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In this paper, we introduce the concept of affine homogeneous structures which is a 

generalization of the concept of homogeneous structures on Riemannian manifolds ([15]) 

By considenng affine homogeneous structures on an analytic loop with the canonical con-

nection, we treat the problem of changing it for the other analytic loop which is homogeneous, 

without changmg the system of geodesics 

Imtroductiom 

The concept of homogeneous structures on Riemannian manifolds is formulated 

by F. Tricerri-L. Vanhecke [16] from the earlier work of W. Ambrose-1. M. Singer 

[5]. It presents a criterion for a Riemannian manifold to be homogeneous. For 

mstance, K. Abe [1] has classified all homogeneous Riemannian structures of 3-

dnnensional space forms by using homogeneous structures. In this paper, we try to 

find homogeneous loops ([8], [9], [10]) on a given analytic loop (G, ;4) by changing 

its multiplication // for homogeneous one, where we assume that the unit e of p is 

unchanged and that any 1-parameter subgroup of p is changed for a 1-parameter 

subgroup of the homogeneous loop obtained. To do this, we introduce frst the 

concept of affine homogeneous structure of a linearly connected manifold (M, V) 

m S I . Then, in S2, we define the canonical connection V for any analytic loop (G, I/), 

which is a generalization of the canonical connection of homogeneous loops ([8], [9]) 

or of the loops with the left inverse property ([1l]). The loop (G, p) is said to be geo-

desic at e if it i_s coincident with the geodesic local loop ([4], [7]) of the canonical 

connection centered at e. We show (Proposition 2.4) that, if (G, p) is geodesic at e, 

any geodesic curve c(t) through the unit e = c(O) is a 1-parameter subgroup of the 

loop. Next, we show that a connected and simply connected geodesic loop (C, p) 

can be changed for a homogeneous loop (G, /f) with the same unit, by changing every 

1-parameter subgroup of /4 for some 1-parameter subgroup of p', if the canonical 

connection of (G, //) admits an affine homogeneous structure (Theorem 3). By 

This paper contains partly the results presented at the coriference on Web Geometry. Szeged, 

August 1 987 



2 Michihiko KIKKAWA 
using this result we treat the problem of changing a homogeneous loop for homogeneous 

one and we get a criterion for existence of such a change in terms of the tangent Lie 

triple algebras. 

S 1. Affime ~olmogemeows structures 

Let M be a diffe_rentiable manif'old with a linear connection V . The torsron tensor 

field S and the curvature tensor field R of V are given by 

S(X, Y) = [X, Y] - VxY+ VYX 

R(X, Y)Z = V[x,Y]Z - Vx VYZ + VY VxZ 

for any (differentiable) vector fields X, Y, Z on M. If we consider the other linear 

connection ~ on M, then we have a (.1, 2)-tensor field Ton M given by 

(1.1) T(X, Y)= VxY- ~xY, 

and, conversely, any (1, 2)-tensor field T determines a linear connection ~ by the 

equation (1.1). 

Now, we introduce the concept of affine homogeneous structures as follows : 

DEFlNITION. A tensor field T of type (1, 2) on M is called an affine homogeneous 

structure of (M, V), if 

(1 .2) ~ S = O, 
(1 .3) ~ ~ = O, 
(1 .4) ~ T= O are satisfied, where ~ is the linear connection determined by the equation (1.1) and 
~, ~ are its torsion and curvature tensors, respectively 

REMARK. Let (M, g) be a Riemannian manif'old with the Riemannian connection 

V. Then, a (1, 2)-tensor field T on M is a (Riemannian) homogeneous structure in 

the sense of [16] if and only if it is an affine homogeneous structure of (M, V) with 

the property 

g(T(X, Y), Z)+g(Y, T(X, Z)) =0 

for any vector fields X, Y and Z on M 

We can easily show that the condition (1.4) in Definition above is equivalent to 

(1.5) ( VxT)(Y, Z)= T(X, T(Y, Z))- T(Y, T(X, Z))- T(T(~X, Y), Z) . 

PRoposrnoN 1.1. Let T be a tensor field of type (1, 2) on a lineal'ly connected 
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舳η榊∂（M，7），0〃戸＝7一τ伽Z肋鮒C0舳εαf0η∂ε妙醐肋〃りτ　肋鋼，

伽鮒810η∫0〃伽鮒〃伽陀Rψ戸醐g肋抑妙肋ε〃10W肋〃0榊〃伽；

（1．6）　　8（X至y）＝8（Xラγ）十τ（X，y）一τ（XX）多

（1．7）　　　　　　戻（X，γ）Z：R（X，γ）Z一τ（∫（X，γ）、Z）十τ（X，τ（兄Z））

　　　　　　　　　　　　　　　　一τ（瓦τ（X，Z））十（みτ）（X　Z）一（跨τ）（X，Z）．

　　　PR00F　　They　are　obta1ned一血o㎜the　d－e貧n並10n　of　the　to蝸且on8and　the　curv就ure

便und－er　a　straightforward－ca1cu．1ation．

　　　PR0Pos亙丁亙0N且．2．　■4（1，2）イθ抑30γ力θ〃　τねoη　城ηε乃o肋ogεηθo〃83炉μo肋グεgグ

（〃，7）ヴα〃oψヴ伽〃Zowf蘭μg舳1oηs㈹5肋批∂1

（1．8）　　　　　（み8）（瓦Z）＝τ（X，8（瓦Z））一8（τ（X、γ），Z）一8（瓦τ（X，Z））ヲ

（1．9）　　　　　（㌦R）（兄Z）豚＝T（X，R（瓦Z）豚）一沢（τ（X，γ），Z）W

　　　　　　　　　　　　　　　　　　－R（瓦τ（X，Z））W二R（瓦Z）τ（X，豚），

伽∂（lL5）．

　　　腋o0F．Under　the盈ssu醐ption　thaけhe　equ就ion（且．5）is　va胴，we⑫皿show

（1．10）　　　　（み5）（瓦Z）＝（み8）（X　Z）十∫（τ（X、γ），Z）十8（Xτ（X，Z））

　　　　　　　　　　　　　　　一τ（X，∫（瓦Z））、

（1．11）　　　　　（み庶）（瓦Z）豚：み（厘（瓦Z）豚）一賃（み瓦Z）豚一厘（瓦みZ）豚

　　　　　　　　　　　　　　　　　一厘（瓦Z）戸xW

　　　　　　　　　　　　　　　　＝（みR）（兄Z）豚一τ（X，R（瓦Z）W）十R（τ（X，y），Z）W

　　　　　　　　　　　　　　　　　＋R（Xτ（X，Z））W＋R（兄Z）τ（X多W）．

Hence，we　agree　to　the鎚sertion　ofthe　propos並ion．　　　　　　　　　　　　　　q．e．d．

　　　Fro醐腋oposition五．1we　ca．n　ob晦in；
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　　　In　the　sa㎜e　way　as［16］for　R1e㎜＆nman　ho二moge鵬ous　stmc加res　of　R鴫醐ann岨n

㎜an1fo1ds，we　obt釧n　the　fouow1ng，
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with a complete analytic linear connection V. If (M, V) has a skew-symmetric 

analytic affine homogeneous structure T, then 

(1) there exists a connected group A of affine tran~'forrnations of ~ = V - T 

such that M=A/K, K being t/'re isotropy subgroup of A at any fixed point e, is a 

reductive homogeneous space ([15]) wjth the canonical connection ~ ; 

(2) if the tensorfield T is invariant by A, every element of A acts as an affine 

trans,formation of V. 

PRooF. Since Tis assumed to be skew-symmetric, any geodesic of ~ is a geodesic 

of V t,oo. Hence, ~ is a complete connection and the assertion (1) follows from 

Theorem 2.8 (2) in Ch. X of [12 Vol. Il]. Moreover, if T satisfies ipT(X, Y) = 

T(ipX, ip Y) for each element ip of A, then we have 

cVXY ipVxY+ipT(X, Y)=~cxipY+ T(ipX, ipY)= ~ipxipY, 

which verifies the second assertion. q. e, d 

S 2. CamoEicall commectioms of . amalytic lloops 

An analytic loop (G, //) is an analytic manifold G equipped with a binary operation 

/1 : G x G-G denoted by xy =p(x, y) such that (cf. [2], [14]) 

( i ) u is an analytic map, 

(ii ) for each x in G, the left translation L* : G->G, L*y = xy, and the right 

ranslation R* : G->G, R*y = yx, are analytic diff.e.omorphisms of G, and the maps 

L-1:GxG-G L (x y) L y 

R-1: GxG- G; R-1(x, y)=R~ly 

are analytic, 

(iii) p has the two-sided unit e. 

Let (G, //) be an analytic loop with the unit e. By setting 

(2.1) ~(x y z) L ,1(L-1(x, y), L-1(x, z)) for x J' z m G 

an analytic ternary system n : G x G x G->G is associated with (G, p). For any x, y in 

G, the analytic diff'eomorphism ~(x, y) of G given by n(x, y)z=~(x, y, z) is called 

a displacement of (G, n) frorD x to y. The ternary system (G, n) satisfies ; 

(2.2) ~(x, x, y) =y 

(2.3) ~(x, y, x) = y 

(2.4) n(e, x, n(e, y, z)) =n(x, n(e, x, y), n(e, x, z)) for x y Z m G 
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Moreover, ~ satisfies the following equality (.2.5) if and only if the loop (G, p) has the 

let inverse property, i.e., L~1 =L*-1 for x~1 =L~1e; 

n(x, e, n(e, x, y)) = n(e, x, n(x, e, y)) = y. (2.5) 

The loop (G, //) is said to be h,omogeneous if it has the left inverse property and if 

every left inne"r mapping L*,y=L~;L*Ly is an automorphism of the loop p. (G, ,1) 

is homogeneous if and only if the equalities (.2.5) and 

(2.6) n(e, x, n(u, v, w)) n(n(e x u) n(e x v) n(e x w)) 

are valid f'or the ternary system n. 

Let (G, n) be the ternary system associated with an analytic loop (G, ,l). With 

the notation used in [1l] we can describe various tangential fcJrmulas of n obtained 

from the equalities above. In particular, we get from (2.4) the following formula ; 

(2.7) ~(e, x, n(e, Yy, Z.)) + n(e, x, ~(e, Yy, z) ' n(e, y, Z.)) 

= n(x, n(e, x, Yy), n(e, x, Z.)) . 

DEFlNITION. The canonical connection V of an analytic loop (G, //) is an analytic 

linear connection on G defined by the following ; 

(2.8) ( VxY)* =X*Y-~(x, X*, Y*) , 
for each x in G and any vector fields X and Y on G. 

PROPOSITION 2.1. For the canonical connection V of (G, ,1) the torsion S and 

the curvature R are given by 

(2.9) S*(X*, Y*) = n(x, X*, Y*) - n(x, Y*, X*) , 

(2.10) R (X*, Y )Z n(X*, Y*, Z*) - n(Y*, X*, Z*) 

- ~(x, X*, n(x, Y*, Z*)) + n(x, Y., zy(x, X.. Z*)) 

~(x X*, Y Z )+~(x, Y*, X..Z*). 

By Lemma in S3 of [1l] we can show the f'.ollowing proposition f'or analytic loops 

in general (cf. Prop. 3 [1l]); 

PRoposITloN 2.2. (VS). = O 

Let (~f = T.(G) denote the tangent space of G at the unit e. Since p(e, e) = e, the 

multiplication // of the loop induces a bilinear operation on ~ denoted by dp : ~ x ~;->~ 

It is obtained by differentiating p(x, y) in the directions X. and Yy at x = y = e. We have 

(2.11) dp(X., Y.)=n(e, X., Y.) for X Y in ~. ', ' 
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　　On　the　other　hand，we　c盈n　ob伽n鋤d．o㎜orph1sms∂L（X、う孔）of⑮by　d冊er－

enむ就且ng　the11near　auto二morph1sm。∂ムよ，γof⑮1n　the　d虹ecむons　X其and巧at　x＝γ＝θ，

where犯。，yd鋤otesthed搬鵬耐1a1ofthe1e負mnermapp1ngムよ，y　of（G，μ）　We　see

that　the　endo皿ユorph1s血互∂五（X、，孔）　ヱs　descnbed　且n　ter互ns　of　the　ternary　syste虹ユη

鎚soci娩dwith（Gヲμ）asfo11ows；

（212）　　　　　　　∂五（X、、孔）Z、＝η（X、，瓦，Z、）十η（θ，孔ヲη（θ、X、，Z、））

　　　　　　　　　　　　　　　　　　　十η（θ，足，X、・Z、）十η（θヨX、・孔、Z、）

for　X、，y；，Z，in⑮。

　　R盈o里os亙丁且0N23

（2．13）　　　　　　8、（X、、孔）：∂μ（X、、孔）一∂μ（足，X、）」，

（214）　　　R、（X、，孔）：犯（X、，4）一犯（孔、X、）

　　PR00瓦　The　equa1ities　a鵬shown　d－irectIy　by　app玉ying（2．11）and（2．12）to　the

for虹ユu且＆s（29）and（210）1n　Propos並10n22　　　　　　　　　　　　　　　　　　　　　　　　　　　q　e　d

　　For　the　torsヱon∫and．the　curvature　R　ofa　h鵬ar　connect1on7，fo11ow1：ng　formu1as

a肥we阯known鯛彊岨nchゴs1d－ent並1es（cf［12］）

　　　　　　　　　　6｛R（X，γ）Z＋∫（8（X，γ），Z）一（み∫）（兄Z）｝＝O、

　　　　　　　　　　　　　　　　　　　　　　　　　（屈加肌肋う31帥〃θη鮒γ）

　　　　　　　　　　6｛（みR）（瓦Z）一R（∫（X，γ），Z）｝＝O、

　　　　　　　　　　　　　　　　　　　　　　　　（握δαηcんゴ82η∂δ∂θηれ江γ）

whe鵬6deno施s砒e　cyc1ic　su皿with　respect　to　X，γand　Z．

　　Ifwe　set

　　　　　　　　　　［X、γ］＝∂μ（X、｝つ一∂μ（瓦X），

　　　　　　　　　　〈X，瓦Z〉＝∂工（Xヲy）Z

on砒e　ta皿g艶t　space⑮＝孔（G）ofthe＆na1ytic1oop（G，μ）、th鋤we　get　the¢朋gε航λ肋加3

〃g助閉　｛⑮；［X，γ］，〈X，瓦Z〉｝　of　the玉oop（［3］，［6］）。　In血ct，by　f1or醐u1as　in

附op．2．3茅we　h包ve

（2ユ5）　　　8、（X，γ）：［X，y］，

（2ユ6）　　　　　　　R、（X，γ）Z：〈X、瓦Z〉一〈兄X，Z〉．

Then，脳anchゴs1就且d－e耐並y　w1th酎op221コmp1蝪s　the　ax1om　of　Ak1v1s　a］gebra，
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Let (G, p) be a connected analytic loop with the canonical connection. For a 

neighborhood of the unit e, we can define the geodesic local loop P centered at e by 

means of parallel displacements of geodesics through e along each geodesic curve 

through e (cf. [3], [7]). Moreover, with respect to the canonical connection on G, 

we can consider a geodesic local loop P. centered at any fixed point x. On the other 

hand, an analytic loop (G, I/*) with the unit x is defined by 

// (y z) n(x,. y, z), 

which is isomorphic to the original loop (G, p) under the left translation L* 

DEFlNITION. An analytic loop (G, p) will be called geodesic a t e if p(x, y) = p(x, y) 

holds as far as the multiplication P(x, y) of the geodesic local loop centered at e is 

defined. If, for every x e G, 

P*(y, z) = ,1*(y, z) 

holds whenever the geodesic local loop ~* is defined, (G, //) will be said to be geodesic. 

REMARK. Suppose that the loop (G, //) is homogeneous. Then, any displacement 

n(x, y) is an aifine transformation of the canonical connection. In [8] we have defined 

the homogeneous loop (G, /1) to be geodesic if, for any geodesic c, the displacement 

n(c(to), c(tl)) induces the parallel displacement of the tangent space at any point on c 

along c. Thus, a homogeneous loop is geodesic in our sense if and only if it is geodesic 

in the sense of [8]. We can see that a homogeneous loop is geodesic if and only if it 

is geodesic at the unit e. 

Let Xo be a tangent vector of G at the unit e. We can construct an analytic 

vector field X on G by the left_ translations of (G, p) as follows ; 

X*=n(e, x, Xo), for x m G 

Let c(t) denote the maximal integral curve of the vector field X through the unit e = 

c(O). We have the f'ollowing ; 

PROPOSITION 2.4. Assume that (.G, //) is geodesic at e. Then, the jntegral 

curve c(t) above is a geodesic of the canonical connection of (G, I/), and it is a 

1-parameter subgroup of the loop (G, I/)-

PRooF. Let y(t), t e I, be a geodesic through e=y(O) which is tangent to the 

vector Xo' Since (G, /1) is assumed to be geodesic at e, for any fixed t e I, the curve 

yt(s) = n(e, y(t), V(s)), s e I, is a geodesic through yt(O) = y(t) and it is tangent to the vector 

(2.17) dy =n(e y(t) X ) d t 



Aifine Homogeneous Structures on Analytic Loops 9 

at y(t). On the other hand, the curve ~t(s) = y(t+s) is also a geodesic through ~t(O) = 

y(t) and it is tangent to dy/dt at y(t). Hence, by the uniqueness of geQdesics, we get 

y(t+s) = n(e, y(t), y(s)) for t, s e I. From this fact we see that the domain I of the 

geodesic y can be extended to the whole real numbers R and that the set {y(t), t e R} 

forms an analytic associative subloop, i.e., a 1-parameter subgroup of (G, /1). The 

equation (2.17) shows that the curve y(t) is a maximal integral curve of X through e.= 

y(O), that is to say y = c. q. e. d. 

The proposition above implies the f'ollowing ; 

COROLLARY. If a connected analytic loop (G, p) is geodeslc then the canon~cal 

connection is complete. 

For geodesic analytic loops we have the following ; 

PRoposmoN 2.5. Assume that an anlytic loop (G, p) is geodesic. Then the 
relation 

= , for t,seR, L*(t),.(*) 1 

holds for any 1-parameter subgroup c(t) obtained in the proposition above. 

PRooF. If (G, //) is geodesic, then the displacement n(c(t), c(t+s)) induces the 

parallel displacement of tangent~vectors from the point c(t) to c(t+ s) along the curve c 

Hence, we have 

n(c(t), c(t+ s))~(e, c(t)) = n(e, c(t+ s)) 

which shows the relation L.(t),'(') = I q. e. d. 
On the 1-parameter subgroup c(t) above, the inverse of c(t) is given by c( - t) 

and this fact lead us to the following ; 

COROLLARY. If (G, //) is geodesic, then it has the left inverse property 

S 3･ Geodesic preservimg chamges of amalytic loops 

Let (G, //) be a connected analytic loop with the canonical connection V and S. R 

the torsion and the curvature tensor fields of V. In what f'ollows, we assume that 

the analytic loop (G, p) is geodesic. Then, by the corollary to Prop. 2.5, (G, p) has 

the left inverse property and its tangent Akivis algebra is reduced to {~ ; S., ( I /2)R.} 

because the Chern's formula dL(X, X) = O holds (cf. [1l]) 

Now, suppose that the multiplication kt on G is changed for a geodesic analytic 

loop (G, ,l) with the same unit e, every geodesic of V being a geodesic of the canonical 

connection V' of (G, l!) too. Such a change will be called a geodesic preserving 

change of loops. Let S' and R' be the torsion and the curvature of V'. If we set 
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T(X Y)=VxY-V'xY 

for any vector fields X, Y, then, we have a (1, 2)-tensor field T on G and it is skew-

symmetric since the change of the loop is geodesic preserving. Let {~; [X, Y]', 

'} denote the tangent Akivis algebra of the new loop (G, l!). The 

formulas (.1.6) and (1.7) in Prop. 1.1 show the relations between the Akivis 
algebras ; i.e., 

(3.1) [X, Y] = [X, Y]'-2T.(X, Y) , 

(3.2) 2
=2
'+ T.(.[X, Y]', Z)- T.(X, T.(Y, Z)) 

+ T.(Y, T.(.X, Z))-(.V'xT) (Y, Z)+(V'YT) (X, Z) . 

In the f'ollowing, we consider the case where the geodesic loop (G, /!) obtained 

is homogeneous. Then the Akivis algebra of (G, /!) is reduced to the tangent Lie 

triple algebra of (.G, p'), that is ; 

THEOREM 3. Let (G, //) be an ana/J'tic geodesic loop on a connected and sillrply 

connected analytic 1?ranlfold G. Assulne that (G, //) is changed foi' an analytic 

geodesic loop (.G, pl') by a geodesic p/'eserving change. Let V (.resp. V') denote 

the canonical connectton of (G, //) (resp. (G, l!)) and T the (1, 2)-tensor field on G 

given by T= V - V'. 

If T gives an affine homogeneous structure oJ' V, then (G, p') is a homogeneous 

loop with the tangent Lie tl'iple algebra {R; [X, Y]', [X, Y, Z]'} given by 

(3.3) [X, Y]'=[X, Y] +2T.(X, Y) , 

(3.4) [X, Y, Z]'=2
 - T.([X, Y], Z)-2T.(T.(X, Y), Z) 

+ T.(X, T.(Y, Z)) - T.(.Y, T.(X, Z)) , 

where [X, Y]' and [X. Y, Z]'=2

' are the operations induced fl'om the tangent Akivis algebra of (G, l!). Moreover, the torsion S and the curvature R 

of V are V'-parallel tensorfields on G. 

Conversely, if (.G, /!) is a homogeneous loop and if the torsion tensor S of V is 

V'-parallel on G, then the tensorfield T=V-V' is an affine homogeneous structure 

of V. In this case, the tensorfield T is completely determined by the equation (3.3) 

above. 

PRooF. Suppose that the tensor field T is an affine homogeneous structure of 

V. By Corollary to Proposition 2.4, the connection V is complete and Theorem 1 

can be applicable to (G, V). We see that (G, V') is a reductive homogeneous space 

A/K with the canonical connection V'. If we choose the unit e as the origin of G = 

A/K, then the geodesic local loop of A/K is coincident with that of (G, /!) and the 

ternary system rf associated with (G, p') satisfies (.2.5) and (2.6) in a neighborhood of e 
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Since rf is analytic and G is assumed to be connected, these equations are valid on 

the whole manifold G, that is, the geodesic loop (G, //) is homogeneous. The equations 

V' T= O and (3. 1), (3.2) imply the relations (3.3) and (3.4) .of the tangent Akivis algebras 

of (G, p) and (G, p'). By Proposition I .3 we see that the torsion S and the curvature 

R of V is parallel with respect to V'. 

Conversely, . assurne that the geodesic loop (~G, /!) be homogeneous. In [8], 

we have shown that G is a reductive homogeneous space A/K with the canonical con-

nection V', where the isotropy subgroup K is a Lie group generated by all lef't inner 

mappings of /!. Hence, '.'Je have V'S' =0 and ~'R'=0. If, moreove*r, V'S=0 is 

satisfied, then from S'=S+2T we get V'T=0, that is, T= V - V' is an affine 
homogeneous structure of (G, V). Since (G, p') is geodesic, the tensor field T satisfies 

T*(X*, Y*) = rf(e, x, T.(~7'(x, e, Xx)' nf(x, e, Y*))) 

in a normal neighbourhood of e, and this is valid for all x of G since ~' is analytic on G 

Hence, we see that the tensor field T is determined by its value at the unit e, which is 

given by (3.3). q. e. d. 
An analytic homogeneous loop (.G, /1) is said to be symmetrlc (cf [8]) if the 

relation 

~1 x~11'~1 (xy) = / 

holds on G. In [8] we have shown that every connected symmetric homogeneous 
100p is geodesic, and that it can be regarded as an affine synnmetric space A/K with 

the canonical connection. As for geodesic preserving changes of symmetric homo-

geneous loops, we have 

THEOREM 4. Let (G, p) ~e an analytic symmetric homogeneous loop. If a 
geodesic preserving c.hange (G, p') of (G, //) is symmetrjc too, then l! =p. 

PRooF. Suppose that there exists a geodesic preserving change (G, p') of the 

symmetric homogeneous loop (G, ,l), and let T= V - V ' be the associated (1, 2)-tensor 

field on G. Since (G, I/). is symmetric, the torsion S of the canonical connection V of 

(G, //) vanishes on G, and we have S' = 2Tf'or the torsion of V'. If (.G, /!) is symmetric 

too, then S' = O and V'=V. Two loops must be coincident because they are geodesic 

The theorem above shows that there exists no geodesic preserving change except 

for the trivial change if we restrict ourselevs in the class of symmetric homogeneous 

loops. Now we consider geodesic preserving changes in the wider class consisting of 

geodesic homogeneous loops. In what follows we assume that the analytic manifold 

G is connected and simply connected 
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　　D囲N亘丁亙0N　Two　geodes1c　h〇二mogeneous1oops（G，μ）and（G，μρ）g1▽en　on　G

are　sa1d　to　beθθo♂θ3κo〃γξ2〃ωα1θηな1f　there　ex1sts　a　geodes1c　preserv1ng　change　of

（G，μ）for（（｝，μ’）　such　that　the　assoc1ated　（1，2）＿tensor　ie1d　τ：7＿7”1s　an　af匠ne

ho皿エogeneous　structure　of　the　canonica1connection7of（G，μ）and　＿τ＝7’＿7　is

a1so　an包筋ne　ho皿五〇geneous　structure　of　the　canon1ca1connect1on7’of（G，μ1）

　　　丁旺E0REM5　五α（G，μ）oκ∂（G，〆）加σθo∂θ8ユc乃o肋og刎θoμ8Zoop8wユ肋　肋θ

5舳舳肋2，W伽粥引MC0閉θ娩∂伽∂3加η1μ0榊C肋0伽1γ肋榊0吻0〃．肋醐ヲ
伽γ鮒りθ0伽1・α〃パg〃肋1θηげ醐∂・ψぴ肋8加〃・W肋g・鮒・肋抄∂0弼伽
如弼gθ械8ρ06θ⑮〃ε：

（3．5）　　孔（X，X）＝O

（3・亭）　　　　　　理（X，8、（兄Z））＝∫、（孔（X，y），Z）十∫、（X孔（X，Z））

（3・7）　　　　　孔（X，R、（X　Z）豚）：R、（孔（X，γ），Z）豚十R、（瓦孔（X，Z））W

　　　　　　　　　　　　　　　　　　　　＋R、（瓦Z）孔（X、豚）

（3．8）　　　　　π（Xヲ孔（兄Z））＝孔（瓦（X，γ），Z）十瓦（瓦孔（X，Z））

（3．9）　　　　　R、（X，γ）孔（Z，W）＝孔（R、（X，γ）Z，豚）十孔（Z，R、（X，y）W），

W加rθτ＝7－7’13伽吻80げ〃0330C1肋∂W肋伽C0η0加Cα1C0ηηθCれ0η37伽〃

7’，α〃舳㈱8伽∂R伽・¢〃ん〃・畑0η鮒∂伽0舳砿〃・り舳・γμゐψ7，
rεΨ召cガoθzγ。

　　　PR00F．　Suppose　that　two　geod艶ic　ho㎜ogeneous1oops（G，μ）and（G，μ’）are

geodes1cany　equwa1ent　Then　there　ex1sts　a　geodes1c　preserv1ng　change　of（G，μ）

for　（G，μ’）　such　th誠　τand　＿τare　respect1ve1y　af宣ne　hoInogeneous　structures　of

7and7’　Sユnceτ1s　skew－sym㎜etr1c、（35）1s　c1ear　The　tors1on∫and－the　curvature

R　of7are7＿para11e1because（G，μ）1s　hoInogeneous　　Hence，the　equa1並1es（36）and

（37）fo11ow缶o血（18）and（19）1n　Propos1t1on12　Fro㎜the　fact　thatτ1s　an　a舐ne

ho㎜ogeneous就ruc加re　of7and一＿τis　that　of7’，we　can　see　thatτsatis丘es　the

equ砒10ns7τ：O硯nd．71τ＝O　　Thenヲ（1，5）1醐．p11es

（3ユO）　　　　　τ（τ（X，y）、Z）＝τ（Xヲτ（瓦Z）一τ（瓦τ（X，Z））

f；or　any　vector丘e1d．s　X，γand　Z　on　G．　Thusヲ（3．8）is　obtained．　Since7τ＝O　ho1d．s

on　G・孔is　inv班i帥t　by　any1eft　inner　lmapPing　L、，、and　we　get

　　　　　　　　∂L（X，y）孔（Z，W）＝孔（∂L（X，γ）Z，W）十孔（Z，∂五（X，y）豚）．

Wehave　seenin［10］and［11］曲at（2．14）in　Proposition2．3is　reduced　to　R、（X，y）＝

26L（X，y）for　ho：mogeneous1oops．　Hence　the　equa1ity（3．9）is　proved．
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Conversely, assume that the equations (3.5)-(3.9) are all valid on the tangent space 

~; at e. The equation (3.9) implies that the bilinear form T. on ~ is invariant by any 

left inner mapping of (G, ll)･ The ternary system (G, n) associated with (G, p) is 

homogeneous in the sense of [9], and T. is invariant by any composition of displace-

ments of the form n(y, e)n(x, y)n(e, x). Let T be a (1, 2)-tensor field on G given by 

T.(X*, Y..) = n(e, x, T.(n(x, e, Xx)' n(x, e, Y.)) for x e G. 

Then we have 

n(x y T (X*, Y )) T (tl(x, y, X*), 'if'l(.x, y, Y.)) 

and, by Lemma of [1l], we see that ~ is V-parallel. Since the tensor fields S and R 

are V-parallel too, the equations (3.5)- (3.8) at e imply the following global equations ; 

(3.5)' T(X, X)=0 

(3.6)' T(X, S(Y, Z)) = S(T(X, Y), Z) + S(Y, T(X. Z)) 

(3.7)' T(X, R(Y, Z)W)=R(T(X, Y), Z) W+R(Y, T(X, Z))W 

+ R(Y, Z)T(X, W) 

(3.8)' T(X, T(.Y, Z))= T(~(X, Y), Z)+ T(Y, T(X, Z)) 

for any vector fields X, Y, Z and W on G. From T, we can obtain a new linear con-

nection ~ = V - T on G whose torsion and the curvature will be denoted by "'~'~ and ~, 

respectively. Taking the equation (1.5) into account, we can see that the equations 

(3.8)' implies ~ T = O. By the equations (1.8) and (1.9) in Proposition 1.2 applied for 

T, the equations ~S~=0 and ~~=0 follow from (3.6)' and (3.7)'. Hence, by 

Theorem 1, we conclude that (G, ~) is a reductive homogeneous space with the 

canonical connection ~. On the other hand, since (G, /!) is homogeneous too, 

G can be regarded as a reductive homogeneous space with the canonical connection V'. 

However, the two reductive homogeneous spaces must have the 'same tangent Lie triple 

algebra because, at the origin e, 

S~(X, Y) = S.(X, Y) + 2T.(X, Y) = S.(X, Y) , 

R~(X, Y)Z = R.(X, Y)Z - T.(S.(X, Y), Z) - T.(T.(X, Y), Z) 

= R.(X, Y)Z 

for any tangent vectors X, Y and Z at e. Therefore, we see that ~ = V' and T = T, 

that is, (G, p) and (G, /!) are geodesically equivalent by the aifine structure T = T 

q. e. d. 

REMARK. In the theorem above, if we denote by Tx (X e ~) the endomorphism 
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of the tangent Lie triple algebra {~; [X, Y], [X, Y, Z]} of (G pt) grven by TXY 

T.(X, Y), the equations (3.5)-(3.9) are replaced by ; 

TxX = O 

Tx[Y, Z] = [TxY, Z]+ [Y, TxZ] 

Tx[Y, Z, W] = [TxY, Z, W] + [Y, TxZ, W] + [Y, Z, TxW] 

[Tx, TY] = TT*Y 

[･Y, Y, Tz P1;V]= Tz[X, Y, W] + T[x.Y,z] W. 

EXAMPLE. Let (.G, pe) be a connected and simply connected Lie group. Then, 

the canonical connection is reduced to the ( - )-connection of E. Cartan and the 

tangent Lie triple algebra is reduced to the Lie algebra of (.G, p) because the curvature 

tensor R vanishes identically on G. By Theorem 5 above we can see that the other 

Lie group (G, /!) which is geodesically equivalent to (G, /1) is given by endomorphisms 

Tx (X e R) satisfying the frJllowing; 

TxX = O 

Tx[Y, Z]= [TxY, Z] + [Y, TxZ] 

[Tx. TY] = TT*Y (cf. Remark above) , 

and TtX Y] + TT*Y =0 (cf. (3.4)). 
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