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ABSTRACT. Real hypersurfaces M’s in non-flat complex space forms such that
the symmetric part of the Ricci *-tensor of M is a constant multiple of the metric
are classified.

1. INTRODUCTION

This note is a continuation of our previous paper [1].
Let (M, ¢,&,m, g) be an almost contact metric manifold with Ricci tensor S. The
Ricci *-tensor S* is defined by

1
S*(X,)Y) = §trace(Z — R(X,0Y)oZ), X,)Y € TM.

An almost contact metric manifold is said to be *-Einstein if S* is a constant
multiple of the metric g on the holomorphic distribution 7°M.

It should be remarked that Ricci *-tensor is not symmetric, in general. Thus the
condition “x-Einstein” automatically requires a symmetric property of the Ricci
*-tensor.

On real hypersurfaces in almost Hermitian manifolds, almost contact structures
are naturally induced from the almost Hermitian structure of the ambient space.
In our previous paper [1], the first named author investigated real hypersurfaces in
non-flat complex space forms in terms of Ricci *-tensor. In particular, he classi-
fied *-Einstein real hypersurfaces in non-flat complex space forms whose structure
vector fields are principal.

The purpose of present note is to generalize the classification result of [1]. We
shall weaken the assumption “x-Einstein” to “the symmetric part of S* is a constant
multiple of g on T°M?”. More precisely, we shall prove the following two results.

Theorem 1.1. Let M be a connected real hypersurface of P,(C) of constant holo-
morphic sectional curvature 4c > 0. Assume that the symmetric part SymS* of
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Ricci x-tensor of M 1is a constant multiple of the induced metric over the holomor-
phic distribution and the structure vector field & is a principal curvature vector.
Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r (0 < r < w/(24/c)),
(ii) a tube over a totally geodesic complex projective space P,(C) of radius
7/(44/c), where 0 < k <n—1,
(ili) a tube over a complex quadric Qn—1 of radius r (0 < r < w/(4/c)).

Theorem 1.2. Let M be a connected real hypersurface of H,(C) of constant holo-
morphic sectional curvature 4c < 0. Assume that the symmetric part SymS™* of
Ricci x-tensor of M is a constant multiple of the induced metric over the holomor-
phic distribution and the structure vector field £ is a principal curvature vector.
Then M is an open subset of one of the following:
(i) a geodesic hypersphere of radius r (0 < r < 00),
(ii) a tube over a totally geodesic complex hyperbolic hyperplane of radius r
(0 <7< o),
(iii) a tube over a totally real hyperbolic space H"(R) of radius r (0 < r < 00),
(iv) a horosphere.

2. PRELIMINARIES

A complex n-dimensional Kéhler manifold of constant holomorphic sectional cur-
vature 4c is called a complex space form, which is denoted by ]\7” (4c). A complete
and simply connected complex space form is a complex projective space P,(C), a
complex Euclidean space C™ or a complex hyperbolic space H,(C), according as
c>0,c=0o0rc<0. Let M be a real hypersurface of a non-flat complex space
form Mn(llc).

Take a local unit normal vector filed N of M in Mn(élc). Then the Riemannain
connections V of Mn(llc) and V of M are related by the following Gauss formula
and Weingarten formula:

VxY = VxY 4+ g(AX,Y)N, XY € X(M),

VxN=-AX, X € X(M).
Here g is the Riemannian metric of M induced by the Kahler metric G of the
ambient space M, (4c). The (1,1)-tensor field A is called the shape operator of M
derived from N.

An eigenvector X of the shape operator A is called a principal curvature vector.
The corresponding eigenvalue \ of A is called a principal curvature. As is well
known, the Kéhler structure (J, G) of the ambient space induces an almost contact
metric structure (¢,&,7n,g) on M. In fact, the structure vector field & and its dual
1-form n are defined by

n(X)=g(& X)=G(JX,N), X cTM.
The (1, 1)-tensor field ¢ is defined by
g(¢X,Y)=G(JX,Y), X,Y €TM.
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One can easily check that this structure (¢,&, 7, g) is an almost contact structure
on M, that is, it satisfies

(1) P*X =X +n(X)E, nE) =1, ¢¢=0.
It follows that
Vx&=pAX.

Let R and R be the Riemannian curvature tensors of M, (4c) and M, respectively.

JFrom the expression of the curvature tensor R of M,,(4c), we have the following
equations of Gauss and Codazzi:

RX,V)Z = olg(Y,2)X — (X, Z)Y
+9(9Y, Z)0X — g(0X, Z)oY —29(¢X,Y)9Z)
+g(AY, Z)AX — g(AX, Z)AY,
(VxA)Y = (VyA)X = c(n(X)oY —n(Y)pX —29(¢X,Y)E).
To close this section, we recall the following two fundamental results (See e.g., [2]).

Lemma 2.1. If ¢ is a principal curvature vector, then the corresponding principal
curvature « s locally constant.

Lemma 2.2. Assume that & is a principal curvature vector and the corresponding
principal curvature is . If AX = AX for X 1 &, then we have (2\ — a)ApX =
(e +2¢)pX.

We refer to the reader [2] about general theory of differential geometry of real
hypersurfaces in complex space forms.

3. *-EINSTEIN REAL HYPERSURFACES

Let us denote by S* the Ricci x-tensor of a real hypersurface M which is defined
by

1
S*(X,Y) = étrace(Z — R(X,0Y)oZ).
Then the Gauss equation implies that
(2) SUXY) =2en(g(X,Y) = n(X)n(Y)) — g(¢APAX.Y),

forall X,Y € TM.
The Ricci x-operator QQ* is the linear endomorphism field associated to S*;

S*(X,Y) = g(Q*X,Y), X,Y €TM.

The trace p* of Q* is called the *-scalar curvature of M.
Let T°M be a distribution defined by a subspace

T°M ={X € T,M: X L&}

in the tangent space T, M. The formulas (1) imply that the distribution 7°M is
invariant under ¢. The distribution 7°M is called the holomorphic distribution of
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M. If the Ricci *-tensor is a constant multiple of the Riemannian metric for the
holomorphic distribution, .e.

*

S*(X,Y) = ﬁg()@ Y)

for XY € T°M on M, then M is said to be a x-Finstein real hypersurface.
The first author proved the following results in [1].

Proposition 3.1. Let M be a connected x-FEinstein real hypersurface of P,(C) of
constant holomorphic sectional curvature 4c > 0, whose structure vector field & is
a principal curvature vector. Then M s an open subset of one of the following:

(i) a geodesic hypersphere of radius r (0 < r < 7/(2+/c)),
(ii) a tube over a totally geodesic complex projective space Py(C) of radius
7/(4/c), where 0 < k <n—1,
(iii) a tube over a complex quadric Q,—1 of radius r (0 < r < w/(4/c)).

Proposition 3.2. Let M be a connected x-Finstein real hypersurface of H,(C) of
constant holomorphic sectional curvature 4c < 0, whose structure vector field & is
a principal curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r (0 < r < 00),
(ii) a tube over a totally geodesic complex hyperbolic hyperplane of radius r
(0 <7< o0),
(iii) a tube over a totally real hyperbolic space H™(R) of radius r (0 < r < 00),
(iv) a horosphere.

Now we take the symmetric part SymS* and the alternate part AltS* of Ricci
x-tensor S* of M,

SymS*(X,Y) %(S* (X,Y) + (Y, X)),

AltS*(X,Y) = %(S*(X, Y) - S*(Y, X)),

for any X, Y € TM.
Using (2), we see that

) SymS”(X,Y) = 2en(g(X,¥) = n(X)n(¥)
~ So((6AGA + AGAD)X, V),

(@) AlES* (X, Y) = %g((AqﬁAgb _ GAGAIX,Y).

4. PROOF OF MAIN THEOREMS

To prove our theorems, we need the following lemma.

Lemma 4.1. Let M be a real hypersurface of a non-flat complex space form ]Tjn(élc).
If € is a principal curvature vector, then the Ricci x-tensor of M is symmetric, i.e.

AltS* = 0.
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Proof. Let X be a unit principal curvature vector orthogonal to £ with principal
curvature X\. From Lemma 2.2, the tangent vector ¢X is also a principal curvature
vector. By calculating (4), we get AltS*(X,Y) = 0, for any X € T°M and Y €
TM.

On the other hand, by the assumption, we have ¢ ApA{ = 0 and (1) shows
ApApE = 0. Thus, we get AltS*(£,Y) =0 for any Y € TM. O

Proof of theorems. Now let M be a real hypersurface in M, (4c) with ¢ # 0 whose
SymS* is a constant multiple of g over T°M. Assume that the structure vector
field ¢ is principal. Then Lemma 4.1 implies that S*(X,Y) = SymS*(X,Y) for
X, Y € TM. Hence M is x-Einstein. This fact, together with Propositions 3.1 and
3.2, yields the required results. U
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