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In this paper, we introduce the concept of affine homogeneous structures which is a
generalization of the concept of homogeneous structures on Riemannian manifolds ([15]).
By considering affine homogeneous structures on an analytic loop with the canonical con-
nection, we treat the problem of changing it for the other analytic loop which is homogeneous,
without changing the system of geodesics.

Introduction

The concept of homogeneous structures on Riemannian manifolds is formulated
by F. Tricerri-L. Vanhecke [16] from the earlier work of W. Ambrose-I1. M. Singer
[5]. It presents a criterion for a Riemannian manifold to be homogeneous. For
instance, K. Abe [1] has classified all homogeneous Riemannian structures of 3-
dimensional space forms by using homogeneous structures. In this paper, we try to
find homogeneous loops ([8], [9], [10]) on a given analytic loop (G, 1) by changing
its multiplication p for homogeneous one, where we assume that the unit e of u is
unchanged and that any l-parameter subgroup of u is changed for a 1-parameter
subgroup of the homogeneous loop obtained. To do this, we introduce first the
concept of affine homogeneous structure of a linearly connected manifold (M, F)
in §1. Then, in §2, we define the canonical connection / for any analytic loop (G, p),
which is a generalization of the canonical connection of homogeneous loops ([8], [91)
or of the loops with the left inverse property ([11]). The loop (G, p) is said to be geo-
desic at e if it is coincident with the geodesic local loop ([4], [7]) of the canonical
connection centered at e. We show (Proposition 2.4) that, if (G, p) is geodesic at e,
any geodesic curve c(f) through the unit e=c(0) is a 1-parameter subgroup of the
loop. Next, we show that a connected and simply connected geodesic loop (G, u)
can be changed for a homogeneous loop (G, p') with the same unit, by changing every
1-parameter subgroup of p for some I-parameter subgroup of ', if the canonical
connection of (G, y) admits an affine homogeneous structure (Theorem 3). By
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using this result we treat the problem of changing a homogeneous loop for homogeneous
one and we get a criterion for existence of such a change in terms of the tangent Lie
triple algebras.

§1. Affine homogeneous structures

Let M be a differentiable manifold with a linear connection ¥. The torsion tensor
field S and the curvature tensor field R of // are given by

S(X, V)=[X, Y]-FxY+FyX
R(X, Y)Z=FiypiZ— Py "y Z + Py FxZ

for any (differentiable) vector fields X, ¥, Z on M. If we consider the other linear
connection j7 on M, then we have a (1, 2)-tensor field T on M given by

(L.1) T(X, Y)=FyY—pyY,

and, conversely, any (1, 2)-tensor field T determines a linear connection i by the
equation (1.1).
Now, we introduce the concept of affine homogeneous structures as follows:

DerFiNITION. A tensor field T of type (1, 2) on M is called an ajfine homogeneous
structure of (M, ), if

(1.2) p5=0,
1.3) pR=0,
(1.4) pT=0

are satisfied, where | is the linear connection determined by the equation (1.1) and
5, R are its torsion and curvature tensors, respectively.

ReMARK. Let (M, g) be a Riemannian manifold with the Riemannian connection
P. Then, a (1, 2)-tensor field T on M is a (Riemannian) homogeneous structure in
the sense of [16] if and only if it is an affine homogeneous structure of (M, F) with
the property

9(T(X, Y), Z)+9(Y, T(X, Z))=0

for any vector fields X, Yand Z on M. .
We can easily show that the condition (1.4) in Definition above is equivalent to

(1.5) (FxT)(Y, 2)=T(X, T(Y, 2))-T(Y, T(X, Z))- T(T(X, Y), Z).

ProprosITION 1.1.  Let T be a tensor field of type (1, 2) on a linearly connected
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manifold (M, V), and =V —T the linear connection determined by T. Then,
the torsion § and the curvature R of ¢ are given by the following formulas;

(1.6) S(x, V)=5(X, )+ T(X, Y)-T(Y, X),
1.7) R(X, V)Z=R(X, V)Z-T(8(X, Y), Z)+ T(X, T(Y, Z))
- T(Y, T(X, 2)+(HT)(Y, 2)= (K T)(X, Z).

PrOOF. They are obtained from the definition of the torsion S and the curvature
R under a straightforward calculation.

ProposITION 1.2. A (1, 2)-tensor field T is an affine homogeneous structure of
(M, V) if and only if the following equations are satisfied:

(1.8) (PxS)(Y, 2)=T(X, S(Y, 2))=S(T(X, Y), Z)—5(Y, T(X, Z)),
(1.9) (PxR)(Y, Z)W=T(X, R(Y, Z)W)—-R(T(X, Y), Z)W
—R(Y, T(X, Z))W-R(Y, 2)T(X, W),
and (1.5).
PrOOF. Under the assumption that the equation (1.5) is valid, we can show
(1.10) (P8 (Y, Z)=(PS) (Y, 2)+S(T(X, Y), Z)+S(Y, T(X, Z))
-T(X, 5(Y, 2)),

(1.11) (PR (Y, ZYW= PR(Y, Z)W) - R(P,Y, ZW—R(Y, i)W

—R(Y, 2)pxW

=(PyR)(Y, ZYW—-T(X, R(Y, W)+ R(T(X, Y), Z)W

+R(Y, T(X, Z))W+R(Y, Z)T(X, W).

Hence, we agree to the assertion of the proposition. g.e.d.

From Proposition 1.1 we can obtain;

ProposITION 1.3. A (1, 2)-tensor field T is an affine homogeneous structure of
(M, P) if and only if the tensor fields S, R and T are parallel with respect to the
linear connection =y —T.

In the same way as [16] for Riemannian homogeneous structures of Riemannian
manifolds, we obtain the following;

TuroreMm 1. Let M be a connected and simply connected analytic manifold
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with a complete analytic linear connection V. If (M, V) has a skew-symmetric
analytic affine homogeneous structure T, then

(1) there exists a connected group A of affine transformations of =V —T
such that M=A|K, K being the isotropy subgroup of A at any fixed point e, is a
reductive homogeneous space ([15]) with the canonical connection 7 ;

(2) if the tensor field T is invariant by A, every element of A acts as an affine
transformation of V.

Proor. Since T'is assumed to be skew-symmetric, any geodesic of 7 is a geodesic
of 7 too. Hence, | is a complete connection and the assertion (1) follows from
Theorem 2.8 (2) in Ch. X of [12 Vol. II]. Moreover, if Tsatisfies ¢T(X,Y)=
T(¢X, ¢Y) for each element ¢ of 4, then we have

PP x V=P x Y+ ¢T(X, V)= sxd Y+ T($X, V)= 4,

which verifies the second assertion. g.e.d.

§2. Canonical connections of analytic loops

An analytic loop (G, p) is an analytic manifold G equipped with a binary operation
u: Gx G—G denoted by xy=u(x, y) such that (cf. [2], [14])

(i) pis an analytic map,

(i) for each x in G, the left translation L,: G—G, L,y=xy, and the right
ranslation R,: G—G, R,y=yx, are analytic diffeomorphisms of G, and the maps

L™1: GxG— G; L'(x, y)=L;y,
R':GxG— G; R x, y)=R;ly

are analytic,
(iii)) p has the two-sided unit e.
Let (G, p) be an analytic loop with the unit e. By setting

2.1 n(x, y, z2)=Lg(L~Y(x, y), L"X(x, z)) for x,y,z, in G

an analytic ternary system #: G x G x G—G is associated with (G, p). For any x, yin
G, the analytic diffeomorphism #(x, y) of G given by #n(x, y)z=#(x, y, z) is called
a displacement of (G, n) from x to y. The ternary system (G, 1) satisfies;

(2.2) nx, x, y)=y
(2.3) n(x, y, x)=y

(2.4 n(e, x, nle, y, 2))=n(x, nle, x, y), nle, x, z))  for x,y,z in G.
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Moreover, 7 satisfies the following equality (2.5) if and only if the loop (G, u) has the
let inverse property, i.e., L;1=L_-, for x"1=L}le;

(2.5) n(x, e, nie, x, y)=nle, x, y(x, e, y))=y.

The loop (G, p) is said to be homogeneous if it has the left inverse property and if
every left inner mapping L, ,=L;!L.L, is an automorphism of the loop u. (G, p)
is homogeneous if and only if the equalities (2.5) and

(2.6) n(e, x, n(u, v, w))=n(nle, x, u), yle, x, v), nle, x, w))

are valid for the ternary system 7.

Let (G, i) be the ternary system associated with an analytic loop (G, p). With
the notation used in [11] we can describe various tangential formulas of 5 obtained
from the equalities above. In particular, we get from (2.4) the following formula;

(27) ’1(_‘3, X, n(e’ Y;n Zz))+77(e9 X, ’1(3, sz Z)'n(eo Vs Zz))
=n(x, n(e, x, Y,), n(e, x, Z,)).

DEerFINITION. The canonical connection F of an analytic loop (G, u) is an analytic
linear connection on G defined by the following;

(28) (VXY)x‘—‘_Xxy—n(x’ Xx’ Yx)9
for each x in G and any vector fields X and Y on G.

ProOPOSITION 2.1. For the canonical connection V of (G, p) the torsion S and
the curvature R are given by

(2.9 SAXy Y)=n(x, X,, Y)—n(x, Y,, X,),

(2.10) RAX,, YIZ,=0(Xy, Yo, Z)— (Y, X, Z))
—n(x, X, n(x, Yo, Z)) +n(x, Yo, 0(x, X, Z,))
=%, Xy, Yoo Z)+n(x, Y, X Z)).

By Lemma in §3 of [11] we can show the following proposition for analytic loops
in general (cf. Prop. 3 [11]);

ProrosiTiON 2.2. (FS),=0.

Let G =T,(G) denote the tangent space of G at the unit e. Since u(e, ¢)=e, the
multiplication u of the loop induces a bilinear operation on ® denoted by du: 6 x G— 6.
It is obtained by differentiating p(x, y) in the directions X, and Y, at x=y=e. We have

(2.11) du(X,, Y,)=nle, X,, Y,) for X,Y, in 6.



6 Michihiko Kixkkawa

On the other hand, we can obtain endomorphisms dL(X,, Y,) of & by differ-
entiating the linear automorphism dL, , of ® in the directions X, and Y, at x=y=e,
where dL, , denotes the differential of the left inner mapping L, , of (G, ). We see
that the endomorphism dL(X,, Y,) is described in terms of the ternary system 7
associated with (G, p) as follows;

(212 dL(X,, Y)Z,=n(X,, Y., Z,)+1(e, Y., n(e, X, Z,))
+inle, Yo, X, - Z)+nle, X,- Y., Z,)
for X,, Y,, Z, in 6.
ProposiTION 2.3.
(2.13) SdX.. Y)=du(X,, Y)-du(¥,, X,),
(2.14) R(X,, Y,)=dL(X,, Y,)—-dL(Y,, X,).

ProoF. The equalities are shown directly by applying (2.11) and (2.12) to the
formulas (2.9) and (2.10) in Proposition 2.2. g.e.d.

For the torsion S and the curvature R of a linear connection I, following formulas
are well-known as Bianchi’s identities (cf. [12]):

S{R(X, Y)Z+S(5(X, Y), Z)—(PxS)Y, Z)} =0,
(Bianchi’s 1st identity)
S{(FxR)Y, Z)—R(S(X, Y), Z)} =0,
(Bianchi’s 2nd identity)

where & denotes the cyclic sum with respect to X, Yand Z.
If we set

[X, Y]=duX, Y)—du, X),
(X, Y, Zy=dL(X, Y)Z

on the tangent space 6 = T(G) of the analytic loop (G, u), then we get the tangent Akivis
algebra {6; [X, Y], (X, Y, Z)} of the loop ([3], [6]). In fact, by formulas in
Prop. 2.3, we have

(2.15) S(X, V)=[X, 1],
(2.16) R(X, Y)Z=(X, Y, Z>—<(V, X, Z>.

Then, Bianchi’s 1st identity with Prop. 2.2 implies the axiom of Akivis algebra;
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[X, Y1+[Y, X1=0,
R <Y5Z{<X, Y, Z)—<Y, X, Z)+[[X, Y], Z]} =0.
Moreover, if the canonical connection satisfies (FR),=0, then, by Bianchi’s 2nd
identity, we see that the tangent Akivis algebra admits the following relation;
6 f<[X Y1, Z, W>—<Z,[X, Y], W}}=0.

Especially, if the canonical connection is invariant by parallelism ([12- II]), ie., FS=0
and 7 R=0 are satisfied on G, then, by setting

[X, Y, Z]1=<(X, Y, Z)—<Y, X, Z),

the tangent Akivis algebra induces a Lie triple algebra {6; [X, Y1l [X, Y, Z1} ([8],
[17]). In fact, it satisfies

[X, YI+[Y, X]1=0,

[X, Y, Z1+[Y, X, Z]=0,

. Y@Z{[X, Y, Z1+[[X, Y], Z1} =0,

S {[[X, Y], Z, W]}=0,

X,Y,Z
and, from Ricci’s identity (p. 87 [13]) applied for S and R, we obtain the following
two relations;

[X, Y, [U, V]1=[[X, Y, UL, V1+[U, [X, Y, V1],

[X, Y, [U,V, Wl1=[[X, Y, U], V, Wl+[U, [X, Y, V], W]

+[U, V, [X, Y, W1].

Thus, we have;

TuroreM 2. Let (G, p) be an analytic loop with the unit e, &= T,(G) the tangent
space of G at e. For the tangent Akivis algebra {6; [X, Y], (X, ¥, 2>} of (G, p),
the two operations are related with the canonical connection V of the loop in the
following equations,

S{X, V)=[X, Y],
RAX, Y)Z=(X, Y, Z)—<Y, X, Z).

If the canonical connection is invariant by parallelism, then the tangent Akivis
algebra induces a Lie triple algebra {6;[X, Y], [X, Y, Z1} where [X, Y, Z]=
X, Y, Z)—<Y, X, Z).
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Let (G, p) be a connected analytic loop with the canonical connection. For a
neighborhood of the unit e, we can define the geodesic local loop [i centered at e by
means of parallel displacements of geodesics through e along each geodesic curve
through e (cf. [3], [7]). Moreover, with respect to the canonical connection on G,
we can consider a geodesic local loop fi, centered at any fixed point x. On the other
hand, an analytic loop (G, p,) with the unit x is defined by

1y, 2)=n(x, y, z),
which is isomorphic to the original loop (G, u) under the left translation L,.

DEerFiNiTION.  An analytic loop (G, p) will be called geodesic at e if fi(x, y)=pu(x, y)
holds as far as the multiplication fi(x, y) of the geodesic local loop centered at e is
defined. If, for every xe G,

By, 2)=pp, 2)

holds whenever the geodesic local loop fi, is defined, (G, p) will be said to be geodesic.

ReMARK. Suppose that the loop (G, p) is homogeneous. Then, any displacement
n(x, y) is an affine transformation of the canonical connection. In [8] we have defined
the homogeneous loop (G, u) to be geodesic if, for any geodesic ¢, the displacement
n(c(to), c(t,)) induces the parallel displacement of the tangent space at any point on ¢
along ¢. Thus, a homogeneous loop is geodesic in our sense if and only if it is geodesic
in the sense of [8]. We can see that a homogeneous loop is geodesic if and only if it
is geodesic at the unit e.

Let X, be a tangent vector of G at the unit e. We can construct an analytic
vector field X on G by the left translations of (G, u) as follows;

X, =n(e, x, Xo), for x in G.

Let ¢(t) denote the maximal integral curve of the vector field X through the unit e=
¢(0). We have the following;

ProposITION 2.4.  Assume that (G, p) is geodesic at e. Then, the integral
curve c(t) above is a geodesic of the canonical connection of (G, p), and it is a
1-parameter subgroup of the loop (G, p).

Proor. Let y(¢), tel, be a geodesic through e=y(0) which is tangent to the
vector X,. Since (G, p) is assumed to be geodesic at e, for any fixed ¢ eI, the curve
y(8)=n(e, ¥(1), 7(s)), s € I, is a geodesic through y,(0)=y(¢) and it is tangent to the vector

(2.17) % =nl(e, y(1), Xo)



Affine Homogeneous Structures on Analytic Loops 9

at y(f). On the other hand, the curve 5(s)=y(¢+s) is also a geodesic through 7,(0)=
y(t) and it is tangent to dy/dt at y(f). Hence, by the uniqueness of geodesics, we get
p(t+5)=n(e, y(1), y(s)) for ¢, sel. From this fact we see that the domain I of the
geodesic y can be extended to the whole real numbers R and that the set {y(¢), t € R}
forms an analytic associative subloop, i.e., a 1-parameter subgroup of (G, p). The
equation (2.17) shows that the curve y(¢) is a maximal integral curve of X through e=
1(0), that is to say y=c. g.e.d.

The proposition above implies the following;

COROLLARY. If a connected analytic loop (G, p) is geodesic, then the canonical
connection is complete.
For geodesic analytic loops we have the following;

PROPOSITION 2.5.  Assume that an anlytic loop (G, p) is geodesic. Then the
relation

Lc(t),c(s)= 1’ for t, NS R,
holds for any 1-parameter subgroup c(t) obtained in the proposition above.

Proor. If (G, p) is geodesic, then the displacement #(c(¥), c(t+5)) induces the
parallel displacement of tangent vectors from the point ¢(z) to ¢(¢+5) along the curve c.
Hence, we have

n(c(t), c(t+s)nle, c())=nle, c(t+5))
which shows the relation L ) =1. g.e.d.

On the 1-parameter subgroup c(¢) above, the inverse of c¢(f) is given by c(—1)
and this fact lead us to the following;

CorOLLARY. If (G, p) is geodesic, then it has the left inverse property.

§3. Geodesic preserving changes of analytic loops

Let (G, p) be a connected analytic loop with the canonical connection /7 and S, R
the torsion and the curvature tensor fields of /. In what follows, we assume that
the analytic loop (G, u) is geodesic. Then, by the corollary to Prop. 2.5, (G, p) has
the left inverse property and its tangent Akivis algebra is reduced to {6; S, (1/2)R,}
because the Chern’s formula dL(X, X)=0 holds (cf. [11]).

Now, suppose that the multiplication u on G is changed for a geodesic analytic
loop (G, ') with the same unit e, every geodesic of 7 being a geodesic of the canonical
connection P’ of (G, u') too. Such a change will be called a geodesic preserving
change of loops. Let S’ and R’ be the torsion and the curvature of /', If we set
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TX, V)=PyY—F'yY

for any vector fields X, Y, then, we have a (1, 2)-tensor field T on G and it is skew-
symmetric since the change of the loop is geodesic preserving. Let {®; [X, Y7,
(X, Y,Z)} denote the tangent Akivis algebra of the new loop (G, u’). The
formulas (1.6) and (1.7) in Prop. 1.1 show the relations between the Akivis
algebras; i.e.,

(3.1 [X, Y]=[X, Y] -2T(X, Y),

(3.2 X, Y, Z)=UX, Y, Z)' + T([X, YT, Z2)- T(X, T(Y, 2))
+ Y, T(X, 2)—(F'xT)(Y, 2)+(F'yT)(X, Z).

In the following, we consider the case where the geodesic loop (G, u') obtained
is homogeneous. Then the Akivis algebra of (G, y') is reduced to the tangent Lie
triple algebra of (G, u'), that is;

TueoReM 3. Let (G, u) be an analytic geodesic loop on a connected and simply
connected analytic manifold G. Assume that (G, u) is changed for an analytic
geodesic loop (G, ') by a geodesic preserving change. Let V (resp.V') denote
the canonical connection of (G, p) (resp.(G, 1)) and T the (1, 2)-tensor field on G
given by T=V —7".

If T gives an affine homogeneous structure of V, then (G, ') is a homogeneous
loop with the tangent Lie triple algebra {&; [X, YT, [X, Y, Z]'} given by

(3.3) [X, Y] =[X, Y]+2T(X, Y),
(3.4) [X, Y, Z)=XX, Y, Z)-T([X, Y], 2)-2T(T(X, Y), Z)

+ Te(Xs Te(Ya Z))_ Te(Ys Te(X9 Z)),

where [X, Y] and [X, Y, Z1=2{X, Y, Z)' are the operations induced from the
tangent Akivis algebra of (G, u'). Moreover, the torsion S and the curvature R
of V are V'-parallel tensor fields on G.

Conversely, if (G, p') is a homogeneous loop and if the torsion tensor S of V is
V'-parallel on G, then the tensor field T=F —V' is an affine homogeneous structure
of V. In this case, the tensor field T is completely determined by the equation (3.3)
above. '

ProOF. Suppose that the tensor field T is an affine homogeneous structure of
V. By Corollary to Proposition 2.4, the connection F is complete and Theorem 1
can be applicable to (G, F/). We see that (G, F’) is a reductive homogeneous space
A/K with the canonical connection F'. If we choose the unit e as the origin of G=
A[K, then the geodesic local loop of A/K is coincident with that of (G, ') and the
ternary system »’ associated with (G, p') satisfies (2.5) and (2.6) in a neighborhood of e.
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Since #' is analyiic and G is assumed to be connected, these equations are valid on
the whole manifold G, that is, the geodesic loop (G, ') is homogeneous. The equations
7'T=0 and (3.1), (3.2) imply the relations (3.3) and (3.4) of the tangent Akivis algebras
of (G, p) and (G, i'). By Proposition 1.3 we see that the torsion § and the curvature
R of F is parallel with respect to /'.

Conversely, .assume that the geodesic loop (G, ') be homogeneous. In [e],
we have shown that G is a reductive homogeneous space A/K with the canonical con-
nection ', where the isotropy subgroup K is a Lie group generated by all left inner
mappings of y'. Hence, we have F'S'=0 and F'R'=0. If, moreover, F'S=0 is
satisfied, then from S'=S+2T we get V'T=0, that is, T=F—F' is an affine
homogeneous structure of (G, 7). Since (G, ') is geodesic, the tensor field T satisfies

T(X,, Y)=1'(e, x, T('(x, e, X), n'(x, e, Y,)))

in a normal neighbourhood of e, and this is valid for all x of G since n’ is analytic on G.
Hence, we see that the tensor field T'is determined by its value at the unit e, which is
given by (3.3). g.e.d.

An analytic homogeneous loop (G, p) is said to be symmetric (cf. [8]) if the
relation

(xy) t=x"1y!

holds on G. In [8] we have shown that every connected symmetric homogeneous
loop is geodesic, and that it can be regarded as an affine symmetric space A/K with
the canonical connection. As for geodesic preserving changes of symmetric homo-
geneous loops, we have

TueoreM 4. Let (G, ) be an analytic symmetric homogeneous loop. If a
geodesic preserving change (G, it') of (G, p) is symmetric too, then p'=p.

PROOF. Suppose that there exists a geodesic preserving change (G, p') of the
symmetric homogeneous loop (G, p), and let T=F —F"' be the associated (1, 2)-tensor
field on G. Since (G, p) is symmetric, the torsion S of the canonical connection /' of
(G, p) vanishes on G, and we have §'=2T for the torsion of F". If (G, p') is symmetric
too, then §’=0and F’'=F. Two loops must be coincident because they are geodesic
at e. 4 g.e.d.

The theorem above shows that there exists no geodesic preserving change except
for the trivial change if we restrict ourselevs in the class of symmetric homogeneous
loops. Now we consider geodesic preserving changes in the wider class consisting of
geodesic homogeneous loops. In what follows we assume that the analytic manifold
G is connected and simply connected.
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DeriviTION.  Two geodesic homogeneous loops (G, i) and (G, i') given on G
are said to be geodesically equivalent if there exists a geodesic preserving change of
(G, p) for (G, i') such that the associated (1, 2)-tensor field T=F —F’ is an affine
homogeneous structure of the canonical connection F of (G, u) and —T=F'—F is
also an affine homogeneous structure of the canonical connection '’ of (G, ).

THEOREM 5. Let (G, ) and (G, p') be geodesic homogeneous loops with the
same unit e, where G is a connected and simply connected analytic manifold. Then,
they are geodesically equivalent if and only if the followings are satisfied on the
tangent space ® at e:

(3.5) T,(X, X)=0

(3.6) T(X, SLY, Z))=5/T(X, Y), Z)+ S (Y, T(X, Z))

(3.7) T(X, R(Y, ZW)=RJ(T(X, Y), Z)W+RLY, T(X, Z)W
+R[Y, 2)T(X, W)

(3.8) T(X, T(Y, Z))=T(T(X, V), 2)+ T(Y, T(X, Z))

(3.9) R(X, V)TAZ, W)=T,R(X, Y)Z, W)+ TAZ, R(X, V)W),

where T=V —V"' is the tensor field associated with the canonical connections V and
V', and where S and R denote the torsion and the curvature tensor fields of I,
respectively.

PrOOF. Suppose that two geodesic homogeneous loops (G, p) and (G, y') are
geodesically equivalent. Then, there exists a geodesic preserving change of (G, p)
for (G, ') such that T and —T are respectively affine homogeneous structures of
P and F’'. Since T'is skew-symmetric, (3.5) is clear. The torsion S and the curvature
R of IV are F-parallel because (G, u) is homogeneous. Hence, the equalities (3.6) and
(3.7) follow from (1.8) and (1.9) in Proposition 1.2. From the fact that T'is an affine
homogeneous structure of 7 and — T is that of '/, we can see that T satisfies the
equations P T=0 and /'T=0. Then, (1, 5) implies

(3.10) T(T(X, Y), Z)=T(X, T(Y, Z)- T(Y, T(X, Z))

for any vector fields X, Yand Z on G. Thus, (3.8) is obtained. Since I T=0 holds
on G, T, is invariant by any left inner mapping L, , and we get

dL(X, Y)TZ, W)=T(dL(X, Y)Z, W)+ TAZ, dL(X, Y)W).

We have seen in [10] and [11] that (2.14) in Proposition 2.3 is reduced to R (X, Y)=
2dL(X, Y) for homogeneous loops. Hence the equality (3.9) is proved.
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Conversely, assume that the equations (3.5)-(3.9) are all valid on the tangent space
® at e. The equation (3.9) implies that the bilinear form T, on ® is invariant by any
left inner mapping of (G, p). The ternary system (G, i) associated with (G, p) is
homogeneous in the sense of [9], and T, is invariant by any composition of displace-
ments of the form 5(y, e)(x, y)n(e, x). Let T be a (1, 2)-tensor field on G given by

Tx(Xx, Yx)=’7(e’ X, Te(n(x, e, Xx)’ ”(x9 €, Yx)) for xeG.
Then we have

nx, y, TX ., YN =T, G(x, y, X,), i(x, y, )

and, by Lemma of [11], we see that T is P-parallel. Since the tensor fields S and R
are 7 -parallel too, the equations (3.5)- (3.8) at e imply the following global equations;

(3.5 T(X, X)=0

(3.6) T(X, S(Y, Z))=S(T(X, Y), Z)+ 8(Y, T(X, Z))

3.7y T(X, R(Y, 2 W)=R(T(X, Y), Z) W+R(Y, T(X, Z))W
+R(Y, Z)T(X, W)

(3.8) T(x, T(Y, 2)=T(T(X, Y), 2)+ T(Y, T(X, 2))

for any vector fields X, Y, Z and Won G. From T, we can obtain a new linear con-
nection 7 =p — T on G whose torsion and the curvature will be denoted by S and E,
respectively. Taking the equation (1.5) into account, we can see that the equations
(3.8)" implies 7 T=0. By the equations (1.8) and (1.9) in Proposition 1.2 applied for
T, the equations pS=0 and pR=0 follow from (3.6) and (3.7). Hence, by
Theorem 1, we conclude that (G, ) is a reductive homogeneous space with the
canonical connection . On the other hand, since (G, p') is homogeneous too,
G can be regarded as a reductive homogeneous space with the canonical connection /.
However, the two reductive homogeneous spaces must have the same tangent Lie triple
algebra because, at the origin e,

SyX, Y)=5,X, N+2T(X, V)=5.X, Y),
R(X, Y)Z=R/(X, )Z-T(S.X, Y), Z)- T(T(X, Y), Z)
=R(X, V)Z

for any tangent vectors X, Y and Z at e. Therefore, we see that =p’ and T=T,
that is, (G, u) and (G, p') are geodesically equivalent by the affine structure T=T.
g.e.d.

ReMark. In the theorem above, if we denote by Ty (X € ) the endomorphism
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of the tangent Lie triple algebra {®; [X, Y], [X, Y, Z]} of (G, p) given by Ty Y=
T(X, Y), the equations (3.5)—(3.9) are replaced by;

TxyX =0

IlY, Z]=[TxY, Z]+[Y, TxZ]

LLY, Z, W1=[TxY, Z, W1+ [Y, TyZ, W1+[Y, Z, TyW]
[Tx, Tyl=Tryy

[X, Y, T,W]=T,[X, Y, Wl+ Tix,y,11W.

ExampPLE. Let (G, ) be a connected and simply connected Lie group. Then,

the canonical connection is reduced to the (—)-connection of E. Cartan and the
tangent Lie triple algebra is reduced to the Lie algebra of (G, u) because the curvature
tensor R vanishes identically on G. By Theorem 5 above we can see that the other
Lie group (G, u') which is geodesically equivalent to (G, ) is given by endomorphisms
Ty (X € ®) satisfying the following;

and

[6]
[71
(8]
[91

{10]

TxX =0

TxlY, Z1=[TxY, Z]+[Y, TyZ]

[Ty, Ty]=Tr,y (cf. Remark above),
Tix,v1+ Try =0 (cf. (3.4)).
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