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We shall discuss the structure of the spaces of some distinguished solutions of the partial
difference equation Ju=qu on an infinite network. The ¢g-Green function of the network plays
an important role in our study.

Introduction

We shall study the partial difference equation du—qu=0 (¢>0) on an infinite
network. Our aim is to investigate the structure of the spaces of some distinguished
solutions of this equation. As for the elliptic partial differential equation du—qu=0
on a Riemann surface, the investigation of this direction has been established in [1],
[3], [4], [5] and [6]. Most of our resulis have counterparts in these papers.

We say that a function u# on the set X of nodes is g-harmonic (resp. g-super-
harmonic) at x if 4,u(x) = du(x)— q(x)u(x)=0 (resp. 4,u(x) <0), where 4 is the discrete
Laplacian. Minimum principles for g-harmonic or g-superharmonic functions will be
studied in §2. In this paper, the energy E(u)=D(u)+ 3 ..y ¢(x)u(x)? of u plays the role
of the discrete Dirichlet integral D(u) in [8]. With the aid of the class of energy finite
g-harmonic functions, we shall give in §3 a classification of infinite networks. The
existence and some properties of g-Green function §, of the network with pole at a
will be shown in §4. We shall prove the fundamental inequality: X",y g(x)J (x)<1.
This result has a counterpart in [1] and [4]. We shall be concerned with the equality
> ex 4(x)d,(x)=1 and its application in §5. A similar equality will be studied in §6.
We shall list some fundamental results of the g-Green potentials in §7. The dependence
of the g-Green function on g will be studied in §8 as in [1].

§1. Preliminaries

Let X be a countable set of nodes, Y be a countable set of arcs and K be the node-
arc incidence function. We assume that the graph G={X, Y, K} is connected and
locally finite and has no self-loop.

A sequence {G,} (G,={X,, Y,, K}=<X,, Y,») of finite subgraphs of G is called
an exhaustion of G if the following conditions are fulfilled:

(11) XnCXn+1a YnCYn+1’ X=U;1.0=1Xn and Y=U:0=1 Y;l
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(1.2) Y(x)={yeV; K(x, y)#0} <Y, ., for all xeX,.

Here Y(x) is the set of arcs which are incident to node x.

Let r be a strictly positive real function on Yand g be a non-negative real function
on X. We call the trio N(q)={G, r, q} an infinite network in this paper. We have
studied the network N=N(0) in [7] and [8], i.e., the case where ¢=0. Hereafter we
use the notation N(gq) only in the case g0.

For a subgraph G'=<{X’, Y'> of G, we can associate subnetworks N'(q)={G’, ',
q’} and N'=N'(0), where r’ is the restriction of r to Y’ and ¢’ is the restriction of g to
X'

For notation and terminology, we mainly follow [7] and [&]. ,

Denote by L(X) (resp. L(Y)) the set of all real functions on X (resp. Y). For
u e L(X), the (discrete) derivative du € L(Y), the (discrete) Laplacian due L(X) and
the (discrete) Dirichlet integral D(u) of u are defined by

du(y)=—r(y)™! X ex K(x, y)u(x),
Au(x)= Zyel’ K(xa y) [du(y)] 5
D(u)= % ey 1(y) [du(y)]>.

In this paper, we study the discrete analogues of the well-known properties of
the solutions of the elliptic partial differential equation du=qu on a Riemann surface.
In order to emphasize the analogy to the continuous case, we shall omit the adjective
“discrete’” in what follows.

We introduce the g-Laplacian 4,u e L(X) and the energy E(u) of ue L(X) as
follows:

Aqu(x) = Au(x) - Q(x)u(x) ’
E(u)=D(u)+ X xex 9(x)u(x)>.

We say that u e L(X) is g-superharmonic (resp. g-harmonic) on a subset 4 of X if
A,u(x) <0 (resp. 4,u(x)=0) on A.

§2. Minimum principles

We shall study minimum principles related to 4,. For our study, the following
form of Au is useful:

Au(x)= —10)u(x) + 2 .ex Uz, X)u(2),

where 1(z, x)= 2,y |K(z, )K(x, p)|r(y)~! for z#x, t(x, x)=0 and #(x)= 2,y |K(x,
»Ir(y)~1. Note that #(x, z)=1(z, x) and H(x)= 2 ,x (2, X).
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ReEMark 2.1. If ¢#0, then a constant function u is g-harmonic on X if and only
if u=0.

For x € X, denote by U(x) the set of all neighboring nodes of x,i.e., U(x)= U {e(y);
y € Y(x)}, where e(y) is the set of end nodes of y. For a subset 4 of X, we put U(4)=
U{U(X); xe 4}.

THEOREM 2.1. Let X' be a finite subset of X and let u € L(X) be g-superharmonic
onX'. Ifu>0on X—X', thenu>0on X'.

PrOOF. Suppose that m=min {u(x); xe X'} <0. There exists x,€ X’ such that
u(xo)=m. Since 4,u(x,)<0, we have

1(x)u(x0) < T rex H(X, Xo)u(x) <txo)u(xo) + q(xo)u(xo)

so that g(xo)u(xo)=>0. Thus g(x)=0 and u(x)=u(x,) on the set U(x,). Similarly
we have u(x)=u(x,) on U(U(x,)). By repeating this argument a finite number of
times, we see that u(x)=u(x,) on U(X’). Since U(X')n(X—X")#0, wearrive at a
contradiction. Therefore u>0 on X'

COROLLARY. Let X' be a finite subset of X and let u and v be g-harmonic on X'.
Ifu>zvon X—X', then u>v on X'.

ReMARK 2.2. Note that Theorem 2.1 also holds in case g=0. This is the usual
minimum principle for superharmonic functions.

Let {G,}(G,={X,, Y,>) be an exhaustion of G and &, be the function on X defined
by the conditions:

2.1 Q, is g-harmonic on X,,.
2.2) Q,=1on X—-X,.

The uniqueness of ©, follows from the Corollary of Theorem 2.1. The existence of
Q, can be shown by the aid of the optimal solution of the following extremum problem:

(2.3) Minimize E(u) subject tou=1on X,,.,—X,.

We see by Theorem 2.1 that 0<Q,,,<2,<1 on X, so that the limit function @ of
{Q,} exists. It is easily seen that the function © does not depend on the choice of an
exhaustion of G. Note that Q is g-harmonic on X and 0<Q<1 on X. Wecall 2
the g-harmonic measure of the ideal boundary of N(g).

By the same argument as in the proof of Theorem 2.1, we can prove

THEOREM 2.2. Let u be g-superharmonic on X. If u>0 on X and u(xy)=0
for some xq€ X, then u(x)=0 on X.
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REMARK 2.3. We can not expect the following property in general unless g=0:
If u is a non-constant g-superharmonic function on X, then u does not attain its
minimum.

Next we prove a discrete analogue of Harnack’s inequality.

THEOREM 2.3. Let a, be X. There exists a positive constant « depend only on
a and b such that o~ ‘u(b)<u(a)<oau(b) for every non-negative q-superharmonic
Jfunction u on X.

ProoF. The condition 4,u(a) <0 implies that
10, Du(x) < ey 1x, a)u(x) < [Ha)+q(a)]u(a),

so that u(x)<v(x, a)u(a) with v(x, a)=[#a)+q(a)]/t(x, a) for every x € U(a), x#a.
There exists a path P from a to b with Cy(P)={x,; k=0, 1,..., n} (xo=a and x,=>).
Then u(x,) <v(x;, x; - Ju(x,—,) for each k, so that u(b)<c(b, a)u(a) with c(b, a)=
IT-q v(xp, x—y). Taking a=max [c(a, b), (b, a)], we see that o satisfies our
requirement.

We say that u € L(X) vanishes at the ideal boundary if for any £>0, there exists
a finite subset X’ of X such that |u(x)|<e on X — X",

THEOREM 2.4. If u is g-harmonic on X and vanishes at the ideal boundary, then
u=0o0n X.

Proor. For any £>0, there exists a finite subset X’ of X such that |u(x)|<e on
X—X'. Consider an exhaustion {G,}G,=<(X,, Y,>) of G. There exists n, such
that X' X, forall n>n,. We have |u(x)| <eQ,(x) on X for all n>n, by Theorem 2.1,
so that Ju(x)| <eQ(x)<eon X. Thus u=0on X.

THEOREM 2.5. Let X' be a finite subset of X, ¢ € L(X) and let u and v satisfy the
equations: Au=dv=@ on X'. If ¢<0o0n X' and if v>u>00n X —X', then v=>u on
X.

Proor. By Theorem 2.1, u>0 on X. Put f=v—u. Then 4f=—qu<0 on X’
and f >0 on X—X'. We have f >0 on X by Theorem 2.1 with g=0.

§3. The spaces E(N(q)) and E,(N(q))

Let us introduce some spaces of functions on X :
Ly(X)={ue L(X); {xeX; u(x)#0} is a finite set},
E(N(9))={u e L(X); E(u)< 0},
D(N)={u e L(X); D(u)<oo}=E(N(0)),
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H(N(q))={ue L(X); A4u=0o0n X}.

Needless to say, we have Ly(X)< E(N(q))<D(N).
In case g0, we see easily that E(N(q)) is a Hilbert space with respect to the
inner product:

E(u, v)=D(u, v)+ T ex 4(x)u(x)o(x) ,

where D(u, v)= 2,y "()[du(y)][dv(y)] is the Dirichlet mutual integral of # and w.
Denote by Eo(N(q)) the closure of Lo(X) in E(N(q)) with respect to the norm [E(u)]1/?
and by Dy(N) the closure of Ly(X) with respect to the norm [D(u)+u(b)*]'/2, where
b is a fixed node of X.

We shall write N € Og if D(N)=Dy(N), or equivalently 1€ Do(N) (cf. [7], [8]).

THEOREM 3.1. Ey(N(q))=Dy(N) n E(N(q)).

ProoF. Since Ey(N(q))=E(N(q)) and Ey(N(q))<=Dy(N), we have Ey N(g)<
Dy(N) n E(N(q)). To prove the converse relation, let u be an element of Dy(N)nN
E(N(q)). Then there exists a sequence {f,} in Lo(X) such that D(u— f)—0as n—co,
£.(x) converges pointwise to u(x) and |f,(x)| <|u(x)| on X. Since > ex q(X)u(x)? < 00,
we see that Y.y g(x)[u(x)—f(x)]?*=0 as n—oco. Thus E(u—f,)—~0 as n—oo, ie.,
ue EyN(q)). This completes the proof.

COROLLARY 1. If N € O, then Eo(N(q))=E(N(q)).

ProOF. If NeOg, then Dy(N)=D(N), so that Ey(N(q))=D(N)n E(N(g))=>
E(N(q)) by Theorem 3.1. Hence Ey(N(q))=E(N(q)).

The converse of this result does not hold in general. But we have

COROLLARY 2. Assume that Y ..xq(x)<oo. Then NeOg if and only if
Eo(N(q))=E(N(q))

PrOOF. Assume that Eo(N(q))=E(N(g)). Since X xq(x)<co, we have le
E(N(q))=EyN(q))=Dy(N). Thus NeOg.

In case g0, we introduce the following distinguished subspaces of H(N(g)):
HD(N(q))=H(}N(¢q)) n D(N), HE(N(q))=H(N(q)) n E(N(9))-
HB(N(q))={u € H(N(q)); u is bounded on X} .

It is easily seen that HE(N(q))= HD(N(q)) and that HE(N(q)) is a closed subspace
of the Hilbert space E(N(q)).

Lemma 3.1. HE(N(q)) is the orthogonal complement of Ey(N(q)) in E(N(q)).
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PROOF. For fe Lo(X) and he HE(N(g)), we have
E(f, W)=D(f, h)+ Z vex (x) 5 (x)h(x)
== Zsex [Ah(X)1f(x) + X cex q(x) f (x)h(x)
= = 2xex [41(x)]1f(x)=0,

so that E(v, h)=0 for every ve Ey(N(q)) and he HE(N(q)). Conversely, suppose
that h e E(N(q)) satisfies E(v, h)=0 for all veEo(N(q)). Let &, be the characteristic
function of the set {x}. Since &, € Ly(X) and E(e,, h)= —A4,h(x), it follows that he
HE(N(q)).

By a standard argument, we obtain

THEOREM 3.2. Every ue E(N(q)) is uniquely decomposed into u=v+h with
ve Ey(N(q)) and he HE(N(q)).

CoroLLarY. HE(N(q))={0} if and only if Ey(N(q))=E(N(q)).
Tueorem 3.3.  If inf {g(x); x € X} >0, then HE(N(q))= {0}.
PrOOF. Let h e HE(N(q)) and put c=inf {g(x); x€ X}. Then

€ Lxex Mx)* < Teex g(x)1(x)? < E(h) < o0,
so that h vanishes at the ideal boundary. Thus h=0 by Theorem 2.4.
The following result is due to Maeda [2]:
THEOREM 3.4.  If N € O, then HD(N(q))={0}.

Proor. Let ue HD(N(q)). Since NeOg, there exists a sequence {f,} such
that f, € Ly(X), 0< f,<1 on X, D(f,)-0 as n—oo and Ja converges pointwise to 1.
For a positive integer m, we put u,(x)=max {—m, min [u(x), m]}. Since u,f, e
Ly(X), we have by Lemma 3.1

(3.1 0=E(uyfor 1) =D(pfos )+ 2 sex 40X, (%) f(x)u(x) .
For ye Y, put e(y)={a(y), b(y)} (the end of y). Then

(duy fo) (V) =F(b(Y)) [du,(y)] +u,(a(»)) [df,(»)],
(3.2) D(uynfor W)= 2 ey "(¥) f(b(»)) [d12,(»)] [du(y)]

+ 2 yer "(Vunla() [df, ()] [du(y)] .
We have

| 2Zger TN a()Af,(NILAu(y)]| < mD(f,)' /> D(u)'/2 — 0
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as n—o00. Note that [du,(y)][du(y)]1=>0 for all y e Yand that 3, x q(x)u,,(x)f,()u(x)
>0. We deduce from (3.1) and (3.2) that

Zyey () [du,(y)] [du(y)]=0,

and hence [du,(y)][du(y)]=0 for every ye Y. Since this is true for any m>0, we
conclude that du(y)=0 on Y, or u is a constant function. Thus u=0 by Remark 2.1.

§4. ¢g-Green function

In case ¢#0, we say that a function u € L(X) is the g-Green function of N(q)
with pole at a € X if it satisfies the condition

4.1) ue Eo(N(q)) and Adu(x)=—glx) on X,

where g,(x)=0 if x#a and g(a)=1. The uniqueness of the g-Green function follows
from Lemma 3.1. Hereafter we denote by §, the g-Green function of N(q) with
pole at a. The existence of §, is assured by

THEOREM 4.1. There exists a unique q-Green function §, of N(q) with pole at a.

ProoF. There exists be X such that ¢g(b)>0. For any xe X, we can find a
constant M, such that |u(x)| <M, [D(u)+ |u(b)[?]*/? for all ue D(N) (cf. [7]). Let
M =M [14q(b)~1]*/2. Then we have |u(x)|<M/[E(u)]'/? for all ue E(N(q)).
Therefore u(a) is a continuous linear functional on both Ey (N(q)) and E(N(q))
for every ae X. By F. Riesz’s theorem, there exists a reproducing kernel ¢, of

Ey(N(q)), i.e., ¢, € Eo(N(q)) and
(4.2)  E(@, u)=u(a) forevery ueEyN(q)).
Since ¢, € Eo(N(q)), we have by (4.2)
ed@)=D(ey, o)+ 2 cex 4(2)e2)0o(2)

== A(Da(x) + q(x)(pa(x) =- Aqq)a(x) .
Namely ¢, is the g-Green function of N(gq) with pole at a.

COROLLARY. §(a)=E(g§,)>0.

REMARK 4.1. In case g=0, the harmonic Green function g, of N with pole at a
is defined by the condition:

4.3) g.€Dy(N) and dg, (x)=—e(x) on X.
The harmonic Green function g, exists if and only if N ¢ Og (cf. [8]).

By (4.2), we obtain the following fundamental properties of §,:
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THEOREM 4.2. §(x)=§F.(a) for every a, xe€ X,

LemMA 4.1. The function ii={,/j(a) is the unique optimal solution of the
extremum problem:

4.4) Minimize E(u) subject to ue E((N(q)) and u(a)=1.

Let T be a normal contraction of the real line R, i.e., |Ts, — Ts,| <|s; —s,| for every
5;, s,€R. For every ue L(X), we define Tue L(X) by (Tu)(x)="Tu(x) for xeX.
Since D(Tu)<D(u) and ¥, (N Tu(x))?*< 3 cex 4(x)u(x)?, we have E(Tu) < E(u) for
every ue E(N(g)). In our study, we often use the following normal contractions:
(1) Ts=|s|, (2) Ts=max (s, 0), (3) Ts=min (s, ¢) (¢>0).

Lemma 4.2. Let T be a normal contraction of the real line. If ue Ey(N(g)),
then Tu € Ey(N(q)).

Proor. Let ue EyN(q)). Then ueDy(N) and we proved in [9] that Tue
Dy(N). Since Tu e E(N(q)) by the above observation, we see by Theorem 3.1 that
Tu € Eo(N(q)).

THEOREM 4.3. 0<§ (x)< g (a) on X.

ProoF. Let i be the function defined in Lemma 4.1. Since E(max (i, 0))<
E(#%) and E(min (&, 1)) <E(ii), we have max (i, 0)=4 and min (i, )= by Lemmas
4.1 and 4.2, and hence 0<ii<1 on X. We see by Theorem 2.2 that i >0 on X.

Let G'=<{X’, Y'> be a finite subgraph of G and ae X'. The g-Green function
g, of N'(q) with pole at a is defined by the condition:

4.5) 4,G(x)=—¢ex) on X' and §y(x)=0 on X-X'

The existence and uniqueness of the g-Green function of N'(g) can be shown by the
standard argument as above. Note that § is characterized by the relation:

(4.6) E(u, §,)=u(a) forall ueL(X) suchthat u=0 on X-X'

Furthermore we see that #i'=§./j'(a) is the optimal solution of the extremum
problem:

4.7 Minimize E(u) subject to u(a)=1and u=0on X -X'.

By the same reasoning as above, we obtain the following properties of J:
(4.8) g.(x)=g.(a) forevery a,xeX’,
4.9) 0<g(x)<gu(a) on X'

ReMARK 4.2. The harmonic Green function g, of N’ with pole at ae X' is
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defined by the condition:
(4.10) Agix)=—¢gx) on X' and g,(x)=0 on X-X'.

We have 0< §(x)<g.(x) on X by Theorem 2.5.

THeorREM 4.4. Let {G,} (G,=(X,, Y,)) be an exhaustion of G and aeX,.
Denote by i the g-Green function of N,(q) with pole at a. Then 0<F™W(x)<
F(x)< G (x) on X and {GW} converges pointwise to §,.

PrOOF. Put u=gi+t)— G and v=§,—3{». Then u and v are g-harmonic
on X, and non-negative on X —X,. Thus u and v are non-negative on X by Theorem
2.1. Therefore 0< §(x) <G+ V(x)< §,(x) on X. For m>n, we have

E(@G™, §i)y =G (a)=EG®, §5)<d.(a),
E(Gm —Gmy=E(Gi)—2E (§, §i)+ E(G™)
=E(§™)—-E(G™).

It follows that {§{"} is a Cauchy sequence in the Hilbert space E,(N(g)). There
exists fe Eo(N(q)) such that E(§i” —f)—0as n—co. Since {§{”} converges point-
wise to f, we see that 4,f(x)= —¢,(x) on X, so that f=4,.

COROLLARY. E(§{W —§,)—0 as n—oo.
THEOREM 4.5. X . .y q(x)F(x)<1.

PrOOF. Let f, be the characteristic function of X,. Since 4§{(x)=q(x)§{(x)
—g,(x) on X, we have

Zrex 4G =1+ Zoex [0 [4P(x)]=1-D(f,, G&).

Denote by Z, the set of all y € Y which connects X, and X — X, i.e., ye Z, if and only
if e(y)={x, x'} with xe X, and x’e X—X,. For yeZ, let x(y) be the node such
that x(y)ee(y) and x(y)e X,. We have for yeZ,

df.(y)=—r(y)K(x(»), y),
dge(y)= —r(y) LK (x(y), »)FE(x(y)),
so that
D(f, )= Zyer O [, (11 G5 ()]
= Lyer MY LK (xX(y), y)2G P (x(y)) = 0.
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Thus ¥ ,.x 9(x)§{”(x)<1. Our assertion follows from Theorem 4.4.

§5. The equality >, x q(x)§.(x)=1

We are concerned with the inequality in Theorem 4.5.

LemMma 5.1, Let {G,} (G,=<X,, Y,») be an exhaustion of G and Q, be the
Sunction defined in §2, i.e., Q, is q-harmonic on X, and Q,=1 on X—X,. Then
Q()=1~=Z . ex, 4(2)§(%).

PROOF. Put u(x)=1- ..y, 4(2)§"(x). For xe X,, we have
Au(x)=A4,1(x)— T ex, 9(2)4,G V(%)
= —q(X) = Xzex, 9(z) [—£(x)]=0.

Since §{"(x)=0 for every xe X — X, and ze€ X, we see that u=1 on X—X,. Thus
u=8,.

By Theorem 4.4 and Lemma 4.1, we obtain

THEOREM 5.1. Let Q be the g-harmonic measure of the ideal boundary of N(q).
Then Q(x) =1- ZzeX q(Z)gz(X)

THEOREM 5.2. Q=0 if and only if HB(N(q))={0}.

Proor. Let ue HB(N(q)) and |u(x)|<c on X. By the Corollary of Theorem
2.1, we have |u(x)| <cQ,(x) on X, and hence |u(x)|<c€(x) on X. Thus Q=0 implies
HB(N(q))={0}. Since Qe HB(N(q)), the converse is clear.

By Theorems 5.1 and 5.2, we have
THEOREM 5.3. X ,.x 9(2)§.(x)=1 for all xe X if and only if HB(N(q))=1{0}.

Remark 5.1. If 3, x q(2)§(a)=1 for some ae X, then we see by Theorem 2.2
that ¥,y 9(2)§(x)=1 for all xe X.

THEOREM 5.4. If N €Oy, then 3,y q(z)§ (a)=1 for every ac X.

Proor. Since N e Oy, there exists a sequence {f,} in Ly(X) such that 0< f,<1,
D(f,)—0 as n—o0 and {f,} converges pointwise to 1 (cf. [7]). We have

Z:ex Sl DU2)G2) = L oex fl(2) [4 (2) + 2(2)]
= —D(f,,, ga) +fn(a) .
Since 0< fi(z2)<1 on X and 3,5 q(2)§(z)< 1, we obiain
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limn—'oo Zzean(Z)Q(z)ga(Z) = ZzeX q(z)ga(z) .
On the other hand, we have

ID(f GN<D)V2D(G)Y? — 0 as n— 0.
Thus we obtain the desired equality.

By Theorems 5.3 and 5.4, we obtain

THEOREM 5.5. If N € Og, then HB{N(q))={0}.

This result has a counter part in [2] and [4].
We give an example which shows HB(N(q))#{0}:

ExaMpLE 5.1. Let us consider the infinite graph G={X, Y, K} shown as in the
following figure, where X ={x,; n=0, 1, 2,...} and Y={y,; n=1, 2,...}:

o0 0B 0 s0—0,0-¥,0 00—

Xo X1 X2 X3 Xn Xn+1

Here K(x,, y,)=1 and K(x,_;, y,)= —1 for every positive integer n and K(x, y)=0
for any other pair. Let ge L*(X), ¢#0 and let re L(Y) be strictly positive. Then
N(q)={G, r, q} is an infinite network. For simplicity, we put g,=q(x,), =7V,
u,=u(x,) and w,= —du(y,)=r;" (U, —t,_ ).

Note that Adu(xg)=w, and du(x,)=w,,,—w, for n>1. Thus ue H(N(q)) implies
that w, =qouto and w,, ; —w,=q,u,. It follows that

Upp1=Uy+Typ1 2R=o Dbl

for n>0. In case uy,>0, we have u,,, >u,>u,, so that
un+anuogun+ls(l+an)un Wlth 0y =Tpt1 Z£=O dr -

Therefore (1+ X7 o )uo <ty <[T1f=o(1+0a)]u,. It is well-known that {J]p-o
(1+4a)} converges if and only if Y 2o a<oo. We see that {u,} is bounded if and
only if X2 0, <co. In case uy<0, we may consider {—u,} and obtain the same
result. Since uy,>0 implies u,>0 for all n, we conclude that HB(N(g))# {0} if and
only if X2, <00. As special choices of {r,} and {g,}, we give three examples:

(1) r,=1and g,=1. In this case a,=n+1 and 3 j, 0= o0.

(2) r,=27"and q,=1. In this case a,=(n+1)2"*D and 3 3%, a,<o0.

(3) r,=2""and q,=2". In this case a,=1-2""*D and 3, o, = 0.

Note that N € O in (1) and that N ¢ O in (2) and (3).

§6. The case where HE(N(q))= {0}
We introduce the reproducing kernel of E(N(q)). Let aeX. Then u(a) is a
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continuous linear functional on E(N(q)) (cf. the proof of Theorem 4.1). By F. Riesz’s
theorem, we can find a unique k, € E(N(q)) such that

(6.1) E(k,, uy=u(a) for every ueE(N(q)).

The following properties of k, can be shown by the same reasoning as in §4:

(6.2) Ak (x)=—gx) on X.
(6.3) kb)=ky(a) forevery a,beX.
(6.4) 0<k (x)<k,a) on X.

THEOREM 6.1. 0< g (x) <k, (x) on X.

Proor. Let {G,} be an exhaustion of G and let §{» be the g-Green function of
N,(g) with pole at a. We have §{”(x)<k,(x) on X by Theorem 2.1, and hence
Fa(x) <k (x) on X.

In order to obtain more fine properties of k,, we consider an exhaustion {G,} (G,=
{X,, Y,») of G and the quantities D, (u, v), E,(u, v) and E(u) defined by

D,(u, )= 2 ey, 1(y) [du(y)] [du(y)],
En(u7 D)= Dn(u’ U) + szX,. q(x)u(x)v(x), En(u)= En(u’ u) .

Let ae X, and ¢#0 on X,. Then L(X,) is a Hilbert space with respect to the inner
product E,(u, v). Thus there exists a unique k(" € L(X,) such that

(6.5) E (™, uy=u(a) for every ueL(X,).
We can show the following properties similarly:
(6.6) APEP(x)=—g(x) on X,,

where 4{u(x)=2 oy, K(x, y)[du(y)]—q(x)u(x) and this is the g-Laplacian of u e
L(X,)on the network N,(q).

6.7 km(by=Fk{m(a) for every a, beX,.
(6.8) 0<kM(x)<k(a) on X,.
LemMa 6.1. 3.y q(x)k{M(x)=1.
Proor. Since 1€ L(X,) and d1(y)=0 on Y,, we have by (6.5)
1=E,(k{, 1)=Dy(k{, 1)+ Z sex, 4(x)k(x)
=T xex, 4k P(x).
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LEMMA 6.2. k™(x)=k,(x) as n— oo for each xe X.
PrROOF. For m>n> j, we have E, k', k™) =[™(a) and
(6.9) Ej(k{ — k™) <E, (k™ — ki)
— BB~ 2B, )+ )
<k (a)—2kim(a)+ E, (k&)
=k (a)—ki™(a).

It follows that {k{"(a)} is a decreasing sequence, so that the restriction of k(™ to X;
converges pointwise to a function i on X ;. Since j is arbitrary, we obtain a function
ii € L(X) such that 4,ii(x)= —¢,(x) on X and

(6.10) E,(ii — k) =1im,, ., E (k¢ — kM) <k (a)—1i(a).

Since E,(ii —k‘™)=E, (i) —2ii(a)+ k" (a), we have E(ii)<ii(a) by (6.10), so that
E@@)=1lim,_,, E (i) <i{i(a)< oo, ie., &€ E(N(q)). We shall show that E(ii, v)=v(a)
for every ve E(N(q)). For any £>0, there exists n, such that E(ii—k™)<g? for
all n>ngq by (6.10). Since E (i, v)— E(ii, v) as n— o0, there exists n, such that |E (i, v)
—E(i1, v)|<e for all n>n,. For n>max {ny, n,}, we have

|E(#i, v)—ov(a)| = |E(#, v)—E(k, v)l
<|E (i, v)— E(ii, )| +|E (@ — k", v)|
<e+[E,(#i—k{)]'2[E,(0)]'/?
<(1+[E(w)]Y?)s.
Since ¢ is arbitrary, we have E(ﬁ., v)=u(a), and hence i =Fk,.
By Lemmas 6.1 and 6.2, we obtain
THEOREM 6.2. T..x q(x)k (x)<1 for every ae X.

THEOREM 6.3. If HB(N(q))={0}, then HE(N(q))=1{0}.

Proor. Suppose that HB(N(q))={0}. Then g+#0 and 3 ..y g(x)d,(x)=1 by
Theorem 5.3, so that q(x)[k,(x)— g (x)]=0 by Theorems 6.1 and 6.2. It follows
from Theorem 2.2 that k,(x)=§,(x) on X for every aec X. Let he HE(N(q)). For
any a € X, we have by Lemma 3.1

hWa)=E(k,, h)=E(§,, h)=0.
Namely HE(N(q))={0}.
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THEOREM 6.4. Assume that Y ..xq(x)<o. Then the following conditions
are equivalent:
(a) NeOg.
(b) HB(N(9))={0}.
() HE(N(9))={0}.

Proor. By Theorems 5.5 and 6.3, we see that (a) implies (b) and that (b) implies
(c) without the assumption Y ..yq(x)<oo. Assume that HE(N(q))={0}. Then
E,(N(9))=E(N(q)) by the Corollary of Theorem 3.2, and hence NeO; by the
Corollary 2 of Theorem 3.1.

REMARK 6.1. In case ) ..y q(x)=00, HE(N(q))={0} does not imply HB(N(q))
={0} in general. In fact, consider the network defined in Example 5.1 and let u be
g-harmonic on X with u(x,)>0. Then we have u(x,.,)>(1+a,)=>u(x,), so that E(u)
> P x qu(x)? > Y ox q(X)u(xg)*=00. Hence HE(N(q))={0}. On the other
hand, we can choose r and ¢ in such a way that HB(N(q))# {0}.

§7. ¢-Green potentials

We define the g-Green potential Gy of e L*(X) and the mutual g-Green potential
energy G(u, v) of p, ve L*(X) by

GU(x)= T gex Gl X)p(x)
G, v) =T sex [Gu(x)Iv(x).

We call G(p, p) the g-Green potential energy of u. Let us put
M(G)={pe L*(X); Gue L(X)},
EG)={peL*(X); Gy, )< 0}.

Denote by SH*(N(q)) the set of all non-negative g-superharmonic functions on X.
We list the following results that can be proved by the same reasoning as in the
case where g =0 (cf. [8]):

LeMmMa 7.1. Aqu= — u for every pe M(G).

THeOREM 7.1 (Riesz’s decomposition). Every u e SH*(N(q)) can be decomposed
uniquely in the form: u=Gu+h, where pe M(G) and h is non-negative and
g-harmonic on X. In this decomposition, p= —A,u and h is the greatest q-harmonic
minorant of u.

LemMa 7.2.  If pe E(G), then Gue Ey(N(q)) and E(Gu)=G(u, 1.
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Denote by P(N(q)) the subset of Ey(N(g)) which consists of g-superharmonic
functions on X, i.e.,

P(N(q))={u e Eo(N(q)); 4,u(x)<0 on X}.
THEOREM 7.2. P(N(q))={Gu; pe E(G)}.

As an application of the above theory, we obtain another proof which shows
that (b) implies (a) in Theorem 6.3.

THEOREM 7.3. If 3. x q(x)< o0, then HB(N(q))={0} implies N € Og.

Proor. Assume that HB(N(q))={0}. Then },.x q(2)d,(x)=1 for every xe X
by Theorem 5.3. Let us put v=3,.q(2)§.(x). Then v=Gp with p= —dp=qe
L*(X) and G(u, p)=3,cx q(x)< o0, ie., pe E(G). Thus ve Ey(N(q))=DyN) by
Lemma 7.2 and Theorem 3.1. Therefore 1 € Dy(N) and hence N € Og.

§8. Dependence of the g-Green function on ¢

In order to study the dependence of the g-Green function §, of the network N(q)
on ¢, denote it by §{? in this section.

THEOREM 8.1. Let q,, g, € L*(X). If q,<q, on X, then
@1 JUX) = §IP)= T cex [42() — 44(DIFPETI(z).

Proor. Let {G,} (G,={X,, Y,>) be an exhaustion of G and let a, x€ X,,. Denote
by u, the g,-Green function of N,(gq,) with pole at a and by v, the q,-Green function
on N,(q,) with pole at x. Then we have by (4.6)

un(x) = D(um U,,) + ZZEX qZ(x)un(Z)vn(Z) )
vn(a) = D(um U,,) + Zze;‘( ql(z)unvn(z) H

so that

(8-2) u(x) = v(a) =2 x [92(2) — 4:(2)Ju(2)0,(2) .

Since q,<q, on X and {u,} and {v,} increase to §\? and §2 by Theorem 4.4,
we obtain (8.1) by letting n— oo in (8.2).

COROLLARY 1. If q,>q,>0, then §{4(x)>§'99(x) on X.
COROLLARY 2. If N ¢ Og, then

(8.3) 9a(x) = FP(x) = L -ex 4(x)9(2)§0(2)
THEOREM 8.2. If {q,} increases to q, then {j\I"} decreases to §9.
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ProoF. Put u,=§), v=§ and u=§?. We have by Theorem 8.1

0 <uy(x) —u(x) =2 ex [4(2) — qu(2)Jun(2)0(2) -

Since {[q(z) — q,(z)]u,(z)} decreases to O for all z, we have the assertion.
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