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Abstract. In this paper, we are concerned with the oscillation problem for the
nonlinear differential equation (φp(a(t)x′))′ + b(t)g(x) = 0, where φp(y) is the
one-dimensional p-Laplacian operator, and g(x) satisfies xg(x) > 0 if x 6= 0.

1. Introduction

The purpose of this paper is to improve oscillation and nonoscillation theorems
for the nonlinear differential equation

(1.1) (φp(a(t)x′))′ + b(t)g(x) = 0,

where φp(y) is a real-valued function defined by φp(y) = |y|p−2y with p > 1 a fixed
real number, and a(t) and b(t) are positive and continuous on some half-line (α,∞),
and g(x) is a continuous function on R satisfying the signum condition

(1.2) xg(x) > 0 if x 6= 0.

We assume throughout this paper that

(1.3)

∫ ∞

α

1

a(t)
dt < ∞.

A nontrivial solution x(t) of (1.1) is said to be oscillatory if there exists a sequence
{tn} tending to ∞ such that x(tn) = 0. Otherwise, it is said to be nonoscillatory .

When p = 2, equation (1.1) becomes the nonlinear self-adjoint differential equa-
tion

(1.4) (a(t)x′)′ + b(t)g(x) = 0,

which has been devoted to the study of the oscillation problem by many authors
(for example, see [3, 6, 7, 8, 9, 10]). Especially, using phase plain analysis of the
Liénard system, Sugie et al. [8] discussed the oscillation problem for equation (1.4)
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18 N. YAMAOKA

whether the integral of the function 1/a(t) is divergent or convergent. In case (1.3),
they gave the following pair of an oscillation theorem and a nonoscillation theorem.

Theorem A ([8, Theorem 3.1]). Let (1.2) and (1.3) hold. Suppose that a(t) and
b(t) satisfy

a(t)b(t)

(∫ ∞

t

1

a(τ)
dτ

)2

≥ 1

for t sufficiently large, and that there exists a λ with λ > 1/16 such that

g(x)

x
≥ 1

4
+

λ

(log |x|)2

for |x| sufficiently small. Then all nontrivial solutions of (1.4) are oscillatory.

Theorem B ([8, Theorem 3.2]). Let (1.2) and (1.3) hold. Suppose that a(t) and
b(t) satisfy

a(t)b(t)

(∫ ∞

t

1

a(τ)
dτ

)2

≤ 1

for t sufficiently large, and that g(x) satisfies

G(x)
def
=

∫ x

0

g(χ)dχ ≤ 1

2
x2 for x ∈ R

and
g(x)

x
≤ 1

4
+

1

16(log |x|)2

for x > 0 or x < 0, |x| sufficiently small. Then all nontrivial solutions of (1.4) are
nonoscillatory.

Equation (1.1) also includes a half-linear differential equation. In the study of
half-linear differential equations, its associated Riccati inequality plays an impor-
tant role in the oscillation of solutions (see [1, 2, 4, 5]). Using Riccati technique,
we can extend Theorems A and B to Theorems 1.1 and 1.2 below, respectively.

Theorem 1.1. Let (1.2) and (1.3) hold. Suppose that a(t) and b(t) satisfy

(1.5) a(t)b(t)

(∫ ∞

t

1

a(τ)
dτ

)p

≥ 1

for t sufficiently large, and that there exists a λ with

(1.6) λ >
1

2

(
p− 1

p

)p+1

such that

(1.7)
g(x)

φp(x)
≥

(
p− 1

p

)p

+
λ

(log |x|)2

for |x| sufficiently small . Then all nontrivial solutions of (1.1) are oscillatory.
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Theorem 1.2. Let (1.2) and (1.3) hold. Suppose that a(t) and b(t) satisfy

(1.8) a(t)b(t)

(∫ ∞

t

1

a(τ)
dτ

)p

≤ 1

for t sufficiently large, and that g(x) satisfies

(1.9) G(x) ≤ p− 1

p
|x|p for x ∈ R

and there exists a λ with

(1.10) 0 < λ <
1

2

(
p− 1

p

)p+1

such that

(1.11)
g(x)

φp(x)
≤

(
p− 1

p

)p

+
λ

(log |x|)2

for x > 0 or x < 0, |x| sufficiently small . Then all nontrivial solutions of (1.1)
are nonoscillatory.

Remark. Since Theorem 1.1 coincides with Theorem A when p = 2, Theorem 1.1 is
a complete generalization of Theorem A. Also Theorem 1.2 includes Theorem B if
λ 6= ((p−1)/p)p+1/2. From Theorem B, we see that all nontrivial solutions of (1.1)
are nonoscillatory in the case λ = ((p− 1)/p)p+1/2 with p = 2. For this reason, we
may conjecture that even if λ = ((p − 1)/p)p+1/2 with p 6= 2, then all nontrivial
solutions of (1.1) are nonoscillatory.

2. Transformation into a special case

In this section, we will find the canonical form of (1.1). For this purpose, we
define

s = s(t) =

(∫ ∞

t

1

a(τ)
dτ

)−1

, u(s) = x(t(s)),

where t(s) is the inverse function of s(t). Then we have

x′(t) =
ds

dt
u̇(s) =

s2

a(t)
u̇(s),

(φp(a(t)x′(t)))′ =
ds

dt
(φp(s

2u̇(s)))̇ =
s2

a(t)
(s2(p−1)φp(u̇(s)))̇

=
s2p

a(t)

(
(φp(u̇(s)))̇ +

2(p− 1)

s
φp(u̇(s))

)
,

where ˙ = d/ds, and therefore, equation (1.1) becomes the equation

(2.1) (φp(u̇))̇ +
2(p− 1)

s
φp(u̇) +

a(t(s))b(t(s))

s2p
g(u) = 0.

Since a(t) is positive for t ≥ α and satisfies (1.3), the functions s(t) and t(s) are
increasing and s(t) → ∞ as t → ∞. Hence, all nontrivial solutions of (1.1) are
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oscillatory (resp., nonoscillatory) if and only if all nontrivial solutions of (2.1) are
oscillatory (resp., nonoscillatory).

Let c(s) = a(t(s)) b(t(s))/s2p. Then conditions (1.5) and (1.8) coincide with
spc(s) ≥ 1 and spc(s) ≤ 1, respectively. Thus, Theorems 1.1 and 1.2 are rewritten
as an oscillation theorem and a nonoscillation theorem for equation

(2.2) (φp(x
′))′ +

2(p− 1)

t
φp(x

′) + c(t)g(x) = 0,

respectively.

Proposition 2.1. Assume (1.2) and suppose that c(t) satisfies

(2.3) tpc(t) ≥ 1

for t sufficiently large, and that there exists a λ with (1.6) satisfying (1.7) for |x|
sufficiently small . Then all nontrivial solutions of (2.2) are oscillatory.

Proposition 2.2. Let (1.2) and (1.9) hold. Suppose that c(t) satisfies

(2.4) tpc(t) ≤ 1

for t sufficiently large, and that there exists a λ with (1.10) satisfying (1.11) for
x > 0 or x < 0, |x| sufficiently small . Then all nontrivial solutions of (2.2) are
nonoscillatory.

3. Proof of Proposition 2.1

To prove Proposition 2.1, we prepare some lemmas. We first consider the follow-
ing lemma concerning properties of nonoscillatory solutions of (2.2).

Lemma 3.1. Assume (1.2) and suppose that c(t) satisfies (2.3) for t sufficiently
large, and that equation (2.2) has a nonoscillatory solution. Then the solution
tends to zero as t → ∞. Furthermore, if the solution is eventually positive, then
its derivative is eventually negative.

Proof. Let x(t) be a nonoscillatory solution of (2.2). Then, without loss of gener-
ality, we may assume that there exists a T > 0 such that x(t) > 0 for t ≥ T .

To begin with, we will show that there exists a t1 ≥ T such that x′(t1) < 0. By
way of contradiction, we suppose that x′(t) ≥ 0 for t ≥ T . Then x(t) ≥ x(T ) > 0
for t ≥ T . Hence, by (1.2) and (2.3), we have

(t2(p−1)φp(x
′(t)))′ = −t2(p−1)c(t)g(x(t)) ≤ −tp−2g(x(t)) < 0 for t ≥ T.

Integrating both sides of this inequality from T to t, we get

t2(p−1)φp(x
′(t)) ≤ T 2(p−1)φp(x

′(T )) for t ≥ T,

and therefore, x′(t) ≤ T 2x′(T )/t2 for t ≥ T . Integrate this inequality to obtain

x(t) ≤ T 2x′(T )

(
1

T
− 1

t

)
+ x(T ) ≤ Tx′(T ) + x(T ) for t ≥ T.

Define m1 = min{g(x) |x(T ) ≤ x ≤ Tx′(T ) + x(T )}. Then we have

(t2(p−1)φp(x
′(t)))′ ≤ −tp−2g(x(t)) ≤ −tp−2m1 for t ≥ T.
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Integrating both sides of this inequality from T to t, we get

t2(p−1)φp(x
′(t)) ≤ − m1

p− 1
(tp−1 − T p−1) + T 2(p−1)φp(x

′(T )) for t ≥ T.

Hence, x′(t) is negative for t sufficiently large. This is a contradiction to the
assumption that x′(t) ≥ 0 for t ≥ T . Thus, x′(t1) < 0 for some t1 > T .

Next, we will show that x′(t) < 0 for t ≥ t1. Suppose that there exists a t2 > t1
such that

(3.1) x′(t) < 0 for t1 ≤ t < t2 and x′(t2) = 0.

Since x(t) is a solution of (2.2), we have

x′′(t) = −2

t
x′(t)− c(t)g(x(t))

(p− 1)|x′(t)|p−2
= −x′(t)

(
2

t
+

c(t)g(x(t))

(p− 1)φp(x′(t))

)

for t1 ≤ t < t2. From (3.1) we see that

2

t
+

c(t)g(x(t))

(p− 1)φp(x′(t))
→ −∞ as t → t2 − 0.

Hence, there exists a τ > 0 such that x′′(t) < 0 for t2 − τ ≤ t < t2, and therefore,
x′(t) is decreasing for t2−τ ≤ t ≤ t2. Thus, we obtain x′(t) > x′(t2) for t2−τ ≤ t <
t2, which is a contradiction to (3.1). We therefore conclude that x(t) is decreasing
for t ≥ t1.

Finally, we will show that x(t) tends to zero as t →∞. Suppose that x(t) does
not tend to zero as t → ∞. Since x(t) is positive and decreasing for t ≥ t1, there
exists a µ > 0 such that x(t) → µ as t →∞. Let m2 = min{g(x) |µ ≤ x ≤ x(t1)}.
Then we have

(t2(p−1)φp(x
′(t)))′ ≤ −tp−2g(x(t)) ≤ −tp−2m2 for t ≥ t1.

Hence, integrating both sides of this inequality from t1 to t, we get

t2(p−1)φp(x
′(t)) ≤ − m2

p− 1
(tp−1 − tp−1

1 ) + t
2(p−1)
1 φp(x

′(t1)) for t ≥ t1.

Let L be a positive number satisfying Lp−1 < m2/(p − 1). Then there exists a
t3 > t1 such that

t2(p−1)φp(x
′(t)) ≤ −Lp−1tp−1 for t ≥ t3,

and therefore, x′(t) ≤ −L/t for t ≥ t3. Thus, we see that

x(t) ≤ −L log
t

t3
+ x(t3) for t ≥ t3.

This is a contradiction to the assumption that x(t) is positive for t ≥ T , thereby
completing the proof. ¤

We next consider some differential inequalities of the first order. For simplicity,
we denote

H(ξ) = (p− 1)

(
(−ξ)p/(p−1) + ξ +

(p− 1)p−1

pp

)
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for ξ < 0 and

γp =

(
p− 1

p

)p−1

with p > 1 a fixed real number.

Lemma 3.2. Suppose that the differential inequality

(3.2) ξ̇ + H(ξ) ≤ 0

has a negative solution on [s0,∞) with s0 > 0. Then the solution tends to −γp as
s →∞.

Proof. Since

H(−γp) = (p− 1)

{(
p− 1

p

)p

−
(

p− 1

p

)p−1

+
(p− 1)p−1

pp

}
= 0

and
d

dξ
H(ξ) = −p(−ξ)1/(p−1) + p− 1,

we see that H(ξ) > 0 if ξ 6= −γp. Let ξ(s) be a negative solution of (3.2) on [s0,∞).
Then ξ(s) satisfies

(3.3) ξ̇(s) = −H(ξ(s)) ≤ 0 for s ≥ s0.

Let u(s) be the positive function defined by

u(s) = exp

(
−

∫ s

s0

(−ξ(σ))1/(p−1)dσ

)

for s ≥ s0. Differentiate u(s) to obtain

u̇(s) = −u(s)(−ξ(s))1/(p−1) < 0 for s ≥ s0.

Hence, we get

(3.4) ξ(s) =
φp(u̇(s))

φp(u(s))
for s ≥ s0.

Differentiating both sides, we have

ξ̇(s) =
(φp(u̇(s)))̇

φp(u(s))
− (p− 1)

∣∣∣∣
u̇(s)

u(s)

∣∣∣∣
p

for s ≥ s0.

Hence, by (3.3) and (3.4), u(s) satisfies

(3.5) (φp(u̇(s)))̇ + (p− 1)φp(u̇(s)) +

(
p− 1

p

)p

φp(u(s)) ≤ 0 for s ≥ s0.

Put v(s) = u̇(s) + u(s). Then, by (3.5) we have

v̇(s) = ü(s) + u̇(s) ≤ −(p− 1)p−1φp(u(s))

pp|u̇(s)|p−2
< 0 for s ≥ s0.
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Suppose that there exists an s1 > s0 such that v(s1) < 0. Then we get v(s) ≤ v(s1)
for s ≥ s1. Since u(s) > 0 for s ≥ s1, we obtain

u̇(s) = v(s)− u(s) < v(s1) for s ≥ s1.

Therefore, we have

u(s) = v(s1)(s− s1) + u(s1) → −∞ as s →∞.

This is a contradiction. Hence, we see that u̇(s) + u(s) = v(s) ≥ 0 for s ≥ s0.
Thus, we get

(3.6) ξ(s) =
φp(u̇(s))

φp(u(s))
≥ −1 for s ≥ s0.

Using (3.3) and (3.6), we can find a µ such that −1 ≤ µ < 0 and ξ(s) → µ as
s →∞. If µ 6= −γp, there exists an s2 ≥ s0 such that

ξ̇(s) ≤ −H(ξ(s)) ≤ −H ((µ− γp)/2) < 0

for s ≥ s2. Then we obtain ξ(s) → −∞ as s → ∞ which is a contradiction to
(3.6). The proof is complete. ¤
Lemma 3.3. Suppose that the differential inequality

(3.7) η̇ +

(
η +

1

2

)2

+
δ

s2
≤ 0

has a solution on [s0,∞) with s0 > 0 where δ is a positive parameter. Then
δ ≤ 1/4.

Proof. Let η(s) be a solution of (3.7) and define

(3.8) h(s) = −η̇(s)−
(

η(s) +
1

2

)2

for s ≥ s0.

Then we have

(3.9) h(s) ≥ δ

s2
for s ≥ s0.

Changing variable t = es and let u(s) be the positive function defined by

x(t) = exp

(∫ log t

s0

η(σ)dσ

)
for t ≥ es0 .

Then, by (3.8) x(t) is a nonoscillatory solution of the linear differential equation

x′′ +
2

t
x′ +

1

t2

(
1

4
+ h(log t)

)
x = 0

It follows from (3.9) and Sturm’s comparison theorem that all nontrivial solutions
of

(3.10) x′′ +
2

t
x′ +

1

t2

(
1

4
+

δ

(log t)2

)
x = 0

are nonoscillatory. It is known that all nontrivial solutions of (3.10) are nonoscil-
latory if and only if δ ≤ 1/4 (for details, see [8]). The proof is now complete. ¤
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We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Let t0 be a large number satisfying (2.3) for t ≥ t0 and
let ε0 be a small number satisfying (1.7) for 0 < |x| < ε0. Since ε0 is sufficiently
small, by (1.6) we see that

(3.11)
γp

2
(1 + ε0)

(
p− 1

p
+ ε0

)2

< λ.

The proof is by contradiction. Suppose that equation (2.2) has a nonoscillatory
solution x(t). Then, without loss of generality, we may assume that x(t) is even-
tually positive. By Lemma 3.1 there exists a t1 > t0 such that 0 < x(t) < ε0 and
x′(t) < 0 for t ≥ t1.

Making the change of variable t = es, we can transform equation (2.2) into the
equation

(3.12) (φp(u̇))̇ + (p− 1)φp(u̇) + epsc(es)g(u) = 0.

Let u(s) be the solution of (3.12) corresponding to x(t). Then we have 0 < u(s) < ε0

and u̇(s) = tx′(t) < 0 for s ≥ log t1. Define

ξ(s) =
φp(u̇(s))

φp(u(s))

which is negative for s ≥ log t1. Differentiating ξ(s) and using (1.2), (1.7), (2.3)
and (3.12), we have

ξ̇(s) =
(φp(u̇(s)))̇

φp(u(s))
− (p− 1)

∣∣∣∣
u̇(s)

u(s)

∣∣∣∣
p

=
−(p− 1)φp(u̇(s))− epsc(es)g(u(s))

φp(u(s))
− (p− 1) |ξ(s)|p/(p−1)

≤ −(p− 1)ξ(s)−
(

p− 1

p

)p

− λ

(log u(s))2
− (p− 1)|ξ(s)|p/(p−1)

= −H(ξ(s))− λ

(log u(s))2
for s ≥ log t1.(3.13)

Hence, by Lemma 3.2 we see that

(3.14) ξ(s) ↘ −γp as s →∞,

and therefore, we have

u̇(s)

u(s)
≥ −p− 1

p
for s ≥ log t1.

Integrating both sides of this inequality from log t1 to s, we obtain

u(s) ≥ u(log t1) exp

{
−p− 1

p
(s− log t1)

}
for s ≥ log t1.

Hence, there exists an s1 > log t1 such that

u(s) ≥ exp

{
−

(
p− 1

p
+ ε0

)
s

}
for s ≥ s1.
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Thus, together with (3.13), we get

(3.15) ξ̇(s) ≤ −H(ξ(s))− λ

((p− 1)/p + ε0)2s2
for s ≥ s1.

From Taylor’s expansion theorem, there exists a 0 < K(ξ) < (p− 1)/p such that

(3.16) H(ξ) =
1

2γp

(ξ + γp)
2 +

p(p− 2)

6(p− 1)2
K(ξ)3−2p(ξ + γp)

3 for − γp ≤ ξ < 0.

Therefore, we can find an ε1 > 0 such that

(3.17) H(ξ) ≥ 1

2γp(1 + ε0)
(ξ + γp)

2 for − γp ≤ ξ ≤ −γp + ε1.

By (3.14) there exists an s2 ≥ s1 such that −γp ≤ ξ(s) ≤ −γp + ε1 for s ≥ s1. Let

η(s) =
ξ(s)− ε0γp

2γp(1 + ε0)
.

Then, from (3.17) we have

H(ξ(s)) ≥ 1

2γp(1 + ε0)
(ξ(s) + γp)

2 =
1

2γp(1 + ε0)
{2γp(1 + ε0)η(s) + γp(1 + ε0)}2

= 2γp(1 + ε0)

(
η(s) +

1

2

)2

for s ≥ s2.

Hence, by (3.15) we obtain

η̇(s) =
ξ̇(s)

2γp(1 + ε0)
≤ 1

2γp(1 + ε0)

{
−H(ξ(s))− λ

((p− 1)/p + ε0)2s2

}

≤ −
(

η(s) +
1

2

)2

− λ

2γp(1 + ε0)((p− 1)/p + ε0)2s2
for s ≥ s2.

Thus, from Lemma 3.3 we have

λ

2γp(1 + ε0)((p− 1)/p + ε0)2
≤ 1

4
,

which is a contradiction to (3.11). This completes the proof of Proposition 2.1. ¤

4. Proof of Proposition 2.2

Before proving Proposition 2.2, we will show that oscillatory solutions of (2.2)
tend to zero.

Lemma 4.1. Let (1.2) and (1.9) hold. Suppose that c(t) satisfies (2.4) for t suf-
ficiently large, and that equation (2.2) has a nontrivial oscillatory solution. Then
the solution tends to zero as t →∞.

Proof. Let x(t) be a nontrivial oscillatory solution of (2.2). Changing variable
t = es, we can transform equation (2.2) into the system

(4.1)
u̇ = φq(v),

v̇ = −(p− 1)v − epsc(es)g(u),
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where q = p/(p−1). Let (u(s), v(s)) be the solution of (4.1) corresponding to x(t).
Then there exists a sequence {sn} such that u(sn) = 0. Consider the function

U(u, v) =





1

q
|v|q + G(u) if uv ≤ 0,

G(u + φq(v)) if uv > 0.

Using (1.2) and (2.4), we have

U̇(4.1)(u, v) = −φq(v)((p− 1)v + epsc(es)g(u)) + g(u)φq(v)

= −(p− 1)|v|q + (1− epsc(es))g(u)φq(v)

≤ −(p− 1)|v|q ≤ 0 for vu ≤ 0,

U̇(4.1)(u, v) = g(u + φq(v)){φq(v)− (q − 1)|v|q−2((p− 1)v − epsc(es)g(u))}
= g(u + φq(v)){(1− (p− 1)(q − 1))φq(v)− (q − 1)epsc(es)|v|q−2g(u)}
= −(q − 1)epsc(es)|v|q−2g(u)g(u + φq(v)) < 0 for vu > 0.

Hence, by (1.9) we obtain

lim
s→sn+0

U(u(s), v(s)) = G(φq(v(sn)))

≤ p− 1

p
|v(sn)|p(q−1) =

1

q
|v(sn)|q = lim

s→sn−0
U(u(s), v(s)).

Put

V (s) =

{
U(u(s), v(s)) if s 6= sn,

lim
s→sn−0

U(u(s), v(s)) if s = sn.

Then we conclude that the function V (s) is piecewise continuous and decreasing for
s ≥ s1. Hence, v(s) is bounded, namely, there exists a B > 0 such that |v(s)| < B
for s ≥ s1.

To complete the proof, it suffices to show that V (s) tends to zero as s → ∞.
Suppose that there exists a V0 > 0 such that

V (s) ↘ V0 as s →∞.

Let SV0 = {(u, v) | U(u, v) < V0}. Then the solution (u(s), v(s)) does not enter
SV0 for s ≥ s1. The region SV0 consists of two bounded and disjointed parts and
encircles the origin.

We can find an ε0 so small that

{(u, v) | |u| < ε0 and |v| < ε0} ⊂ SV0

Since the positive orbit of (4.1) corresponding to (u(s), v(s)) rotates around the
region SV0 in a clockwise direction, there exists a sequence {σn} such that σn < sn,
|u(σn)| = ε0 and |v(s)| > ε0 for σn < s < sn. Hence, we have

ε0 = |u(sn)− u(σn)| =
∣∣∣∣
∫ sn

σn

u̇(s)ds

∣∣∣∣ =

∣∣∣∣
∫ sn

σn

φq(v(s))ds

∣∣∣∣ ≤ φq(B)(sn − σn),
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and therefore,

V0 − V (s1) ≤ lim
s→∞

(U(u(s), v(s))− U(u(τ1), v(τ1))) =

∫ ∞

s1

d

ds
U(u(s), v(s))ds

≤ −(p− 1)
∞∑

n=1

∫ sn

σn

|v(s)|qds ≤ −(p− 1)εq
0

∞∑
n=1

(sn − σn)ds

< −(p− 1)εq
0

∞∑
n=1

ε0

φq(B)
= −∞,

which is a contradiction. The lemma is proved. ¤
We are now able to prove Proposition 2.2

Proof of Proposition 2.2. We prove only the case that condition (1.11) is satisfied
for x > 0 sufficiently small, because the other case is carried out in the same
manner.

By (1.10) and (3.16), there exist an ε0 > 0 and an ε1 > 0 such that

(4.2) H(ξ) ≤ 1 + ε0

2γp

(ξ + γp)
2 for − γp ≤ ξ ≤ −

(
p− 1

p
− ε1

)p−1

and

(1 + ε0)λ <
1

2
γp

(
p− 1

p
− ε1

)2

.

Note that ε1 depends on ε0. Let

(4.3) δ =
(1 + ε0)λ

2γp ((p− 1)/p− ε1)
2 .

Then 0 < δ < 1/4. Define η(s) = −1/2 + z/s, where z = (1 +
√

1− 4δ)/2 > 0.
Then we see that η(s) satisfies equation

(4.4) η̇ = −
(

η +
1

2

)2

− δ

s2
.

We also see that there exists a τ > 0 such that

(4.5) η(τ) = −1

2
+

(1 + ε0)

2γp

(
−

(
p− 1

p
− ε1

)p−1

+ γp

)

and

(4.6) η(s) > −1

2
for s ≥ τ.

Let ε2 be a positive number satisfying

(4.7) log ε2 < −
(

p− 1

p
− ε1

)
τ.

and (1.11) for 0 < x < ε2.
The proof is by contradiction. Suppose that (2.2) has an oscillatory solution

x(t). Then, from Lemma 4.1 we see that x(t) tends to zero as t → ∞. Let u(s)
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be the solution of (3.12) corresponding to x(t). Since u(s) is also oscillatory and
tends to zero as s →∞, there exist an s1 and an s2 such that

(4.8) u(s1) = u(s2) = 0, u̇(s1) > 0, u̇(s2) < 0

and

(4.9) 0 < u(s) < ε2 for s1 < s < s2.

Note that we may assume that

(4.10) epsc(es) ≤ 1 for s1 < s < s2

by (2.4). Let

ξ(s) =
φp(u̇(s))

φp(u(s))
for s1 < s < s2.

Then, by (4.8) we have

lim
s→s1+0

ξ(s) = ∞ and lim
s→s2−0

ξ(s) = −∞.

Since ξ(s) is continuous on the bounded open interval (s1, s2), there exist an s∗ and
an s∗ such that s1 < s∗ < s∗ < s2,

(4.11) ξ(s∗) = −
(

p− 1

p
− ε1

)p−1

, ξ(s∗) = −γp

and

(4.12) −γp ≤ ξ(s) ≤ −
(

p− 1

p
− ε1

)p−1

for s∗ ≤ s ≤ s∗.

Hence, we have

u̇(s)

u(s)
= ξ(s)1/(p−1) ≤ −

(
p− 1

p
− ε1

)
for s∗ ≤ s ≤ s∗.

Integrating both sides of this inequality from s∗ to s ≤ s∗, and using (4.7) and
(4.9), we obtain

log u(s) ≤ −
(

p− 1

p
− ε1

)
(s− s∗) + log u(s∗)

< −
(

p− 1

p
− ε1

)
(s− s∗) + log ε2

< −
(

p− 1

p
− ε1

)
(s− s∗)−

(
p− 1

p
− ε1

)
τ

= −
(

p− 1

p
− ε1

)
(s− s∗ + τ) for s∗ ≤ s ≤ s∗.
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Hence, together with (1.11), (3.12), (4.2), (4.10) and (4.12), we have

ξ̇(s) =
(φp(u̇(s)))̇

φp(u(s))
− (p− 1)

∣∣∣∣
u̇(s)

u(s)

∣∣∣∣
p

=
−(p− 1)φp(u̇(s))− epsc(es)g(u(s))

φp(u(s))
− (p− 1)

∣∣∣∣
u̇(s)

u(s)

∣∣∣∣
p

≥ −(p− 1)

{
|ξ(s)|p/(p−1) + ξ(s) +

(p− 1)p−1

pp

}
− λ

(log u(s))2

= −H(ξ(s))− λ

(log u(s))2

> −1 + ε0

2γp

(ξ(s) + γp)
2 − λ

((p− 1)/p− ε1)
2 (s− s∗ + τ)2

for s∗ ≤ s ≤ s∗.

Put

(4.13) ζ(s) = −1

2
+

1 + ε0

2γp

(ξ(s + s∗ − τ) + γp) for τ ≤ s ≤ s∗ − s∗ + τ.

Then, from (4.3) we have

ζ̇(s) =
1 + ε0

2γp

ξ̇(s + s∗ − τ)

> −
(

1 + ε0

2γp

)2

(ξ(s + s∗ − τ) + γp)
2 − 1 + ε0

2γp

λ

((p− 1)/p− ε1)
2 s2

= −
(

ζ(s) +
1

2

)2

− δ

s2
for τ ≤ s ≤ s∗ − s∗ + τ.(4.14)

By (4.5) and (4.11), we have

η(τ) = −1

2
+

1 + ε0

2γp

(ξ(s∗) + γp) = ζ(τ).

Comparing equation (4.4) and inequality (4.14), we see that

(4.15) η(s) ≤ ζ(s) for τ ≤ s ≤ s∗ − s∗ + τ.

However, by (4.6), (4.11) and (4.13), we have

η(s∗ − s∗ + τ) > −1

2
and ζ(s∗ − s∗ + τ) = −1

2
.

This is a contradiction to (4.15) with s = s∗−s∗+τ . The proof is now complete. ¤
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