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Let S be a completely regular semigroup, and E(S) the partial subgroupoid of idempotents 

of S. Let r be a relation on E(S). 'If r is a congruence on E(S), that is, if r is an equivalence 

relation on E(S) and if xry and uTV satisf･y xuryv (if both xu and yv are defined in E(S)), then 

S is called a CS-matrix. Firstly, several characterizations of a CS-matrix are given 

Secondly, split CS-matrices are investigated. In particular, matrix representations of these 

semrgroups are discussed 

S 1. Prelimimary 

Let P be a partial groupoid, and y a relation on P as follows : 

(1.1) x y y if and only if both xy and yx are defined in P, and xy =yx. 

If y is a congruence on P, that is, 

(1.2) (1) xyxforall xeP, 

(2) x y y implies y y x, 

(3) xyy, yyz imply xyz, 

(4) if x y y, u y v and if both xu and yv are defined in P, then xu y yv, 

then P rs called y-compatible. In a completely simple semigroup C, it is obvious that 

the partial groupoid E(C) of idempotents of C (with respect to the multiplication in C) 

rs y-compatible. If the partial groupoid E(S) of idempotents of a regular semigroup S 

rs y-compatible, then S is called y-compatible. If a semigroup A is a rectangular band 

A of subsemigroups {A6 : 5 e A} of type j~, then we shall say that A is a matrix A of 

semlgroups {A ~ e A} of type j~. If A is a matrix of semigroups of type j~, then A is 

said to be a J~-semigroup matrix. For example, if A is a rectangular band of subgroups 

then A Is called a group matrix. If A is a rectangular band of Clifford subsemigroups 

(that is, semilattices of groups), then A is called a Clifford semigroup matrix (abbrev., 

1 ) An abstract of this paper was announced in the Proceedings of 9th Symposium on Semigroups 

and Related Topics, Naruto University of Teacher Education, 1 985 
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a CS-matrix).2) Let B be a y-compatible band, and p the least semilattice congruence 

on B. It is well-known that each p-class is a rectangular subband of B (therefore, B is 

a semilattice of rectangular bands). Now, it is also easy to see that p n y = cs (the 

identity congruence on B). Hence, B is isomorphic to a subdirect product of B/p and 

B/v･ Let e, feB. Since efee = eefe, efe v e. Hence, B/y is a rectangular band. Since 

B/p is a semilattice, B is isomorphic to a subdirect product of a semilattice and a 

rectangular band. 

Further, it is easy to see that the converse also holds ; that is, a band B is 

V-compatible if and only if it is isomorphic to a subdirect product of a semilattice and a 

rectangular band. Accordingly, in this case B is a rectangular band of semilattices, that 

is, a semilattice matrix (abbrev., an SL-matrix). Of course, an SL-matrix is a normal 

band. In this paper, we shall investigate the structure of CS-matrices and that of split 

CS-matrices. If S is a completely regular semigroup, it is well-known that S is 

uniquely decomposed into a semilattice A of completely simple semigroups {SjL : A e A} 

(see [1]). This decomposition is called the structure decomposjtion of S, and denoted 

by S-~{SA: ~ e A}. 

Hereafter the termmology "a completely regular semigroup S E ~{SA : ~ e A} " 

means "S is a completely regular semigroup and has S - ~{SA : ~ e A} as its structure 

decomposition". Further, it is also well-known that the least semilattice congruence 

p on a completely regular semigroup S induces the structure decomposition of S 

Throughout the whole paper, if S is a completely regular semigroup, ps and ys denote 

the least semilattice congruence on S and the y-congruence on E(S) respectively 

Every terminology and notation should be referred to [1], unless otherwise stated 

S 2. CS-matrices 

Let S be a y-compatible completely regular semigroup, and E(S) the set of all 

idempotents of S. Since v is an equivalence relation on E(S), E(S) is decomposed into 

y-equivalence classes {E;L : ~ e A} (where each Ek is a y-class). Now, put Sh = {x e S 

xx*, x*x e E~ for some x* e V(x)}, where V(x) is the set of inverses of x. 

LEMMA 2.1. (1) Each SA is a maximal Clifford subsemigroup of S. 

(2) ~P={SA: ~ eA} is the set of all maximal Clifford subsemigroups, and 

S=~{SA: ~ e A} (where ~ denotes disjoint sum). 

PRooF. It is obvious that each EA is a subsemilattice of S. Let x e SA. Then 

xx*, x*x e EA for some x* e V(x). For any e e EA, xex* is an idempotent and xx*xex*= 

xex*=xex*xx*. Hence, xx*yxex*, and accordingly xex* e EA. Therefore, xEhx*c 

2) Recently, the structure of CS-matrices has been also studied by Pastijn and Petrich [3], and the 

paper [3] has appeared after the author announced the abstract of this paper in the above-mentioned 

proceedings of the symposium. Some parts of this paper overlap with results of [3], though proofs 

and approach are quite different 
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EA. Srmilarly, we have x*EAx cEA. Hence, SA = {x e S : xx*, x*x e E;L. XEAX*CEA, 

x*EAx c E;L for some x* e V(x)}. Therefore, S1 is a maximal regular subsemigroup 

having EjL as the set of idempotents. Since EA is a semilattice, S;L is an inverse 

semigroup. Now, Iet x e SA. Then, xx*, x*x e EA for some x*:e V(x). Since S is 

completely regular, there exists the group inverse x~1 of x. Now, xx*yx*x implies 

xx*xx~1yx~xxx~1=x*xx~1x, and accordingly xx~1yx*x. Therefore, xx~1eEA. 
Thus, x~1eS;L' That is, x has the group inverse x~1 in SA. Consequently, SA is a 

umon of groups, and accordingly SA is a Clifford semigroup 

(2) Let T be a maximal Clifford subsemigroup of S. For any e, fe E(T) (the set 

of idempotents of T), ef=fe. Hence, e yf, and accordingly e, feE~ for some A e A 

Therefore, E(T) c EA, and Tc SA. Since T is a maximal Clifford subsemigroup, T=-S;L 

Thus, ~P is the set of all maximal Clifford subsemigroups of S. It is obvious that 

S= U {S;L : ~ e A}･ Assume that x e Sk n S~' Then, there exist x*, x# e V(x) such that 

xx*, x*x e EA and xx#, x#xeE3' Since xx*yx*x and xx#yx#x, we have xx#= 
xx*xx#yx*xx#x x x Hence xx# x*x e E n E~, and A=~.' Therefore, SA n S5=c:l 

for ~~5. 

As characterizations of a CS-matrix, we have the following3) 

THEOREM 2.2. For a completely regular semigroup S, thefollowjng conditions 

(1)-(6) are equivalent : 

(1) S is the disjointsum of maximal Clifford subsemigroups of S. 

(2) S is y-compatible. 

(3) S is a matrix of Clifford semigroups, that is, S is a CS-matrix. 

(4) For the least matrix congruence (that is, the least rectangular band congru-

ence) as On S, each as~class is a Clifford subsemigroup. 

(5) S is an SL-matrix cryptogroup (that is, an SL>matrix of groups). 

(6) The relation 1: on S defined by 

(2.1) x T y if and only if [x] [y] = [y] [x] 

is a matrix congruence, and [x][y] = [y][x] if and only if [xy][yx] = [yx][xy], where 

[u] denotes the jdentity of the maximal subgroup H~ containing u. 

Pp.ooF. (2)=>(1) follows from Lemma 2.1, and (1)
Pastijn [2]. Further, it is easy to see that (3)=>(2). (3)=>(4) : Since S is a CS-matrix, 

there exists a matrix congruence ns On S such that each ns~class is a Clifford subsemi-

group. Let e, f be idempotents of a ns~class. Then, ef=fe. Hence, e as efe =fefasf. 

Therefore, e asf. Let xns be the ns~class containing x e S. For any y e xns, there 

exrsts a unique inverse y' of y in xns' For a e S, Iet d be the as~class containing a 

Now, xx'as x'x implies xx'=x'x, and hence ~ = 5~', that is, x as x'. Hence, xx' ors x 

3) Several other characterizations of a CS-matrix have been also given by [3] 
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Let y e xns' Then, xns=yns, and yy' asy. Since yy'ns xx', we have yy'asxx', 

and x as y. Therefore, y e x as' Thus, xns (~ xas' Since as is the least matrix 

congruence, ns = as' (4)=>(3) : Obvious. (4)=>(5) : It is easy to see that (rs n ps=~~s, 

where _~~:s is the Rees H-relation on S. Put Slcrs =A and S/ps=Y. Then, S is H-

compatible,4) and Sl~~s is isomorphic to . a subdirect product A ~c Y of A and Y (where 

~: denotes a subdirect product). Since A ~( Y is an SL-matrix and since each ~~:s~class 

is a subgroup of S, S is an SL-matrix cryptogroup. (5)=>(3) : Obvious. (6)=>(4) : It is 

obvious that each crs~class is a union of groups. Let e asf for e, feE(S). Hence, 

efasfe. Since aS is the least matrix congruence, efTfe. Therefore, [ef][fe] = [fe] [ef] 

and Le] [f] = [f] [e], that ,is, ef=fe. Thus, every as~class is an inverse semigroup, .and 

hence it is a Clifford subsemigroup. (5)=>(6) : Let S be an SL-matrix A ~( Y of groups 

{H~ : (oc, i) e A ~c Y}, where A, Y are a rectangular band and a semilattice respectively, 

and A ~ Y is a subdirect product of A and Y. It is obvious that each H~ is an H-class 

of S. Suppose that [x][y] = [y][x] for x, y e S. Then, (xy)~:s' = (yx)~:s, where ~~:s 

is the H-relation on S. Hence, [xy][yx] = [yx][xy]. Conversely, suppose that 

[xy][yx] = [yx][xy]. There exist H~, H~ such that x e H~ and y e H~･ Then, 

xy e H,4J~ and yx e H~~･ Hence, [xy][yx] e HiAJ~ih and [yx][xy] e H~,~J~, and hence 

~=~. For any ~ e A, S~ = U {H~ : (~, k) e A ~c Y, k e Y} is a Clifford subsemigroup of 

S. Since [x] e H~ and [y] e H~ and since SA is a Clifford semigroup, [x] [y] = [y] [x] 

Next, suppose that x T y. Then, [x][y] = [y][x], and hence x, y e S;L for some ~ e A. 

Let T* be the congruence on S which gives the decomposition of S into the Clifford 

subsemigroups {S~ : ~ e A}. Then, T* is a matrix congruence and satisfies T c T* 

Conversely, it is obvious that T*cT. Accordingly, T = T*. Thus, T is a matrix 

congruence. 
From the theorem above, it is easy to see that a matrix decomposition (that is, a 

rectangular band decomposition) of a CS-matrix S into Clifford subsemigroups {C. 

oc e F} is unique, and it is given by the least matrix congruence ors on S. In this case, 

each C* is a maximal Clifford subsemigroup of S. Further, it is also obvious that 

aslE(S) (the restriction of as to E(S)) = ys' 

LEMMA 2.3. Let S b.e a CS-matrix, and {EA: ~ e A} the y-classes of E(S). Then 

EASEA is a Clifford subsemigroup of S, and S= U {EASEf.: ~ e A}-

PRooF. For each ~ e A, Iet Sh={x e S: xx*, x*x e EA for some x* e V(x)}. As 

was shown above, Sh is a maximal Clifford subsemigroup. Hence, it is a as~class 

Therefore, we can consider A as a rectangular band and S as a matrix A of the maximal 

Clifford subsemigroups {SA : ~ e A}. Since A is a rectangular band, EJLSEA c SA for 

~ e A. Conversely, Iet x e SA. Then, there exists a group inverse x~1 of x in SA. 

Hence, xx~1 = x~1x e EA, and hence x = xx~1xx~1x e EjLSE;L' Hence, EASE;L = S;L 

To consider a description of all possible CS-matrices, we need only to construct all 

4) A semigroup S is said to be H-compatible if Green's H-retation is a congruence on S 
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possible SL-matrices Q of groups {N~ : co e Q} for a given SL-matrix Q and given 

groups {H~ : co e Q}. This can be obtained as a special case of Schein's theorem of [4] 

which has given a construction of bands of unipotent monoids (see also [5]). However, 

we omit to state it here again. 

S 3. Split CS-matrices 

Let M E ~{MA : ~ e A} be a CS-matrix, and pM the congruence which grves the 

structure decomposrtron M - ~{M ~ e A} We can consider MlpAf = A by identifying 

each pM-class Mj~ with ~ e A. Let f be the natural homomorphism of M onto MlpM = 

A ; that is, the homomorphism f such that x_f= ~ if x e MA. If there exists a homo-

morphism g of A = M/pM into M such that gf= 8A (the identity mapping on A), then M 

is called split. Let M s {MA: ~ e A} be a CS-matrix. Then, there exrsts an SL-matrix 

(L x R) ~c A, where L, R are a left zero semigroup, a right zero semrgroup, L x R the 

direct product of L and R and (L x R) ~ A a subdirect product of L x R and. A, such that 

M is an SL-matrix (L x R) ~f A of groups {H~i,j) : ((i, j), oc) e (L x R) ~c A} (where each 

H~i,j) rs an H-class of M). In this case, it is easy to see that MA=~{Hti,j) : (i, j) e lh}, 

where IA = {(i, j) : ((i, j), ~) e (L x R) ~c A}, for each ~ e A 

LEMMA 3.1. M splits if and only if 

(3.1) there exists (i, j) eLX R such that H~i,j) exists In Mfor all oceA 

PROoF. Suppose that M satisfies (3.1). There exists (i, j) e L x R such that 

H~i,j) exists in M for all oc e A. Let C(i,j) = U {H~i,j): oc e A}. Then, C(i,j) rs a Clifford 

subsemigroup. Let e~i,j) be the idempotent of H~i,j) for all oc e A. Now, define f: 

A->M by otf= e~i,j)･ Since C(i,j) rs a Clifford semigroup, f is a homorDOrphism. On 

the other hand, the mapping h : M->A defined by M.h = {oc} is a homomorphism of M 

onto A. The congruence induced by h is pM. Since fh = eA (the identity~mapping on 

A), M splits. Conversely, suppose that M splits. Then, there exists a surjective 

homomorphism f: M/pM->M such that fh = eMlp*' where h is the natural homo-

morphism of M onto M/pM. If we identify an element Mh of M/pM With ~, then we 

can consider h and .f as a surjective homomorphism of M onto A and a homomorphism 

of A into M such that fh = eA. For every oc e A, Iet oif= e.. Then, e* e M*. Hence, 

there exists (u, v) e L >

similarly there exists (s, k) e L x R such that ((s, k), p) e (L x R) ~c A and ep = e(P.,k) 

Now, e.ep = (otf)(.Pf) = (c(p)f= (poc)f= (Pf)(oif) = epe.. Hence, e~~,･)ef･,k) = e(p.,k)e~~,･) 

Since e("~,.)e(P.,k), e(".,k)e~~,･) are idempotents contained in H~e k), H(",~ .) respectively, 

u = s and k = v. Thus, (u, v) = (s, k). Consequently, H(A~,.) exists for every ~ e A. 

Now, Iet M -~{MA : ~ e A} be the above-mentioned split CS-matrix. 

"., . : ((i, j), oc) e (L x R) ~c A} Then, M is an SL-matrix (L x R) ~c A of H classes {H(, J) 
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Further, there exists (i, j) e L x R such that H~i,j) exists 'for all oc e A. Denote (i, j) by 

(1, 1), and put C(1,1)= U {H~1'1): oe e A}. It is obvious that C(1,1) rs a Clifford sub-

semigroup of M. Let I.={(i,j) e L x R : ((i,j), oc) e(L x R) ~cA} for every oceA. Then 

M.= U {H(".,k): (s, k) e I.}. For any x e H(".,k), x is uniquely written in the form x = 

e~lue~k, u e H(1,1), where e."k is the identity of H(",,k) for every ((s, k), oe) e (L x R)~c A 

(see [1]) For x=e~lue~j e H~i j), y=e~lve~k e H(n, k), u e H~l 1) and v e Hn 

6 8n (6 n)e6nven where e6 en _ (3.2) . p(J'~, n) e lT . xy = ei luel je*1velk ( 1. I ) = eil ue 1 I pj*' I 1 Ik, . -* IJ .1 
Now, 

(3.2) = e~1e~fue~~p}'~,n)e~qve~~e~k. 

Next, (e~le~r)2=e~1e~ie~~=e~le~f. Hence, 'e~le~f is an idempotent of H~in 1), 

and hence e~le~f=e~f: Thus, (3.2)=e~l(ue~~p;･~,n)e~~v)e~~. Put e~lp(j'~,n)e~l=q}.~,n) 

Then, q;p.,n) e H~f, 1) and q~~'P)=e~q fdr all cc, fi e A. Further, (3.2)=e~f(uq;･~･n)v)e~~ 

It is easy to see that uq;･~,n)v e C(1;1) and the product of u,' q}.~, n) arid v can be obtained in 

the emrgroup C(1 1) , .' Hence, if ~re rewrite- x, y in the form x = [u],~j, y = [v],nk, then 

xy=[u]~j[v],nk=[uq('6,n) 6n 
v
]
 j* ik 

and M={[u]~j : ((i, j), ~) e (L x R)~cA, u e H~l'l)}' 

Smce ([u,J][v],k)[t]~~ [u],J([v],k[t]~~). we have 

[uq;･~,n)vq~6"n ~)t] ~l~ [uq;~ n~)vq~~ ~)t] ,1~ 

Hence, 

q}~n)vq~5"n,~)=q(~ n~) (n,~) for all veH11 (3 . 3) . j*'. vqk~ 

Conversely, Iet L, R and A be a left zero semigroup, a right zero semigroup and a 

semilattice respectively. Let (L x R) ~c A be an SL-matrix, where ~ denotes a subdirect 
prodtct, and ~ssume that there exists (s, k) e L x R such that ((.s, k), cc) (L x R) ~( A for 

all c~ e A. ' 

Denote (s, k) by (1, 1). Let C(A) be a semilattice A of groups {H~l'l): oc e A}. Of 

course, C(A) is a Clifford semigroup. Put M = {[u],cj : u e H~l'l)' ((i, j), ~) e (L x R) ~c 

A}. For 3, n, j, s such that ((1, j), 6), (.(s, 1), n) e (L x R)~cA, Iet q;･~,n) be an element of 

H~n put Q={q;･~,n): ((.1, j), ~), ((s, 1), n) e (L x R) ~ A}. Assume that Q satisfies 
(1'1)' 

(3.3) for ((1, j), ~), ((s, 1), n), ((1, k), n) and ({m, 1), ~) of (L x R)~cA and the following 

(3.4) : 

(3.4) q[1'P)=e~~ for all oc, P e A, where eil is the identity of H~1'1)' 

In this case, if multiplication is defined in M by 

(a n) 8n [u]~j[v],nk=[uqj.' v]ik, 
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then M becomes a split CS-matrix. The set Q above is called the sandwich matrix 

of M over the Clifford semigroup C(A), and the split CS-matrix M above is denoted by 

~((L x R) ~c A ; C(A) ; Q). 

Now, it follows from the results above that : 

THEOREM 3.2. J~if((L x R)~cA; C(A); Q) is a split CS-matrix. Conversely, every 

split CS-matrix can be obtained in th,is way. 

REMARK. In Theorem 3.2, consider the case where A consists of a single element 

oc and C(A) is a group H~l,1)' Then, Q={q}.~'") : (j, s) e R x L}. Denote q;･~,") simply 

by qJ., and [u],J snnply by [u],J Then ~~/((L x R)~c{oe} H~l,1); Q) = {[u]iJ (1 J) e 

L x R} and 

[u]ij[v]k* = [uqjkv]i* . 

That rs, it is the regular Rees L x R-matrix semigroup with sandwich matrix Q over the 

group H~i,1)' Hence, ~/((L x R)~A; C(A) ; Q) in Theorem 3.2 is a generalization of 

the concept of a regular Rees matrix semigroup. 
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