b)(p, p)(b, b^*)$ . Hence,  $(apa^*, apa^*) = (bpb^*, bpb^*)$  and  $(a^*pa, a^*pa) = (b^*pb, b^*pb)$ . Therefore,  $apa^* =$  $bpb^*$  and  $a^*pa = b^*pb$  for all  $p \in P$ . Since S is fundamental, it follows from Proposition 4.1 above that a = b and  $a^* = b^*$ . Hence,  $(a, a^*) = (b, b^*)$ . Thus, S\* is fundamental. Since S is a homomorphic image of S\*, we have the following:

**THEOREM 4.2.** A fundamental P-regular semigroup is a homomorphic image of a fundamental regular \*-semigroup.

Finally, we obtain the following from the results above:

THEOREM 4.3. Let S be a fundamental regular \*-semigroup, and P the set of projections of S. Let  $\xi$  be a congruence on S, and let  $\overline{P} = \{\overline{p} : p \in P\}$ , where  $\overline{p} = p\xi$ . Then,  $S/\xi$  (= $\overline{S}$ ) is a  $\overline{P}$ -regular semigroup. If  $\tau$  is the maximum idempotent-separating congruence on  $\overline{S}$ , then  $\overline{S}/\tau$  is a fundamental  $\overline{P}$ -regular semigroup, where  $\overline{P} = \{\overline{p}\tau : \overline{p} \in \overline{P}\}$ .

Conversely, every fundamental P-regular semigroup can be obtained in this fashion.

#### References

- Clifford, A. H. and Preston, G. B.: The algebraic theory of semigroups, Vol 1, Amer. Math. Soc., Providence, R. I., 1961.
- [2] Imaoka, T.: On fundamental regular \*-semigroups, Mem. Fac. Sci., Shimane Univ. 14 (1980), 19-23.
- [4] Nordahl, T. E. and Sceiblich, H. E.: Regular \*-semigroups, Semigroup Forum 16 (1978), 369-377.
- [5] Yamada, M.: Note on a certain class of orthodox semigroups, Semigroup Forum 6 (1973), 180-188.

# Miyuki Yamada and Mridul Kanti ken

- [7] ———: Note on the construction of regular \*-semigroups, Mem. Fac. Sci., Shimane Univ. 15 (1981), 17–22.
- [8] -----: P-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.
- 54