Mem. Fac. Sci. Shimane Univ., 20, pp. 1–7 Dec. 20, 1986

Matrices of Clifford Semigroups, and a Generalization of Rees's Theorem¹⁾

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1986)

Let S be a completely regular semigroup, and E(S) the partial subgroupoid of idempotents of S. Let γ be a relation on E(S). If γ is a congruence on E(S), that is, if γ is an equivalence relation on E(S) and if $x\gamma y$ and $u\gamma v$ satisfy $xu\gamma yv$ (if both xu and yv are defined in E(S)), then S is called a CS-matrix. Firstly, several characterizations of a CS-matrix are given. Secondly, split CS-matrices are investigated. In particular, matrix representations of these semigroups are discussed.

§1. Preliminary

Let P be a partial groupoid, and γ a relation on P as follows:

- (1.1) $x \gamma y$ if and only if both xy and yx are defined in P, and xy = yx. If γ is a congruence on P, that is,
- (1.2) (1) $x \gamma x$ for all $x \in P$,
 - (2) $x \gamma y$ implies $y \gamma x$,
 - (3) $x \gamma y, y \gamma z$ imply $x \gamma z$,
 - (4) if $x \gamma y$, $u \gamma v$ and if both xu and yv are defined in P, then $xu \gamma yv$,

then P is called γ -compatible. In a completely simple semigroup C, it is obvious that the partial groupoid E(C) of idempotents of C (with respect to the multiplication in C) is γ -compatible. If the partial groupoid E(S) of idempotents of a regular semigroup S is γ -compatible, then S is called γ -compatible. If a semigroup A is a rectangular band Δ of subsemigroups $\{A_{\delta} : \delta \in \Delta\}$ of type \mathcal{T} , then we shall say that A is a matrix Δ of semigroups $\{A_{\delta} : \delta \in \Delta\}$ of type \mathcal{T} . If A is a matrix of semigroups of type \mathcal{T} , then A is said to be a \mathcal{T} -semigroup matrix. For example, if A is a rectangular band of subgroups then A is called a group matrix. If A is a rectangular band of Clifford subsemigroups (that is, semilattices of groups), then A is called a Clifford semigroup matrix (abbrev.,

¹⁾ An abstract of this paper was announced in the Proceedings of 9th Symposium on Semigroups and Related Topics, Naruto University of Teacher Education, 1985.

a CS-matrix).²⁾ Let B be a γ -compatible band, and ρ the least semilattice congruence on B. It is well-known that each ρ -class is a rectangular subband of B (therefore, B is a semilattice of rectangular bands). Now, it is also easy to see that $\rho \cap \gamma = c_s$ (the identity congruence on B). Hence, B is isomorphic to a subdirect product of B/ρ and B/γ . Let $e, f \in B$. Since efee = eefe, efe γe . Hence, B/γ is a rectangular band. Since B/ρ is a semilattice, B is isomorphic to a subdirect product of a semilattice and a rectangular band.

Further, it is easy to see that the converse also holds; that is, a band B is γ -compatible if and only if it is isomorphic to a subdirect product of a semilattice and a rectangular band. Accordingly, in this case B is a rectangular band of semilattices, that is, a semilattice matrix (abbrev., an SL-matrix). Of course, an SL-matrix is a normal band. In this paper, we shall investigate the structure of CS-matrices and that of split CS-matrices. If S is a completely regular semigroup, it is well-known that S is uniquely decomposed into a semilattice Λ of completely simple semigroups $\{S_{\lambda}: \lambda \in \Lambda\}$ (see [1]). This decomposition is called the structure decomposition of S, and denoted by $S \sim \Sigma\{S_{\lambda}: \lambda \in \Lambda\}$.

Hereafter the terminology "a completely regular semigroup $S \equiv \Sigma \{S_{\lambda} : \lambda \in A\}$ " means "S is a completely regular semigroup and has $S \sim \Sigma \{S_{\lambda} : \lambda \in A\}$ as its structure decomposition". Further, it is also well-known that the least semilattice congruence ρ on a completely regular semigroup S induces the structure decomposition of S. Throughout the whole paper, if S is a completely regular semigroup, ρ_S and γ_S denote the least semilattice congruence on S and the γ -congruence on E(S) respectively. Every terminology and notation should be referred to [1], unless otherwise stated.

§2. CS-matrices

Let S be a γ -compatible completely regular semigroup, and E(S) the set of all idempotents of S. Since γ is an equivalence relation on E(S), E(S) is decomposed into γ -equivalence classes $\{E_{\lambda}: \lambda \in \Lambda\}$ (where each E_{λ} is a γ -class). Now, put $S_{\lambda} = \{x \in S: xx^*, x^*x \in E_{\lambda} \text{ for some } x^* \in V(x)\}$, where V(x) is the set of inverses of x.

LEMMA 2.1. (1) Each S_{λ} is a maximal Clifford subsemigroup of S.

(2) $\mathscr{S} = \{S_{\lambda} : \lambda \in \Lambda\}$ is the set of all maximal Clifford subsemigroups, and $S = \Sigma\{S_{\lambda} : \lambda \in \Lambda\}$ (where Σ denotes disjoint sum).

PROOF. It is obvious that each E_{λ} is a subsemilattice of S. Let $x \in S_{\lambda}$. Then, $xx^*, x^*x \in E_{\lambda}$ for some $x^* \in V(x)$. For any $e \in E_{\lambda}$, xex^* is an idempotent and $xx^*xex^* = xex^* = xex^*xx^*$. Hence, xx^*yxex^* , and accordingly $xex^* \in E_{\lambda}$. Therefore, $xE_{\lambda}x^* \subset$

²⁾ Recently, the structure of CS-matrices has been also studied by Pastijn and Petrich [3], and the paper [3] has appeared after the author announced the abstract of this paper in the above-mentioned proceedings of the symposium. Some parts of this paper overlap with results of [3], though proofs and approach are quite different.

 E_{λ} . Similarly, we have $x^*E_{\lambda}x \subset E_{\lambda}$. Hence, $S_{\lambda} = \{x \in S : xx^*, x^*x \in E_{\lambda}, xE_{\lambda}x^* \subset E_{\lambda}, x^*E_{\lambda}x \subset E_{\lambda} \text{ for some } x^* \in V(x)\}$. Therefore, S_{λ} is a maximal regular subsemigroup having E_{λ} as the set of idempotents. Since E_{λ} is a semilattice, S_{λ} is an inverse semigroup. Now, let $x \in S_{\lambda}$. Then, xx^* , $x^*x \in E_{\lambda}$ for some $x^* \in V(x)$. Since S is completely regular, there exists the group inverse x^{-1} of x. Now, $xx^*\gamma x^*x$ implies $xx^*xx^{-1}\gamma x^*xxx^{-1} = x^*xx^{-1}x$, and accordingly $xx^{-1}\gamma x^*x$. Therefore, $xx^{-1} \in E_{\lambda}$. Thus, $x^{-1} \in S_{\lambda}$. That is, x has the group inverse x^{-1} in S_{λ} . Consequently, S_{λ} is a union of groups, and accordingly S_{λ} is a Clifford semigroup.

(2) Let T be a maximal Clifford subsemigroup of S. For any $e, f \in E(T)$ (the set of idempotents of T), ef=fe. Hence, $e \gamma f$, and accordingly $e, f \in E_{\lambda}$ for some $\lambda \in \Lambda$. Therefore, $E(T) \subset E_{\lambda}$, and $T \subset S_{\lambda}$. Since T is a maximal Clifford subsemigroup, $T = S_{\lambda}$. Thus, \mathscr{S} is the set of all maximal Clifford subsemigroups of S. It is obvious that $S = \bigcup \{S_{\lambda} : \lambda \in \Lambda\}$. Assume that $x \in S_{\lambda} \cap S_{\delta}$. Then, there exist $x^*, x^* \in V(x)$ such that $xx^*, x^*x \in E_{\lambda}$ and $xx^*, x^*x \in E_{\delta}$. Since $xx^*\gamma x^*x$ and $xx^*\gamma x^*x$, we have $xx^* = xxx^*\gamma x^*xx^*x = x^*x$. Hence, $xx^*, x^*x \in E_{\lambda} \cap E_{\delta}$, and $\lambda = \delta$. Therefore, $S_{\lambda} \cap S_{\delta} = \Box$ for $\lambda \neq \delta$.

As characterizations of a CS-matrix, we have the following³):

THEOREM 2.2. For a completely regular semigroup S, the following conditions (1)–(6) are equivalent:

- (1) S is the disjoint sum of maximal Clifford subsemigroups of S.
- (2) S is γ -compatible.
- (3) S is a matrix of Clifford semigroups, that is, S is a CS-matrix.

(4) For the least matrix congruence (that is, the least rectangular band congruence) σ_s on S, each σ_s -class is a Clifford subsemigroup.

- (5) S is an SL-matrix cryptogroup (that is, an SL-matrix of groups).
- (6) The relation τ on S defined by

(2.1)
$$x \tau y$$
 if and only if $[x][y] = [y][x]$

is a matrix congruence, and [x][y] = [y][x] if and only if [xy][yx] = [yx][xy], where [u] denotes the identity of the maximal subgroup H_u containing u.

PROOF. (2)=(1) follows from Lemma 2.1, and (1)=(3) has been shown in Pastijn [2]. Further, it is easy to see that (3)=(2). (3)=(4): Since S is a CS-matrix, there exists a matrix congruence η_S on S such that each η_S -class is a Clifford subsemigroup. Let e, f be idempotents of a η_S -class. Then, ef=fe. Hence, $e\sigma_S efe=fef\sigma_S f$. Therefore, $e\sigma_S f$. Let $x\eta_S$ be the η_S -class containing $x \in S$. For any $y \in x\eta_S$, there exists a unique inverse y' of y in $x\eta_S$. For $a \in S$, let \bar{a} be the σ_S -class containing a. Now, $xx'\sigma_S x'x$ implies $\overline{xx'}=\overline{x'x}$, and hence $\bar{x}=\bar{x'}$, that is, $x\sigma_S x'$. Hence, $xx'\sigma_S x$.

³⁾ Several other characterizations of a CS-matrix have been also given by [3].

Let $y \in x\eta_s$. Then, $x\eta_s = y\eta_s$, and $yy'\sigma_s y$. Since $yy'\eta_s xx'$, we have $yy'\sigma_s xx'$, and $x \sigma_S y$. Therefore, $y \in x \sigma_S$. Thus, $x \eta_S \subset x \sigma_S$. Since σ_S is the least matrix congruence, $\eta_s = \sigma_s$. (4) \Rightarrow (3): Obvious. (4) \Rightarrow (5): It is easy to see that $\sigma_s \cap \rho_s = \mathscr{H}_s$, where \mathscr{H}_S is the Rees *H*-relation on *S*. Put $S/\sigma_S = \Lambda$ and $S/\rho_S = Y$. Then, *S* is *H*compatible,⁴⁾ and S/\mathscr{H}_S is isomorphic to a subdirect product $\Lambda \otimes Y$ of Λ and Y (where \ll denotes a subdirect product). Since $\Lambda \ll Y$ is an SL-matrix and since each \mathscr{H}_{s} -class is a subgroup of S, S is an SL-matrix cryptogroup. $(5)\Rightarrow(3)$: Obvious. $(6)\Rightarrow(4)$: It is obvious that each σ_s -class is a union of groups. Let $e \sigma_s f$ for $e, f \in E(S)$. Hence, $ef\sigma_s fe$. Since σ_s is the least matrix congruence, $ef\tau fe$. Therefore, [ef][fe] = [fe][ef]and [e][f]=[f][e], that is, ef=fe. Thus, every σ_s -class is an inverse semigroup, and hence it is a Clifford subsemigroup. (5) \Rightarrow (6): Let S be an SL-matrix $\Lambda \otimes Y$ of groups $\{H_i^{\alpha}: (\alpha, i) \in \Lambda \otimes Y\}$, where Λ , Y are a rectangular band and a semilattice respectively, and $\Lambda \otimes Y$ is a subdirect product of Λ and Y. It is obvious that each H_i^{α} is an H-class of S. Suppose that [x][y] = [y][x] for $x, y \in S$. Then, $(xy)\mathcal{H}_S = (yx)\mathcal{H}_S$, where \mathcal{H}_S is the *H*-relation on *S*. Hence, [xy][yx] = [yx][xy]. Conversely, suppose that [xy][yx] = [yx][xy]. There exist H_i^{λ} , H_j^{δ} such that $x \in H_i^{\lambda}$ and $y \in H_j^{\delta}$. Then, $xy \in H_{ij}^{\lambda\delta}$ and $yx \in H_{ji}^{\delta\lambda}$. Hence, $[xy][yx] \in H_{iji}^{\lambda\delta\lambda}$ and $[yx][xy] \in H_{jij}^{\delta\lambda\delta}$, and hence $\lambda = \delta$. For any $\xi \in \Lambda$, $S_{\xi} = \bigcup \{H_k^{\xi} : (\xi, k) \in \Lambda \otimes Y, k \in Y\}$ is a Clifford subsemigroup of S. Since $[x] \in H_i^{\lambda}$ and $[y] \in H_j^{\lambda}$ and since S_{λ} is a Clifford semigroup, [x][y] = [y][x]. Next, suppose that $x \tau y$. Then, [x][y] = [y][x], and hence $x, y \in S_{\lambda}$ for some $\lambda \in A$. Let τ^* be the congruence on S which gives the decomposition of S into the Clifford subsemigroups $\{S_{\xi}: \xi \in \Lambda\}$. Then, τ^* is a matrix congruence and satisfies $\tau \subset \tau^*$. Conversely, it is obvious that $\tau^* \subset \tau$. Accordingly, $\tau = \tau^*$. Thus, τ is a matrix congruence.

From the theorem above, it is easy to see that a matrix decomposition (that is, a rectangular band decomposition) of a CS-matrix S into Clifford subsemigroups $\{C_{\alpha}: \alpha \in \Gamma\}$ is unique, and it is given by the least matrix congruence σ_S on S. In this case, each C_{α} is a maximal Clifford subsemigroup of S. Further, it is also obvious that $\sigma_S |E(S)|$ (the restriction of σ_S to $E(S)| = \gamma_S$.

LEMMA 2.3. Let S be a CS-matrix, and $\{E_{\lambda}: \lambda \in A\}$ the γ -classes of E(S). Then, $E_{\lambda}SE_{\lambda}$ is a Clifford subsemigroup of S, and $S = \bigcup \{E_{\lambda}SE_{\lambda}: \lambda \in A\}$.

PROOF. For each $\lambda \in \Lambda$, let $S_{\lambda} = \{x \in S : xx^*, x^*x \in E_{\lambda} \text{ for some } x^* \in V(x)\}$. As was shown above, S_{λ} is a maximal Clifford subsemigroup. Hence, it is a σ_S -class. Therefore, we can consider Λ as a rectangular band and S as a matrix Λ of the maximal Clifford subsemigroups $\{S_{\lambda} : \lambda \in \Lambda\}$. Since Λ is a rectangular band, $E_{\lambda}SE_{\lambda} \subset S_{\lambda}$ for $\lambda \in \Lambda$. Conversely, let $x \in S_{\lambda}$. Then, there exists a group inverse x^{-1} of x in S_{λ} . Hence, $xx^{-1} = x^{-1}x \in E_{\lambda}$, and hence $x = xx^{-1}xx^{-1}x \in E_{\lambda}SE_{\lambda}$. Hence, $E_{\lambda}SE_{\lambda} = S_{\lambda}$.

To consider a description of all possible CS-matrices, we need only to construct all

⁴⁾ A semigroup S is said to be H-compatible if Green's H-relation is a congruence on S.

possible *SL*-matrices Ω of groups $\{N_{\omega}: \omega \in \Omega\}$ for a given *SL*-matrix Ω and given groups $\{H_{\omega}: \omega \in \Omega\}$. This can be obtained as a special case of Schein's theorem of [4] which has given a construction of bands of unipotent monoids (see also [5]). However, we omit to state it here again.

§3. Split CS-matrices

Let $M \equiv \Sigma\{M_{\lambda}: \lambda \in A\}$ be a CS-matrix, and ρ_M the congruence which gives the structure decomposition $M \sim \Sigma\{M_{\lambda}: \lambda \in A\}$. We can consider $M/\rho_M = A$ by identifying each ρ_M -class M_{λ} with $\lambda \in A$. Let f be the natural homomorphism of M onto $M/\rho_M = A$; that is, the homomorphism f such that $xf = \lambda$ if $x \in M_{\lambda}$. If there exists a homomorphism g of $A = M/\rho_M$ into M such that $gf = \varepsilon_A$ (the identity mapping on A), then M is called *split*. Let $M \equiv \{M_{\lambda}: \lambda \in A\}$ be a CS-matrix. Then, there exists an SL-matrix $(L \times R) \otimes A$, where L, R are a left zero semigroup, a right zero semigroup, $L \times R$ the direct product of L and R and $(L \times R) \otimes A$ a subdirect product of $L \times R$ and A, such that M is an SL-matrix $(L \times R) \otimes A$ of groups $\{H_{(i,j)}^{\alpha}: ((i, j), \alpha) \in (L \times R) \otimes A\}$ (where each $H_{(i,j)}^{\alpha}$ is an H-class of M). In this case, it is easy to see that $M_{\lambda} = \Sigma\{H_{(i,j)}^{\lambda}: (i, j) \in I_{\lambda}\}$, where $I_{\lambda} = \{(i, j): ((i, j), \lambda) \in (L \times R) \otimes A\}$, for each $\lambda \in A$.

LEMMA 3.1. M splits if and only if

(3.1) there exists $(i, j) \in L \times R$ such that $H^{\alpha}_{(i, j)}$ exists in M for all $\alpha \in \Lambda$.

PROOF. Suppose that M satisfies (3.1). There exists $(i, j) \in L \times R$ such that $H^{\alpha}_{(i,j)}$ exists in M for all $\alpha \in \Lambda$. Let $C_{(i,j)} = \bigcup \{H^{\alpha}_{(i,j)} : \alpha \in \Lambda\}$. Then, $C_{(i,j)}$ is a Clifford subsemigroup. Let $e_{(i,j)}^{\alpha}$ be the idempotent of $H_{(i,j)}^{\alpha}$ for all $\alpha \in \Lambda$. Now, define f: $\Lambda \to M$ by $\alpha f = e^{\alpha}_{(i,j)}$. Since $C_{(i,j)}$ is a Clifford semigroup, f is a homomorphism. On the other hand, the mapping $h: M \to A$ defined by $M_{\alpha}h = \{\alpha\}$ is a homomorphism of M onto Λ . The congruence induced by h is ρ_M . Since $fh = \varepsilon_A$ (the identity mapping on Λ), M splits. Conversely, suppose that M splits. Then, there exists a surjective homomorphism $f: M/\rho_M \to M$ such that $fh = \varepsilon_{M/\rho_M}$, where h is the natural homomorphism of M onto M/ρ_M . If we identify an element M_λ of M/ρ_M with λ , then we can consider h and f as a surjective homomorphism of M onto Λ and a homomorphism of Λ into M such that $fh = \varepsilon_{\Lambda}$. For every $\alpha \in \Lambda$, let $\alpha f = e_{\alpha}$. Then, $e_{\alpha} \in M_{\alpha}$. Hence, there exists $(u, v) \in L \times R$ such that $e_{\alpha} = e_{(u,v)}^{\alpha}$ and $((u, v), \alpha) \in (L \times R) \otimes \Lambda$. For $\beta \in \Lambda$, similarly there exists $(s, k) \in L \times R$ such that $((s, k), \beta) \in (L \times R) \otimes A$ and $e_{\beta} = e_{(s,k)}^{\beta}$. Now, $e_{\alpha}e_{\beta} = (\alpha f)(\beta f) = (\alpha\beta)f = (\beta\alpha)f = (\beta f)(\alpha f) = e_{\beta}e_{\alpha}$. Hence, $e_{(u,v)}^{\alpha}e_{(s,k)}^{\beta} = e_{(s,k)}^{\beta}e_{(u,v)}^{\alpha}$. Since $e^{\alpha}_{(u,v)}e^{\beta}_{(s,k)}$, $e^{\alpha}_{(s,k)}e^{\alpha}_{(u,v)}$ are idempotents contained in $H^{\alpha\beta}_{(u,k)}$, $H^{\alpha\beta}_{(s,v)}$ respectively, u = s and k = v. Thus, (u, v) = (s, k). Consequently, $H^{\lambda}_{(u, v)}$ exists for every $\lambda \in A$.

Now, let $M \sim \Sigma\{M_{\lambda} : \lambda \in \Lambda\}$ be the above-mentioned split CS-matrix. Then, M is an SL-matrix $(L \times R) \otimes \Lambda$ of H-classes $\{H_{(i,j)}^{\alpha} : ((i,j), \alpha) \in (L \times R) \otimes \Lambda\}$.

Miyuki Yamada

Further, there exists $(i, j) \in L \times R$ such that $H^{\alpha}_{(i, j)}$ exists for all $\alpha \in \Lambda$. Denote (i, j) by (1, 1), and put $C_{(1,1)} = \bigcup \{H^{\alpha}_{(1,1)} : \alpha \in \Lambda\}$. It is obvious that $C_{(1,1)}$ is a Clifford subsemigroup of M. Let $I_{\alpha} = \{(i, j) \in L \times R : ((i, j), \alpha) \in (L \times R) \otimes \Lambda\}$ for every $\alpha \in \Lambda$. Then, $M_{\alpha} = \bigcup \{H^{\alpha}_{(s,k)} : (s, k) \in I_{\alpha}\}$. For any $x \in H^{\alpha}_{(s,k)}$, x is uniquely written in the form $x = e^{\alpha}_{s1}ue^{\alpha}_{1k}$, $u \in H^{\alpha}_{(1,1)}$, where e^{α}_{sk} is the identity of $H^{\alpha}_{(s,k)}$ for every $((s, k), \alpha) \in (L \times R) \otimes \Lambda$ (see [1]). For $x = e^{\delta}_{i1}ue^{\delta}_{1j} \in H^{\delta}_{(i,j)}$, $y = e^{\eta}_{s1}ve^{\eta}_{1k} \in H^{\eta}_{(s,k)}$, $u \in H^{\delta}_{(1,1)}$ and $v \in H^{\eta}_{(1,1)}$,

$$(3.2) xy = e_{i_1}^{\delta} u e_{1j}^{\delta} e_{s_1}^{\eta} v e_{1k}^{\eta} = e_{i_1}^{\delta} u e_{11}^{\delta\eta} p_{js}^{(\delta,\eta)} e_{11}^{\delta\eta} v e_{1k}^{\eta}, \text{ where } e_{1j}^{\delta} e_{s_1}^{\eta} = p_{is}^{(\delta,\eta)} \in H_{(1,1)}^{\delta\eta}$$

Now,

$$(3.2) = e_{i1}^{\delta} e_{i1}^{\delta\eta} u e_{11}^{\delta\eta} p_{js}^{(\delta,\eta)} e_{11}^{\delta\eta} v e_{1k}^{\delta\eta} e_{1k}^{\eta}.$$

Next, $(e_{i1}^{\delta}e_{i1}^{\delta\eta})^2 = e_{i1}^{\delta}e_{i1}^{\delta\eta} = e_{i1}^{\delta}e_{i1}^{\delta\eta}$. Hence, $e_{i1}^{\delta}e_{i1}^{\delta\eta}$ is an idempotent of $H_{(i,1)}^{\delta\eta}$, and hence $e_{i1}^{\delta\eta}e_{i1}^{\delta\eta} = e_{i1}^{\delta\eta}$. Thus, $(3.2) = e_{i1}^{\delta}(ue_{11}^{\delta\eta}p_{js}^{\delta,\eta})e_{11}^{\delta\eta}v)e_{1k}^{\delta\eta}$. Put $e_{11}^{\delta\eta}p_{js}^{\delta,\eta}e_{11}^{\delta\eta} = q_{js}^{\delta,\eta}$. Then, $q_{js}^{(\delta,\eta)} \in H_{(1,1)}^{\delta\eta}$ and $q_{11}^{(\alpha,\beta)} = e_{11}^{\alpha\beta}$ for all $\alpha, \beta \in \Lambda$. Further, $(3.2) = e_{i1}^{\delta\eta}(uq_{js}^{(\delta,\eta)}v)e_{1k}^{\delta\eta}$. It is easy to see that $uq_{js}^{(\delta,\eta)}v \in C_{(1,1)}$ and the product of $u, q_{js}^{(\delta,\eta)}$ and v can be obtained in the semigroup $C_{(1,1)}$. Hence, if we rewrite x, y in the form $x = [u]_{ij}^{\delta}, y = [v]_{sk}^{\eta}$, then

$$xy = [u]_{ij}^{\delta} [v]_{sk}^{\eta} = [uq_{js}^{(\delta,\eta)}v]_{ik}^{\delta\eta}$$

and $M = \{ [u]_{ij}^{\delta} : ((i, j), \delta) \in (L \times R) \otimes A, u \in H_{(1,1)}^{\delta} \}$. Since $([u_{ij}^{\delta}][v]_{sk}^{\eta}][t]_{mn}^{\xi} = [u]_{ij}^{\delta}([v]_{sk}^{\eta}[t]_{mn}^{\xi})$. we have

$$\left[uq_{is}^{(\delta,\eta)}vq_{km}^{(\delta\eta,\xi)}t\right]_{in}^{\delta\eta\xi} = \left[uq_{is}^{(\delta,\eta\xi)}vq_{km}^{(\eta,\xi)}t\right]_{in}^{\delta\eta\xi}$$

Hence,

$$(3.3) \qquad q_{js}^{(\delta\eta)} v q_{km}^{(\delta\eta,\xi)} = q_{js}^{(\delta,\eta\xi)} v q_{km}^{(\eta,\xi)} \quad \text{for all } v \in H_{11}^{\eta}.$$

Conversely, let L, R and Λ be a left zero semigroup, a right zero semigroup and a semilattice respectively. Let $(L \times R) \otimes \Lambda$ be an SL-matrix, where \otimes denotes a subdirect product, and assume that there exists $(s, k) \in L \times R$ such that $((s, k), \alpha) (L \times R) \otimes \Lambda$ for all $\alpha \in \Lambda$.

Denote (s, k) by (1, 1). Let $C(\Lambda)$ be a semilattice Λ of groups $\{H_{(1,1)}^{\alpha}: \alpha \in \Lambda\}$. Of course, $C(\Lambda)$ is a Clifford semigroup. Put $M = \{[u]_{ij}^{\delta}: u \in H_{(1,1)}^{\delta}, ((i, j), \delta) \in (L \times R) \otimes \Lambda\}$. For δ, η, j, s such that $((1, j), \delta), ((s, 1), \eta) \in (L \times R) \otimes \Lambda$, let $q_{js}^{(\delta, \eta)}$ be an element of $H_{(1,1)}^{\delta\eta}$. Put $Q = \{q_{js}^{(\delta,\eta)}: ((1, j), \delta), ((s, 1), \eta) \in (L \times R) \otimes \Lambda\}$. Assume that Q satisfies (3.3) for $((1, j), \delta), ((s, 1), \eta), ((1, k), \eta)$ and $((m, 1), \xi)$ of $(L \times R) \otimes \Lambda$ and the following (3.4):

(3.4) $q_{11}^{(\alpha,\beta)} = e_{11}^{\alpha\beta}$ for all $\alpha, \beta \in \Lambda$, where e_{11}^{τ} is the identity of $H_{(1,1)}^{\tau}$.

In this case, if multiplication is defined in M by

$$[u]_{ii}^{\delta}[v]_{sk}^{\eta} = [uq_{is}^{(\delta,\eta)}v]_{ik}^{\delta\eta},$$

then *M* becomes a split *CS*-matrix. The set *Q* above is called *the sandwich matrix* of *M* over the Clifford semigroup $C(\Lambda)$, and the split *CS*-matrix *M* above is denoted by $\mathcal{M}((L \times R) \otimes \Lambda; C(\Lambda); Q)$.

Now, it follows from the results above that:

THEOREM 3.2. $\mathcal{M}((L \times R) \otimes \Lambda; C(\Lambda); Q)$ is a split CS-matrix. Conversely, every split CS-matrix can be obtained in this way.

REMARK. In Theorem 3.2, consider the case where Λ consists of a single element α and $C(\Lambda)$ is a group $H^{\alpha}_{(1,1)}$. Then, $Q = \{q_{js}^{(\alpha,\alpha)} : (j,s) \in R \times L\}$. Denote $q_{js}^{(\alpha,\alpha)}$ simply by q_{js} , and $[u]^{\alpha}_{ij}$ simply by $[u]_{ij}$. Then, $\mathcal{M}((L \times R) \otimes \{\alpha\}; H^{\alpha}_{(1,1)}; Q) = \{[u]_{ij}: (i, j) \in L \times R\}$ and

$$[u]_{ij}[v]_{ks} = [uq_{jk}v]_{is}.$$

That is, it is the regular Rees $L \times R$ -matrix semigroup with sandwich matrix Q over the group $H^{\alpha}_{(1,1)}$. Hence, $\mathcal{M}((L \times R) \rtimes \Lambda; C(\Lambda); Q)$ in Theorem 3.2 is a generalization of the concept of a regular Rees matrix semigroup.

References

- [1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, I, II, Amer. Math. Soc., Providence, R. I., 1961 and 1967.
- [2] F. J. Pastijn, Rectangular bands of inverse semigroups, Simon Stevin 56 (1982), 1-97.
- [3] F. J. Pastijn and Mario Petrich, Rees matrix semigroups over inverse semigroups, Proceedings of the Royal Society of Edinburgh, 102A (1986), 61–90.
- [4] B. M. Schein, Bands of unipotent monoids, Semigroup Forum 6 (1973), 75-79.
- [5] M. Yamada, Construction of a certain class of regular semigroups with special involution, Proceedings of the 1984 Marquette Conference on Semigroups, 1984, 229-240.