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Let S be a completely regular semigroup, and E(S) the partial subgroupoid of idempotents
of S. Let 7 be a relation on E(S). If 7 is a congruence on E(S), that is, if 7 is an equivalence
relation on E(S) and if xyy and uyv satisfy xuyyv (if both xu and yv are defined in E(S)), then
S is called a CS-matrix. Firstly, several characterizations of a CS-matrix are given.
Secondly, split CS-matrices are investigated. In particular, matrix representations of these
semigroups are discussed.

§1. Preliminary

Let P be a partial groupoid, and y a relation on P as follows:

(1.1) xyy if and only if both xy and yx are defined in P, and xy=yx.
If y is a congruence on P, that is,

(1.2) (1) xyxforall xeP,
(2) xvyy implies yyx,
(3) xyy,yyzimply xyz,
(4) if xyy, uyv and if both xu and yv are defined in P, then xu y yv,

then P is called y-compatible. In a completely simple semigroup C, it is obvious that
the partial groupoid E(C) of idempotents of C (with respect to the multiplication in C)
is y-compatible. If the partial groupoid E(S) of idempotents of a regular semigroup S
is y-compatible, then S is called y-compatible. If a semigroup A4 is a rectangular band
A of subsemigroups {A;: € A} of type 7, then we shall say that 4 is a matrix 4 of
semigroups {A;: 6 A} of type 7. If A is a matrix of semigroups of type 7, then 4 is
said to be a 7 -semigroup matrix. For example, if 4 is a rectangular band of subgroups
then A is called a group matrix. If A is a rectangular band of Clifford subsemigroups
(that is, semilattices of groups), then A is called a Clifford semigroup matrix (abbrev.,

1) An abstract of this paper was announced in the Proceedings of 9th Symposium on Semigroups
and Related Topics, Naruto University of Teacher Education, 1985.
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a CS-matrix).?) Let B be a y-compatible band, and p the least semilattice congruence
on B. Itis well-known that each p-class is a rectangular subband of B (therefore, B is
a semilattice of rectangular bands). Now, it is also easy to see that p ny=c¢s (the
identity congruence on B). Hence, B is isomorphic to a subdirect product of B/p and
Bly. Lete,feB. Since efee=eefe, efeye. Hence, B/y is a rectangular band. Since
B/p is a semilattice, B is isomorphic to a subdirect product of a semilattice and a
rectangular band.

Further, it is easy to see that the converse also holds; that is, a band B is
y-compatible if and only if it is isomorphic to a subdirect product of a semilattice and a
rectangular band. Accordingly, in this case B is a rectangular band of semilattices, that
is, a semilattice matrix (abbrev., an SL-matrix). Of course, an SL-matrix is a normal
band. In this paper, we shall investigate the structure of CS-matrices and that of split
CS-matrices. If S is a completely regular semigroup, it is well-known that S is
uniquely decomposed into a semilattice A of completely simple semigroups {S,: A€ 4}
(see [1]). This decomposition is called the structure decomposition of S, and denoted
by S~X{S,: Ae 4}.

Hereafter the terminology “a completely regular semigroup S=X{S,: le A}”
means “S is a completely regular semigroup and has S~ Z{S,: 1€ A} as its structure
decomposition”. Further, it is also well-known that the least semilattice congruence
p on a completely regular semigroup S induces the structure decomposition of S.
Throughout the whole paper, if S is a completely regular semigroup, ps and ys denote
the least semilattice congruence on S and the y-congruence on E(S) respectively.
Every terminology and notation should be referred to [1], unless otherwise stated.

§2. CS-matrices

Let S be a y-compatible completely regular semigroup, and E(S) the set of all
idempotents of S. Since y is an equivalence relation on E(S), E(S) is decomposed into
y-equivalence classes {E,: 1€ A} (where each E, is a y-class). Now, put S;={xeS:
xx*, x*x € E, for some x* € V(x)}, where V(x) is the set of inverses of x.

LEMMA 2.1. (1) Each S, is a maximal Clifford subsemigroup of S.
(2 &£={S,: AeA} is the set of all maximal Clifford subsemigroups, and
S=2{S,: Le A} (where X denotes disjoint sum).

Proor. It is obvious that each E, is a subsemilattice of S. Let xeS;. Then,
xx*, x*x € E,; for some x* € V(x). ForanyeeE,, xex* is an idempotent and xx*xex* =
xex*=xex*xx*. Hence, xx*yxex*, and accordingly xex* e E;. Therefore, xE,x*c

2) Recently, the structure of CS-matrices has been also studied by Pastijn and Petrich [3], and the
paper [3] has appeared after the author announced the abstract of this paper in the above-mentioned
proceedings of the symposium. Some parts of this paper overlap with results of [3], though proofs
and approach are quite different.
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E,. Similarly, we have x*E;xcE,. Hence, S;={xe§: xx*, x*x € E;, XE;x*<E,,
x*E,x<E, for some x*e V(x)}. Therefore, S, is a maximal regular subsemigroup
having E, as the set of idempotents. Since E, is a semilattice, S; is an inverse
semigroup. Now, let xeS;. Then, xx*, x*x€E, for some x*€ V(x). Since S is
completely regular, there exists the group inverse x~! of x. Now, xx*yx*x implies
xx*xx~lyx*xxx~!=x*xx"1x, and accordingly xx~!yx*x. Therefore, xx~'eE,.
Thus, x"1€S,. Thatis, x has the group inverse x~! in S;. Consequently, S, is a
union of groups, and accordingly S; is a Clifford semigroup.

(2) Let Tbe a maximal Clifford subsemigroup of S. For any e, f'€ E(T) (the set
of idempotents of T), ef=fe. Hence, eyf, and accordingly e, fe E, for some 1€ A.
Therefore, E(T)<E,, and T<S,. Since Tis a maximal Clifford subsemigroup, T=S,.
Thus, & is the set of all maximal Clifford subsemigroups of S. It is obvious that
S=U{S,;: AeA}. Assume that xeS,nS,. Then, there exist x*, x* € V(x) such that
xx*, x*xeE, and xx*, x*xeE; Since xx*yx*x and xx*yx*x, we have xx¥=
xx*xx¥yx*xx¥x=x*x. Hence, xx*, x*x € E; N E;, and A=9." Therefore, S, N ;=0
for A#46.

As characterizations of a CS-matrix, we have the following®:

THEOREM 2.2. For a completely regular semigroup S, the following conditions
(1)—~(6) are equivalent:

(1) S is the disjoint sum of maximal Clifford subsemigroups of S.

(2) S is y-compatible.

(3) S is a matrix of Clifford semigroups, that is, S is a CS-matrix.

(4) For the least matrix congruence (that is, the least rectangular band congru-
ence) g on S, each og-class is a Clifford subsemigroup.

(5) S is an SL-matrix cryptogroup (that is, an SL-matrix of groups).

(6) The relation t on S defined by

2.1) xty if and only if [x][y]=[y][x]

is a matrix congruence, and [x][y]1=[y1[x] if and only if [xy1[yx]=[yx][xy], where
[u] denotes the identity of the maximal subgroup H, containing u.

PrROOF. (2)=>(1) follows from Lemma 2.1, and (1)<>(3) has been shown in
Pastijn [2]. Further, it is easy to see that (3)=>(2). (3)=(4): Since S is a CS-matrix,
there exists a matrix congruence #5 on S such that each ng-class is a Clifford subsemi-
group. Let e, f be idempotents of a ng-class. Then, ef=fe. Hence, eosefe=fefosf.
Therefore, eosf. Let xys be the ng-class containing xeS. For any yexys, there
exists a unique inverse y’ of y in xys. For aeS, let a be the os-class containing a.
Now, xx' 65x'x implies xx'=x'x, and hence X=X, that is, xogx’. Hence, xx"osX.

3) Several other characterizations of a CS-matrix have been also given by [3].
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Let yexns. Then, xys=yns, and yy'ogy. Since yy' nsxx’, we have yy'ogxx’,
and xogy. Therefore, yexog Thus, xn;cxos Since og is the least matrix
congruence, s=0s. (4)=(3): Obvious. (4)=(5): It is easy to see that a5 N pg=#%,
where 55 is the Rees H-relation on S. Put S/og=A and S/pg=Y. Then, S is H-
compatible,”) and S/ is isomorphic to a subdirect product A% Y of A and Y (where
% denotes a subdirect product). Since A% Yis an SL-matrix and since each #s-class
is a subgroup of S, S is an SL-matrix cryptogroup. (5)=>(3): Obvious. (6)=(4): It is
obvious that each og-class is a union of groups. Let eogf for e, fe E(S). Hence,
efosfe. Since oy is the least matrix congruence, ef v fe. Therefore, [ef 1[ fe]=1[ fel[ef]
and [e][f1=[f]1[e], that is, ef=fe. Thus, every og-class is an inverse semigroup, and
hence it is a Clifford subsemigroup. (5)=>(6): Let S be an SL-matrix 4% Y of groups
{H?: (o, i)e A% Y}, where A, Y are a rectangular band and a semilattice respectively,
and A% Yis a subdirect product of A4 and Y. It is obvious that each H? is an H-class
of S. Suppose that [x][y]=[y]1[x] for x, yeS. Then, (xy)#s=(yx)#s, where s
is the H-relation on S. Hence, [xy][yx]=[yx][xy]. Conversely, suppose that
[xyllyx]=[yx1[xy]. There exist H% H% such that xe H} and y € H3. Then,
xyeH}} and yxe H3}. Hence, [xyl[yx]eH}} and [yx][xy] € H%?, and hence
A=6. Forany led, S;=U{H: (& k)eAxY, ke Y} is a Clifford subsemigroup of
S. Since [x] € H% and [y]e H% and since S, is a Clifford semigroup, [x]1[y]=[y1[x].
Next, suppose that xty. Then, [x][y]=[y][x], and hence x, y € S, for some Ae A.
Let t* be the congruence on S which gives the decomposition of S into the Clifford
subsemigroups {S,: e A}. Then, t* is a matrix congruence and satisfies 7ct*.
Conversely, it is obvious that t*<+t. Accordingly, T=1*. Thus, 7 is a matrix
congruence.

From the theorem above, it is easy to see that a matrix decomposition (that is, a
rectangular band decomposition) of a CS-matrix S into Clifford subsemigroups {C,:
a€l'} is unique, and it is given by the least matrix congruence o5 on S. In this case,
each C, is a maximal Clifford subsemigroup of S. Further, it is also obvious that
o5|E(S) (the restriction of o to E(S))=ys.

LemMmA 2.3.  Let S be a CS-matrix, and {E,: A€ A} the y-classes of E(S). Then,
E,SE, is a Clifford subsemigroup of S, and S= U {E,SE,: Ae A}.

ProOF. For each le 4, let S;={xeS: xx* x*xeE, for some x*eV(x)}. As
was shown above, S, is a maximal Clifford subsemigroup. Hence, it is a og-class.
Therefore, we can consider A as a rectangular band and S as a matrix 4 of the maximal
Clifford subsemigroups {S;: A€ A}. Since A is a rectangular band, E,SE,cS, for
AeA. Conversely, let xeS,. Then, there exists a group inverse x~! of x in S,.
Hence, xx™'=x"!x € E;, and hence x=xx"!xx"'xe E,SE,. Hence, E,SE,=S5,.

To consider a description of all possible CS-matrices, we need only to construct all

4) A semigroup S is said to be H-compatible if Green’s H-relation is a congruence on .
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possible SL-matrices 2 of groups {N,: weQ} for a given SL-matrix Q and given

groups {H,: we Q}. This can be obtained as a special case of Schein’s theorem of [4]
which has given a construction of bands of unipotent monoids (see also [5]). However,
we omit to state it here again.

§3. Split CS—matriées

Let M=X{M,: e A} be a CS-matrix, and p,, the congruence which gives the
structure decomposition M ~X{M,: 1€ A}. We can consider M/p,,= A by identifying
each p,-class M, with Ae A. Let f be the natural homomorphism of M onto M lppm=
A; that is, the homomorphism f such that xf=4 if xe M,. If there exists a homo-
morphism g of A=M/p,, into M such that gf=e, (the identity mapping on 4), then M
is called split. Let M={M;,: Ae A} be a CS-matrix. Then, there exists an SL-matrix
(Lx R)%, where L, R are a left zero semigroup, a right zero semigroup, L x R the
direct product of L and R and (L x R) % 4 a subdirect product of L x R and 4, such that
M is an SL-matrix (L x R)% A of groups {H% ;,: ((i, j), ®) e (L X R)% A} (where each
HY, j,is an H-class of M). In this case, it is easy to see that M, =2{H}; jy: (i, ) el,},
where I,={(i, j): ((i, j), A) e (Lx R)% A}, for each 1€ A.

LemMa 3.1. M splits if and only if
(3.1) there exists (i, j) € Lx R such that HY; ;, exists in M for all a€ A.

PrROOF. Suppose that M satisfies (3.1). There exists (i, ))e Lx R such that
H, ; existsin M for allae A. Let Cy; ;= U {H§, ;) a€A}. Then, Cj isa Clifford
subsemigroup. Let % ;, be the idempotent of HY; ;, for all aeA. Now, define f:
A—M by af=ef; ;). Since Cy ;) is a Clifford semigroup, f is a homomorphism. On
the other hand, the mapping h: M— A defined by M,h={a} is a homomorphism of M
onto A. The congruence induced by h is py. Since fh=e¢, (the identity mapping on
A), M splits. Conversely, suppose that M splits. Then, there exists a surjective
homomorphism f: M/p,,—~M such that fh=éyy,,, where h is the natural homo-
morphism of M onto M/p,,. If we identify an element M, of M/p,, with 4, then we
can consider & and f as a surjective homomorphism of M onto A and a homomorphism
of A into M such that fh=e,. For every ae/, let af=e,. Then, e,e M,. Hence,
there exists (u, v) € L x R such that e,=ef, ,y and ((u, v), @) e (Lx R)% 4. For BeA,
similarly there exists (s, k)e Lx R such that ((s, k), p)e(Lx R)%A and eﬂ=efs, K-
Now, e,e5=(o)(B)=(@B)f=(Ba) f=(B)(af )=epe, Hence, efy,velir=elsisefu,o-
Since ¢, y)e% 1)» €% )€l are idempotents contained in H ), HY ,, respectively,
u=sand k=v. Thus, (u, v)=(s, k). Consequently, H, ,, exists for every A€ 4.

Now, let M ~X{M,: Ae A} be the above-mentioned split CS-matrix.
Then, M is an SL-matrix (L x R)% A of H-classes {H¢; ;y: (i, j), ®) e (Lx R)% A}.
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Further, there exists (i, j) € L x R such that H &, ;) exists for all e A. Denote (i, j) by
(1, 1), and put C; ;,= U{H% ,): xeA}. It is obvious that C1,1) 1s a Clifford sub-
semigroup of M. Let I,={(i,j)e Lx R: ((i,]), ®)e(L x R) x A} for every aeA. Then,
M,= U {H} ,: (s, k)el,}. For any x e Hg 4y, x is uniquely written in the form x=
esiuefy, ue Hy, o), where e is the identity of HY, ,, for every ((s, k), ) e (L x R)x A

(see [1]). For x=efue}; e HY; ;), y=elvel, € HY, ,), ue H?, , and veHI, ),
(2 xy=ejued elvel,=eduelpitnellvel,, where ed el = plo-me HII |
Now,

(32) =e‘i5lell5 6'{’17[)(5 'l)eénueane

Next, (efiel/)?=el el e’ =efie?]. Hence, efel! is an idempotent of H{,,,
and hence efjed]=e}]. Thus, (3.2)=ef,(uelp$?-"eslv)esl. Put edipiemedl=q(om.
Then, g% e H¥ |y and ¢{3P =% for all o, ﬁe/l Further, (3.2)=e?!(ug3-"v)e].
It is easy to see that uq'%Mve Cy:y,and the product of u, g2 and v can be obtained in
the semigroup C(, ,,. Hence, if we rewrite x, y in the form x= [ul?;, y=[v]%, then

xy=[ul?;[v]h=[ug "ol
and M={[ul?;: (i, j), 6)e (LxR)% A, ue H} 1y}
Since ([uf,1[v19) 15 = [u]}([v]%[1]5,). we have
[ q(a n)vq(an ‘5)1]?,;’:— [uq(" ng)vq(n é)t];}:'t
Hence,

(33)  qiogn =g\2:mpgn  for all ve HY,.

Conversely, let L, R and 4 be a left zero semigroup, a right zero semigroup and a

semilattice respectively. Let (L x R)% A be an SL-matrix, where % denotes a subdirect
product, and assume that there exists (s, k) € L x R such that ((s, k), a) (L x R)¢ A for
all ae A.
Denote (s, k) by (1, 1). Let C(A) be a semilattice 4 of groups {HY 1) aed}. Of
course, C(A4) is a Clifford semigroup. Put M= {[ul?;: ueH, 4, (i, j), 5) e (L x R)x
A}. For 6,1, j, s such that (1, j), 6), (s, 1), n) e (L x R) % A, let ¢ be an element of
HY vy Put Q={q%": ((1, ), 6), ((s, 1), )y e (Lx R)x A}. Assume that Q satisfies
(3.3) for ((1, j), 9), ((s, 1), ), (1, k), ) and ((m, 1), &) of (L x R)% A and the following
(3.4):

(3.4) q\gP =egt for all o, fe A, where e3, is the identity of HY, 4.
In this case, if multiplication is defined in M by

[u] ij [U]Sk = [uq(a o ]161:,9
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then M becomes a split CS-matrix. The set Q above is called the sandwich matrix
of M over the Clifford semigroup C(A), and the split CS-matrix M above is denoted by
M(LXR)%4; C(4); Q).

Now, it follows from the results above that:

THEOREM 3.2. #((LxR)% A; C(A); Q) is a split CS-matrix. Conversely, every
split CS-matrix can be obtained in this way.

ReMARK. In Theorem 3.2, consider the case where A consists of a single element
« and C(A) is a group H¥, ;). Then, Q={g{%*: (j, )e Rx L}. Denote q}%* simply
by g5, and [u]f; simply by [u];;. Then, M(Lx R)y%{a}; Hf,1y; @ ={[uly;: (i, )De
Lx R} and

[ul; j[v]ks =[uqvl;.

That is, it is the regular Rees L x R-matrix semigroup with sandwich matrix Q over the
group H¢ ;). Hence, .#((Lx R)%A; C(A); Q) in Theorem 3.2 is a generalization of
the concept of a regular Rees matrix semigroup.
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