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We shall discuss the structure of the spaces of some distinguished solutlons of the partial 

diffe_rence equation Au=qu on an infinite network. The q-Green function of the network plays 

an important role in our study. 

Imtroclwctfiom 

We shall study the partial diffe"rence equation Au-qu = O (q ~ O) on an infinite 

network. Our aim is to investigate the structure of the spaces of some distinguished 

solutions of this equation. As frJr the elliptic partial differential equation Au-qu = O 

on a Riemann surface, the investigation of this direction has been established in [1], 

[3], [4], [5] and [6]. Most of our results have counterparts in these papers. 

We say that a function u on the set X of nodes is q-harmonic (resp, q-super-

harlnonic) at x if Aqu(.x) = Au(.x) - q(.x)u(x) = O (_resp. Aqu(x) ~ o), where A is the discrete 

Laplacian. Minimum principles frJr q-harmon_ic or q-superharmonic functions will be 

studied in S2. In this paper, the energy E(u)=D(u) + ~*=x q(.x)u(x)2 of u plays the role 

ofthe discrete Dirichlet integral D(u) in [8]. With the aid of the class of energy finite 

q-harmonic f'unctions, we shall give in S3 a classification of infinite networks. The 

existence and some properties of q-Green function ~* of the network with pole at a 

will be shown in S4. We shall prove the f'u:ndamental inequality : ~x=x q(,x)~a(x) ~ 1 

This result has a counterpart in [1] and [4] ･ We shall be concerned with the equality 

~*=x q(x)~.(_x) = I and its applic~tion in S5. A similar equality will be studied in S6 

We shall list some fundamental results of the q-Green potentials in S7. The dependence 

of the q-Green function on q will be studied in S8 as in [1]. 

S 1. Prelfimimaries 

Let X be a countable set of nodes, Y be a countable set of arcs and K be the node-

arc incidence function. We assume that the graph G = {X, Y, K} is connected and 

locally finite and has no self-loop. 

A sequence {G~} (G = {X Y K} = 

) of finite subgraphs of G is called 
", 

" ", "' " an exhaustion of G if the following conditions are f'ulfilled ' 

(1.1) YcY~+1, X= U X and Y U Y*. X~ c X* + I , ~= I ~ ~= 1 
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(1.2) Y(x)={y e Y; K(x, y)~0} c Y*+1 for all x eX 

Here Y(x) is the set of arcs which are incident to node x 

Let r be a strictly positive real function on Y and q be a non-negative real function 

on X. We call the trio N(q)={G, r, q} an infinite network in this paper. We have 

studied the network N = N(O) in [7] and [8], i.e., the case where q = O. Hereafter we 

use the notation N(q) only in the case q ~ O. 

For a subgraph G' = 

 of G, we can associate subnetworks N'(q) = {G', r', q'} and N' = N'(O), where r' is the restriction of r to Y' and q' is the restriction of q to 

X'. 

For notation and terminology, we mainly follow [7] and [8] 

Denote by L(X) (resp. L(.Y)) the set of all real functions on X (resp. Y). For 

u e L(X), the (discrete) derivative du e L( Y), the (.discrete) Laplacian Au e L(X) and 

the (discrete) Dirichlet integral D(u) of u are defined by 

du(y) = - r(.y)~1 ~*~x K(.x, y)u(x) , 

Au(x) = ~y=Y K(x, y) [du(y)] , 

D(u) = ~y=Y r(y) [du(y)]2. 

In this paper, we study the discrete analogues of the well-known properties of 

the solutions of the elliptic partial differential equation Au = qu on a Riemann surface 

In order to emphasize the analogy to the continuous case, we shall omit the adJective 

"discrete" in what follows. 

We introduce the q-Laplacian Aqu e L(X) and the energy E(u) of u e L(X) as 
follows : 

Aqu(x) = Au(x) - q(x)u(x) , 

E(u) = D(u) + ~.~x q(x)u(x)2. 

We say that u e L(X) is q-superharmonic (resp. q-harmonic) on a subset A of X if 

Aqu(x) ~ o (resp. Aqu(x)= O) on A. 

S 2. Mim~EmuEm primciples 

We shall study minimum principles related to Aq. For our study, the following 

form of Au is useful : 

Au(x) = - t(x)u(x) + ~.=x t(z, x)u(z) , 

where t(z, x) = ~y=Y IK(z, y)K(x, y)lr(y)~1 for z ~ x, t(x, x) = O and t(x) = ~y=Y IK(x, 

y)lr(y)~1. Note that t(x, z) = t(z, x) and t(x) = ~.~x t(z, x). 
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REMARK 2.1. If q ~ O, then a constant function u is q-harmonic on X if and only 

if u = O. 

For x e X, denote by U(x) the set of all neighboring nodes of x, i.e.. U(x) = U {e(y) ; 

y e Y(x)}, where e(y) is the set of end nodes of y. For a subset A of X, we put U(A) = 

U {U(.x)_ ; x e A}. ~ 
THEOREM 2.1. Let X' be afinite subset ofX and let u e L(X) be q superharmon~c 

on X'. Ifu~~Oon X-X', then u~~Oon X'. 

PROoF. Suppose that m =min {u(x) ; x e X'}

u(xo) = m. Since Aqu(xo) ~o, we have 

t(xo)u(xo) ~ ~*=x t(x, xo)u(x) ~ t(xo)u(xo) + q(xo)u(.xo) , 

so that q(xo). u(xo) ~~ O. Thus q(xo) = O and u(x) =u(xo) on the set U(xo)' Similarly 

we have u(x) = u(xo) on U(U(xo))' By repeating this argument a finite number of 

times, we see that u(x) = u(xo) on U(X'). Since U(X') n (X - X') ~ ~i, we arrive at a 

contradiction. Therefore u > O on X'. 

COROLLARY. Let X' be afinite subset ofX and let u and v be q-harmonic on X' 

IJ'u ~v on X-X', then u;~v on X'. 

REMARK 2.2. Note that Theorem 2.1 also holds in case q = O. This is the usual 

minimum principle for superharmonic functions 

Let {G*}(G~ = 

) be an exhaustion of G and ~* be the function on X defined by the conditions : 

(2.1) Q~ is q-harmonic on X* 

(2.2) ~* = I on X - X* . 

The uniqueness of Q~ f'ollows from the Corollary of Theorem 2.1. The existence of 

Q~ can be shown by the aid of the optimal solution of the following extremum problem : 

(2.3) Minimize E(u) subject to u = I on X* + I ~ X* 

We see by Theorem 2.1 that O~Q~+1 ~ Q~ ~ I on X, so that the limit f'unction ~ of 

{~~} exists. It is easily seen that the function Q does not depend on the choice of an 

exhaustion of G. Note that g~ ie q-harmonic on X and O ~ ~ ~ I on X. We call ~ 

the q-harmonic measure of the ideal boundary of N(q) 

By the same argument as in the proof of Theorem 2.1, we can prove 

THEOREM 2.2. Let u be q-superharmonic on X. If u >0 on X and u(x ) O 
for some xoe X, then u(x)=0 on X. 
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REMARK 2.3. We can not expect the following property in general unless q = O : 

If u is a non-constant q-superharmonic function on X, then u does not attain its 

minimum 

Next we prove a discrete analogue of Harnack's inequality. 

THEOREM 2.3. Let a, b e X. There exists a positive constant oe depend only on 

a and b such that ee~1u(b)~u(:a)~Q(u(_b). for every non-negative q-superharmonic 

function u on. X. 

PRooF. The condition Aqu(a) ~ O implies that 

t(x, a)u(x) ~ ~*~x t(x, a)u(x) ~ [t(a)+ q(a)]u(a) , 

so that u(x)~v(x, a)u(a) with v(x, a)=[t(a)+q(a)]/t(x, a) for every x e U(a), x ~ a. 

There exists a path P f'rom a to b with Cx(P)= {xk; k=0, 1,..., n} (xo =a and x~=b) 

Then u(xk) ~ v(xk, xk_1)u(xk_1) f'or eacll k, so that u(b) ~ c(_b, a)u(a) with c(b, a)= 

nk=1 v(.xk, xk_i). Taking ce=max [c(a, b), c(b, a)], we see that c~ satisfies our 

requirement . 

We say that u e L(X) vanishes at the ideal boundary if for any 8 > O, there exists 

a finite subset X' of X such that lu(x)1 

THEOREM 2.4. Ifu is q-harmonic on X alrd vanishes at th,e ideal boundal'y, then 

u =0 on X. 

PRooF. For any 8 > O, there exists a finite subset X' of X such that u(x)1

X-X'. Consider an exhaustion {G~}(G~=
) of G. There exists no such that X' c X* for all n _> no' We have lu(x)1 ~ e~,,(x) on X f'or all n ~~ no by Theorem 2.1, 

so that lu(x)1 ~8g~(x) ~8 on X. Thus u =0 on X. 

THEOREM 2.5. Let X' be afinite subset ofX, (p eL(X) and let u and v sati"',fy the 

equations: Aqu=Av=q) on X'. If(p~O on X' and ifv~u~~O on X-X', then v~u on 

X. 

PRooF. By Theorem 2.1, u ~~O on X. Put f=v-u. Then Af= -qu ~o on X' 
andf ~:O on X-X'. We have f ~:O on X by Theorem 2.1 with q=0. 

S 3. The spaces E(IVl(q)) am~ Eo(N(q)) 

Let us introduce some spaces of f'unctions on X : 

Lo(X) = {u e L(X) ; {x e X; u(x) ~ O} is a finite set} , 

E(N(q)) = {u e L(X) ; E(u) 

D(N) = {u e L(X) ; D(u) 
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　　　　　　　　　風榊））＝｛秘∈L（X）；4：OonX｝・

Need1ess　to鋤y，we　have五〇（X）⊂週（1V（g））⊂抄（1V）．

　　In　case　g≠O，we　see　eas11y　that夙1V（q））1s　a　H11bert　space　w1th　respect　to　the

1nner　product

　　　　　　　　　　　　　亙（秘，0）＝刀（秘，0）十Σ。、X四（X）幽（X）砂（X），

where抄（〃，o）＝Σγ、ゼ（γ）［伽（γ）］［加（γ）］玉s　the　Dエrヱch1et㎜u加a11耐egra1of幽触d秒

Denote　by亙o（1V（g））the　dosure　ofLo（X）in週（W（σ））with　r鯛pect　to　the　nor㎜［亙（幽）］1／2

and－by⑳o（W）砒e　dos皿re　of　Lo（X）with　respect　to　the　nor㎜［抄（秘）十ω（わ）2］112，whe鵬

みis　a倉xed＝node　of　X．

　　Wesha11wr並eW∈0Gif抄（1V）：抄o（1V），orequiva1ent1y1∈抄o（W）（cf［7］、［8］）。

　　丁旺E0REM3．1．　亙o（1V（α））＝抄o（N）n亙（1V（g））．

　　晦o0F　S1nce亙。（1他））⊂亙（N（9））and盈。（1V（α））⊂⑳。（1V），wehave亙。（1V（留））⊂

⑳o（1V）∩亙（1V（q））．　To　prove　the　converse　reヱ誠ion，1et肋be　an　e1e二触ent　of遡o（W）∩

亙（1V（α））　Then　there　ex1sts　a　sequence｛九｝m五〇（X）su，ch　that0（μ＿九）→O跳弼→◎○，

九（x）converges　pointwise　to狽（x）and1九（x）1≦1μ（x）l　on　X．　SinceΣx，x2（x）μ（x）2くo○，

we　see　thatΣx，x　g（x）［〃（x）＿エ，（x）］2→O　as弼→oo．　Thus五（〃＿ズ，）→O鵬η→oo，i．e．、

ω∈亙o（1V（唖））　Th1s　co血p1etes　the　proof

　　C0R0LLA鼠Y1　4ア！V∈0G、肋醐亙o（N（q））＝週（1V（g））

　　RR00F．　亙W∈0G，then　抄o（W）＝抄（W），so　此at亙o（1V（宮））＝迦（！V）n亙（！V（唖））⊃

亙（1V（q））　by　Theore皿ユ31　　Hence亙o（1V（g））＝亙（1V（g））

　　Theconye鵬of伽sres批does皿ot血o1dingen鋤1．肋twehaye

　　C0R0LLARY2　λ88〃榊θ肋〃Σ其、x哩（x）くo○　τ加碓　W∈0G　ヴα弼∂　o〃γ　び
亙。（W（9））＝週（W（q））。

　　RR00F．　Assu血e　th＆t亙o（W（g））＝週（N（q））．　Since　Σx，x　q（x）＜ooヲwe　h＆ve　1∈

亙（W（g））：盈o（！V（哩））⊂抄o（W）．　Th鵬亙ε0G．

　　In　c鯛eα≠O，we　introd鵬e砒e　fouowing　distingu五8hed醐bspac鑓of屈てW（唖））二

　　　　　　盟砂（N（2））＝風凧匂））∩扱（W），盟亙（N（9））：興V（9））n盈（1V（q））．

　　　　　　石ゼ盈（1V（g））＝｛〃∈瑠（1V（唖））；μis　bounded　on　X｝．

It　is　easi1y　seen　th＆t盟週（！V（唖））⊂盟抄（！V（9））and　that　盟亙（！V（2））　is　＆　c1osed　subsp組ce

of　the　Hi1bert　space週（N（哩））。

　　L醐1MA3↓盟亙（！V（唖））ねす加o肋ogoηo1co榊ψ榊弼彦ψ亙。（N（留））肋風N（唖））。
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PRooF. For feLo(X) and h e HE(N(q)), we have 

E(f, h)= D(f, h) + ~*~x q(x)f(x)h(x) 

= - ~*=x [A h(x)] f(x) + ~*=x q(x)f(x)h(x) 

~*=x [Aqh(x)] f (x) = O, 

so that E(.v, h) = O for every v e Eo(N(q)) and h e HE(N(q)). Conversely, suppose 

that h e E(N(q)) satisfies E(v, h) = O fcJr all v e Eo(N(q)). Let e* be the characteristic 

function of the set {x}. Since e* e Lo(X) and E(e*, h) = - Aqh(x), it follows that h e 

HE(N(q)) . 

By a standard argument, we obtain 

THEOREM 3.2. Every u e E(N(q)) is uniquely decomposed rnto u v+h w~th 
v e Eo(N(q)) and h e HE(N(q)). 

COROLLARY' HE(N(q)) = {O} if and only If Eo(N(q)) = E(N(q)) 

THEOREM 3.3. If inf {q(x); x e X} >0, then HE(N(q))={O}. 

PRooF. Let /'7 e HE(N(q)) and put c = inf {q(x) ; x e X}. Then 

c ~*~x h(x)2 ~ ~*=x q(x)h(x)2 ~ E(h) 

so that h vanishes at the ideal boundary. Thus h = O by Theorem 2.4 

The following result is due to Maeda [2] : 

THEOREM 3'4' If N e OG, then HD(N(q)) = {O} 

PRooF. Let u e HD(N(q)). Since N e OG, there exists a sequence {f~} such 

that f* e Lo(X), o ~f~ ~ I on X. D(f~)-O as n-oo and f~ converges pointwise to 1. 

For a positive integer m, we put u~(x) = max { - m, min [u(x), m]}. Since u~f~ e 

Lo(X), we have by Lemma 3.1 

(3. 1) O = E(u~ f., u) = D(u~ f~, u) + ~*=x q(x)u~(x). f.(x)u(x) . 

For y e Y, put e(y) = {a(y), b(y)} (the end of J')' Then 

(du~ f.) (y) =f.(b(y)) [du~(y)] + u~(a(y)) [df.(y)] , 

(3.2) D(u~f,, u) = ~y=Y r(y)f~(b(.y)) [du~(y)] [du(y)] 

+ ~y~Y r(y)u~(a(y)) [df.(y)] [du(y)] . 

We have 

I ~y=Y r(y)u~(a(y))[df.(y)] [du(y)] I ~ mD( f~)i /2D(u)1 /2 _ O 
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as n -> oo . Note that [du~(y)] [du(y)] ;~ O for all y e Yand that ~.=x q(x)u~(x)f~(x)u(x) 

~ O. We deduce from (3.1) and (3.2) that 

~y=Y r(y) [du~(y)] [du(y)] O 

and hence [du~(y)][du(y)] = O for every y e Y. Since this is true for any m > O, we 

conclude that du(y) = O on Y, or u is a constant function. Thus u = O by Remark 2.1 

S4. q=Greem fmmctiom 

In case q ~ O, we say that a function u e L(X) is the q-Green f'unction of N(q) 

with pole at a e X if it satisfies the condition 

(4.1) u e Eo(N(q)) and Aqu(x)=-8.(x) on X, 

where e~(x) = O if x ~ a and 8.(a)= I . The uniqueness of the q-Green function follows 

from Lemma 3.1. Hereaft_er we denote by ~. the q Green function of N(q) wrth 

pole at a. The existence of g~ is assured by 

THEOREM 4 1 There exlsts a unique q-Green function ~~ of N(q) with pole at a. 

PRooF. There exists b e X such that q(b) > O. For any x e X, we can find a 

constant M* such that lu(x)1 ~ M*[D(u) + Iu(b)12]l/2 for all u e D(N) (cf. [7]). Let 

M~=M*[1+q(b)-1]l/2. Then we have lu(x)l~M~[E(u)]l/2 for all u e E(N(q)). 
Therefore u(a) is a continuous linear functional on both Eo(N(q)) and E(N(q)) 

for every a e X. By F. Riesz's theorem, there exists a reproducing kernel (p. of 

Eo(N(q)), i.e., ep. e Eo(N(q)) and 

(4 2) E(q)., u) = u(a) for every u e Eo(N(q)) . 

Smce e* e Eo(N(q)), we have by (4.2) 

8*(a) = D(e*, q).) + ~.=x q(z)s*(z)ep.(.z) 

= - A ep.(x) + q(x)ep.(x) = - Aqep.(x) 

Namely q). is the_ q-Green fu..nction of N(q) with pole at a. 

COROLLARY. ~.(a)=E(g*) > O 

REMARK 4.1. In case q = O, the harmonic Green function g. of N with pole at a 

is defined by the condition ' 

(4.3) g. e Do(N) and Ag.(x)=-s.(.x) on X. 

The harmonic Green function g. exists if and only if N ~ OG (cf'. [8]) 

By (4.2), we obtain the following fundamental properties of ~~ : 
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THEOREM 4 2. ~*(x)=~*(a) for every a x e X 

LEMMA 4.1. The function a=~*/~.(a) is the unique optilnalsolution of the 

extremum problem : 

(4.4) Minimize E(u) subject to u e Eo(N(q)) and u(a)=1. 

Let Tbe a normal contraction of the real line R, i.e., I T~'1 - T.'21 ~ Isl - s21 for every 

sl' s2 e R. For every u e L(X), we define Tu e L(X) by (Tu)(x) = Tu(x) f'or x e X 

Since D(Tu) ~ D(u) and ~*~x q(x)(Tu(x))2 ~ ~*~x q(x)1='4(x)2, we have E(Tu) ~ E(u) fcJr 

every u e E(N(q)). In our study, we often use the f.rJllowing normal contractions 

(1) T~'= Isl, (.2) T"'=max (.s. O). , (_3) T.~.=min (s, c) (c>0) 

LEMMA 4.2. Let T be a normal contraction of the real line. If u e Eo(N(q)), 

then Tu e Eo(N(q)). 

PRooF. Let u e Eo(N(q)). Then u e ~o(N) and we proved in [9] that Tu e 

Do(N). Since Tu e E(N(q)) by the above observation, we see by Theorem 3.1 that 

Tu e Eo(N(q)). 

THEOREM 4.3. O 

PRooF. Let a be the function defined in Lemma 4.1. Since E(max (a, O)) ~ 

E(a) and E(min (a, 1)) ~E(a), we have max (t~1, O) = a and min (a, 1)=a by Lemlnas 

4.1 and 4.2, and hence O ~ ~~4 ~ I on X. We see by Theorem 2.2 that tt > O on X. 

Let G'=

 be a finite subgraph of G and a e X'. The q-Green function ~L of N'(q) with pole at a is defined by the condition 

Aq~~(x)=-e*(x) on X' and ~~(x)=0 on X-X'. (4.5) 

The existence and uniqueness of the q-Green function of N'(q) can be shown by the 

standard argument as above, Note that ~~ is characterized by the relation ' 

(4.6) E(u, ~~)=u(a) f'or all ueL(X) such that u=0 on X-X'. 

Furthermore we see that ~~i'=~~/~~(a) is the opt-imal solut_ion of the extremum 

problem : 

(4.7) Minimize E(u) subject to u(a)= I and u =0 on X -X' 

By the same reasoning as above, we obtain the f'ollowing properties of ~~ 

(4.8) ~~(x)=~~(a) f'or every a, x e X', 

(.4.9) 0

REMARK 4.2. The harmonic Green function g~ of N' with pole at a e X' is 
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defined by the condition : 

Agl(x)=-8~(x) on X' and g~(x)=0 

We have O ~ ~~(x) ~g~(x) on X by Theorem 2.5. 

THEOREM 4.4. Let {G~} (G~=
) be an exhaustion of G and a eX1 Denote by ~(') the q-Green function of N~(q) with pole at a. Then 0

g(.~+1)(x)~~.(x) on X and {~(n)} converges pointwise to ~a' 

ProoF. Put u =~(~+1)_~(n) and v=g.-~(~). Then u and v are q-harmonic 

on X~ and non-negative on X - Xn' Thus u and v are non-negative on X by Theorem 

2.1. Therefore O~~(~)(x) ~~(~+1)(x)~~.(x) on X. For In>n, we have 

E(~~n), ~(m))=~(~)(a)=E(~(') ~('))

" " "," -" E(g(~) g(')) E(g(m))_2E (~(b~), ~('))+E(~(~)y 

= E(~(m)) _ E(~(~)). 

It f'ollows that {~(~)} is a Cauchy sequence in the Hilbert space Eo(N(q)). There 

exists fe Eo(N(q)) such that E(~(')-f)~'O as n->ao. Since {~(')} converges point-

wise to f, we see that Aqf(x) = - 8.(x) on X, so that f= ~.. 

COROLLARY. E(~(')-~.)->0 as n->00 

THEOREM 4.5. ~*~x q(x)~a('x) ~ I . 

PRooF. Let f~ be the characteristic function of X.. Since A ~(~)(x) = q(x)~(')(x) 

- e.(x) on X*, we have 

~x=x q(x)g(~)(x) I + ~x=xf.(x) [Ag(n)(x)] I D(f., g(~)) 

Denote by Z. the set of all y e Y which connects X. and X - X., i.e., y e Z~ if and only 

if e(y)={x, x'} with x e X~ and x' e X - X~. For y e Zn' Iet x(y) be the node such 

that x(y) e e(J7) and x(y) e X.. We have frJ'r y e Z* 

dJ'~(y) = - r(y)~1K(x(y), y) , 

d~(.~)(y) = - r(y)~1K(x(y), y)~(n)(x(y)) , 

so that 

p(f~, ~(~)) = ~y~Y r(y) [dfn(y)] [d~(-~)(y)] 

= ~y~Y r(y)~ IK(x(y), y)2~ (~)(x(y)) > o 
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Thus ~.=x q(x)~(')(x) ~ 1. 
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Our assertion follows from Theorem 4.4. 

S 5. The eqwality ~.~x q(x)g*(x) = 1 

We are concerned with the inequality in Theorem 4.5 

LEMMA 5.1. Let {G*} (G~=
) be an exhaustion of G and ~~ be the functron defined rn S2, I e Q Is q harmonlc on X and g2*=1 on X-X~. Then 

~~(x) = I - ~ .=x~ q(z)~(~)(x). 

PRooF. Put u(x) = I - ~.=x~ q(z)~(~)(x). For x e X*, we have 

A u(x) A 1(x) - ~.~x. q(z)Aq~~")(x) 

= - q(x) - ~.=x. q(z) [ - 8.(x)] = O 

Since ~(')(x) = O f'or every x e X - X* and z e X*, we see that u I on X X Thus 

u = g~~. 

By Theorem 44 and Lemma 4.1, we obtain 

THEOREM 5.1. Let ~ be the q-harmonic measure of the ideal boundary of N(q) 

Then Q(x) = I - ~.=x q(z)~.(x). 

THEOREM 5.2. Q=0 if and only if HB(N(q)) = {O}. 

PRooF. Let u e HB(N(q)) and lu(x)l-

2.1, we have lu(x)1 ~ c~~(x) on X, and hence lu(x)1 ~ cS2(x) on X. Thus ~ =0 implies 

HB(N(q)) = {O}. Since ~ e HB(N(q)), the converse is clear. 

By Theorems 5.1 and 5.2, we have 

THEOREM 5.3. ~.=x q(z)~.(x) = I for all x e X if and only if HB(N(q)) = {O} 

REMARK 5.1. If ~.~x q(z)~.(a)=1 f'or some a e X, then we see by Theorem 2.2 

that ~.~x q(z)~.(x) = I for all x e X. 

THEOREM 5.4. If N e OG, then ~.=x q(z)~.(a)= I for every a e X. 

PRooF. Since N e OG, there exists a sequence {f~} in Lo(X) such that O ~ f~ ~ I , 

D(f~)~O as n->00 and {f~} converges pointwise to I (cf. [7]). We have 

~.=xf~(z)q(z)g (z) ~.=xf~(z) [Ag (z) + e (z)] 

= - D(f~, ~~) +f~(a) . 

Since O ~ f.(z) ~ I on X and ~.~x q(z)g*(z) ~ 1, we obtain 
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lim~+* ~.=x f (z)q(z)~*(z) = ~.~x q(z)g (z) 

On the other hand, we hav~ 

ID(f~, ~.)1 ~D

Thus we obtain the desired equality. 

By Theorems 5.3 and 5.4, we obtain 

THEOREM 5.5. If N e OG, then HB(N(q)) = {O} 

This result has a counter part in [2] and [4] -

We give an example which shows HB(N(q)) ~ {O} : 

EXAMPLE 5.1. Let us consider the infinite graph G -- {X, Y, K} shown as in the 

frJllowing figure, where X= {x*; n =0, 1, 2,...} and Y= {y~; n = 1, 2,...} : 

v~+1 o-=~y* 0=->y2 o-=~,y3 o->0->0-=>y~ 0==>0-~0--~ 

xo xl x3 x* x~+1 x2 

Here K(x~, y*) = I and K(x~_1, y~) = - I for every positive integer n and K(x, y) = O 

for any other pair. Let q e L+(X), q ~ O and let r e L(Y) be strictly positive. Then 

N(q) = {G, r, q} is an infinite network. For simplicity, we put q~=q(x*), r~ = r(y~), 

u* = u(x~) and w~ = - du(y~) = r~1(u~ - u*_ 1)' 

Note that Au(xo) = wl and Au(x~) = w~+1~w~ for n ~ 1. Thus u e H(N(q)) mplles 

that wl = qouo and w*+1 ~ w~ = q*u~. It follows that 

u~+ I = u~ + r~+ I ~~=0 qkuk 

for n>0 In case u >0 we have u*+1>u ~:uo, so that 

u~+0e~uo~u*+1~(1+ee*)u* with ee*=r~+1 ~~=0 qk. 

Theref'ore (1 + ~k=0 oek)uo~u~+1~[nk=0 (1+0ek)]uo' It is well-known that {nk=0 

(1+0(k)} converges if and only if ~ k=0 c~k " 
only if ~k"=0 clek 

result. Since u0>0 implies u~>0 for all n, we conclude that HB(N(q)) ~ {O} if and 

only if ~ k"=0 ock 

(1) r I and q*=1. In this case ee~=n+1 and ~k=0 oek=00 " 

(2) r 2 and q I In this case G~~=(n+1)2-(~+1) and ~k"=0 c~k
(3) r.=2~" and q*=2". In this case oz~=1-2-(~+1) and ~k"=0 eek=00 

Note that N e OG in (1) and that N ~ OG in (2) and (3). 

S ~. The case where HE(N(q))={O} 

We introduce the reproducing kernel of E(N(q)). Let a e X Then u(a) rs a 
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continuous linear functional on E(N(q)) (cf. the proof of Theorem 4J). By F. 

theorem, we can find a unique k. e E(N(q)) such that 
Riesz 's 

(6.1) E(k., u) u(a) for every u e E(N(q)) . 

The following properties of k. can be shown by the same reasoning as m S4 

(6.2) Aq~.(x)=-e.(x) on X. 

k~.(b)=k~b(a) for every a, b e X. (6.3) 

(6.4) O~~.(x)~~.(a) on X. 

THEOREM 6.1. O 

PRooF. Let {G.} be an exhaustion of G and let ~(･) bc the q-Green function of 

N~(q) with pole at a. We have g(')(x) ~ k~.(x) on X by Theorem 2.1 and hence 

g.(x) _
In order to obtain more fine properties of k., we consider an exhaustion {G.} (G. = 

) of G and the quantities D~(u, v), E.(u, v) and E.(u) defined by 

D.(u , v) = ~ y~Y~ r(y) [du(y)] [dv(y)] , 

E~(u, v) = D.(u, v) + ~.=x~ q(x)u(x)v(x), E~(u) = E.(u, u) . 

Let a e X. and q ~ O on X~. Then L(X~) is a Hilbert space with respect to the inner 

product E~(.u, v). Thus there exists a unique k~(")eL(X~) such that 

(6.5) E~(k~(') u)=u(a) for every u e L(.X.) . 
", 

We can show the frJllowing properties similarly 

(6.6) A(")k(*)(x)=-8.(x) on X*, 

where A (~)u(x) = ~y=Y. K(x, y)[du(y)] - q(x)u(x) and this is the q-Laplacian of u e 

L(X.) on the network N.(q). 

(6.7) ~(~)(b)=k~")(a) for every a, b e X 

(6.8) o~~(~)(x) ~ ~(~)(a) on X~ . 

LEMMA 6.1. ~.~x~ q(x)k(~)(x) = 1. 

PReoF. Since I e L(X~) and dl(y)=0 on Y., we have by (6.5) 

1 =E.(k~"), 1)=D (k(~) 1)+~*=x q(x)k(')(x) 

n*' ~ = ~*~x~ q(x)k( )(x) 
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LEMMA 6.2. k(~)(x)~k.(x) as n->00 for each x e X. 

PRooF. For m ~ n ~ j, we have E.(k(""), k(~)) = k(~)(a) and 

(6.9) Ej(k (~) - k (~)) ~ E~(k (~) - k(~)) 

E (k( )) 2E (k~"), k(~))+E.(k(~)) 

~ ~ (')(a) - 2~ (~)- (a) + E~(~ (~)) 

= ~ (')(.a) - k(~)(a) 

It follows that {~(･~)(a)} is a decreasing sequence, so that the restriction of k(~) to Xj 

converges pointwise to a fu_nction ti on Xj. Since j is arbitrary, we obtain a f'unction 

a e L(X) such that Aqa(.x) = - 8.(x) on X and 

E (a - ~(')) = Iim E (k(~) - ~(')) /__ k~(')(a) - t~i(a) . (6. 10) 

" " ~+" " " " " 
Since E~(a-k(~))=E.(~)-2t~1(a)+~(･~)(a), we have E.(a) ~ ~(a) by (6.10), so that 

E(a)=1im*+* E*(ui) ~ ti(a)

for every v e E(N(q)). For any e > O, there exists no such that E.(a-~(~)) 

all n ~ no by (6.10). Since E~(.a, v)~'E(a, v) as n~'oo, there exists ni such that IE.(a, v) 

-E(~, v)1 

IE(a, v)-v(a)1 = IE(a, v)-E~(k~"), v)l 

~ IE.(.a, v) -E(a, v)1 + IE~(ti - ~~"), v)l 

~ e + [E.(~ - k ('))] I /2[E.(v)] 1/2 

_

Since 8 is arbitrary, we have E(.~, v) = v(a), and hence a = k* 

By Lemmas 6.1 and 6.2, we obtaln 

THEOREM 6.2. ~*=x q(x)k*(x) ~ I for every a e X 

THEOREM 6.3. If HB(N(.q)) = {O}, then HE(N(q)) = {O}. 

PRooF. Suppose that HB(N(q)) = {O}. Then q ~ O and ~*=x q(x)~.(x) = I by 

Theorem 5.3, so that q(.x)[k*(x) - ~.(x)] =0 by Theorems 6.1 and 6.2. It follows 

from Theorem 2.2 that k*(x) = ~*(x) on X for every a e X. Let h e HE(N(q)). For 

any a e X, we have by Lemma 3.1 

h(a)=E(k., h) =E(~., h) =0. 

Namely HE(N(q)) = {O} 
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THEOREM 6.4. Assume that ~*=x q(x)

are equivalent : 

(a) NeOG. 
(b) HB(N(q)) = {O}. 

(c) HE(N(q)) = {O}. 

PRooF. by Theorems 5.5 and 6.3, we see that (a) implies (b) and that (b) implies 

(c) without the assumption ~*=x q(x) 

Eo(N(q)) = .-F(N(q)) by the Corollary of Theorem 3.2, and hence N e OG by the 

Corollary 2 of Theorem 3.1. 

REMARK 6.1. In case ~*~x q(x) = oo, HE(N(q)) = {O} does not imply HB(N(q)) 

= {O} in general. In fact, consider the network defined in Example 5.1 and let u be 

q-harmonic on X with u(xo) > O. Then we have u(x~+ 1)~~(1 + a*) ~: u(xo)' so that E(u) 

> ~*~x q(x)u(x) > ~*=x q(x)u(xo)2 = oo. Hence HE(N(q)) = {O}. On the other 
hand, we can choose r and q in such a way that HB(N(q)) ~ {O} . 

S 7. q-Greem potentials 

We define the q-Green potential Gp of /1 e L+(X) and the mutual q-Green potential 

energy G(u, v) of p, v e L+(X) by 

Gll(x) = ~ .=x ~~(x)//(x) , 

G(//, v) = ~ *=x [rJ~p(x)] v(x) . 

We call G(//, p) the q-Green potential energy of //' Let us put 

M(.G) = {/1 e L+(X) ; Gp e L(.X)} , 

E(G)= {p e L+(X); G(//, 'l)

Denote by SH+(N(q)) the set of all non=negative q-superharmonic f'unctions on X. 

We list the following results that can be proved by the same reasoning as in the 

case where q = O (cf'. [8]) : 

LEMMA 7.1. AqG//= -llfor every peM(G). 

THEOREM 7.1 (Riesz's decomposition). Every u e SH+(N(q)) can be decomposed 

uniquely in the form: u=Gp+h, where peM(G) and h is non-negative and 
q-harmonjc on X. In this decomposition, p= -Aqu and h is the greatest q-harmonic 

minorant of u. 

LEMMA 7.2. If // e E(G), then G// e Eo(N(q)) and E(Gp) = G(p, p). 
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Denote by P(N(q)) the subset of Eo(N(q)) which consrsts of q superharmomc 
functions on X, i.e., 

P(.N(q)) = {u e Eo(N(q)); Aqu(x) ~o on X} . 

THEOREM 7.2. P(N(q)) = {~p; /1 e E(G)}. 

As an application of the above theory, we obtain another proof which shows 

that (b) implies (a) in Theorem 6.3. 

THEOREM 7.3. If ~*=x q(x)

PRooF. Assume that HB(.N(q)) = {O}. Then ~==x q(z)~.(x) = I f'or every x e X 

by Theorem 5.3. Let us put v=~==x q(z)g.(x). Then v=G,l with //=-Aqv =qe 
L+(X) and ~(//, //)=~.~x q(x)

Lemma 7.2 and Theorem 3.1. Therefore I e Do(N) and hence N e Oc 

S 8. Depemdemce of tlne q-Greem functiom om q 

In order to study the dependence of the q-Green function ~* of the network N(q) 

on q, denote it by g(q) in this section. 

THEOREM 8 1 Let ql, q2 eL+(X). If q 

(8.1) g(q )(x)-g(q.)(x)= ~.=x [q2(z) q (z)]g(q )(z)g(q )(z) 

PRooF. Let {G~} (.G~ = 

) be an exhaustion of G and let a, x e X*. Denote by u~ the q 1-Green function of N~(q 1) with pole at a and by v~ the q2-Green f'unction 

on N~(q2) with pole at x. Then we have by (4.6) 

u*(.x) = D(u~, v~) + ~.ex q2(x)u~(z)v~(z) , 

v*(.a) = D(u., v~) + ~.~x q 1(z)u~v~(z) , 

so that 

(8.2) u~(x) - v~(a)=~.._x [q (z) q (z)]u (z)v (z) 

Since ql~q2 on X and {u.} and {v~} increase to ~(q,) and g(q2) by Theorem 4.4, 

we obtain (8.1) by letting n->0o in (8.2). 

COROLLARY 1. If q2;~qi~~O, then ~(ql)(x) ~~ ~(q2)(x) on X. 

COROLLARY 2. If N ~ OG, then 

(8.3) g.(.x) - ~(q)(x) = ~ =x q(x)g (z)g(q)(z) 

THEOREM 8.2. If {q.} increases to q, then {~(.q~)} decreases to ~(q). 
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PRooF. Put un=~(q')' v=~(q) and u=~(q). We have by Theorem 8.1 

o ~ u.(x) - u(x) = ~.~x Eq(z) - qn(z)]u~(z)v(z) 

Since {[q(z) - q*(z)]u*(z)} decreases to O for all z, we have the assertion. 
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