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Introduction

A helical curve (or a helix) is a curve in 3-dimensional space form M3(c) of
constant curvature c whose both curvature and torsion are constants. It reduces to
a Riemannian circle or a geodesic, if its curvature is constant and torsion is zero,
or if its curvature is zero, respectively. A helical curve is said to be a proper helix
if both curvaure and torsion are non zero constants.

As is well known, circular cylinders in Euclidean 3-space E3 contain these curves
as geodesics.

On the other hand, although a helicoid in E3 contains ordinary helices, they are
not geodecics. Furthermore, (meridian) circles on a surface of revolution in E3 are
not always geodesics. Based on these facts, we mean by a helical geodesic on a
surface M in M3(c) a curve which is helical as a curve in M3(c) and a geodesic as
a curve on M .

In our previous paper [12], we have shown that complete surfaces of constant
mean curvature in E3 on which there exist two helical geodesics through each
point are planes, spheres or circular cylinders.

In this paper we generalize this characterization obtained in [12] to Riemannian
space forms of non-negative curvature. More precisely we show the following result
for surfaces in the 3-sphere. We assume that all surfaces in M3(c) are smooth and
connected in this paper.
Theorem Let M be a complete surface of constant mean curvature in the 3-sphere
S3. If there exist two helical geodesics on M through each point of M , then M is
either a great sphere, a small sphere, or a Hopf torus over a circle.

1. Preliminaries

Throughout this paper, we denote by M3(c) the simply connected
3-dimensional Riemannian space form of constant curvature c with metric 〈·, ·〉.
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Without loss of generality, we may choose c = 0,±1. Namely M3(0) = E3 (Eu-
clidean 3-space), M3(1) = S3 (unit 3-sphere) or M3(−1) = H3 (unit hyperbolic
3-space).

Let M be surface in space form M3(c). Let X(M) be the Lie algebra of all
smooth tangent vector fields to M . Further, let D be the Levi-Civita connection
of M3(c), and let ∇ be the Levi-Civita connection of M with the metric induced
by 〈·, ·〉. Let ξ be a unit normal vector field to M . Then the second fundamental
form II of M derived from ξ is defined by the Gauss formula:

(1) II(X,Y )ξ = DXY −∇XY

for all X, Y ∈ X(M). The shape operator S of M derived from ξ is a (1,1)-tensor
field on M given by II(X,Y ) = 〈S(X), Y 〉 for all X, Y ∈ X(M). It is well known
that DXξ = −S(X) for all X ∈ X(M).

The shape operator S satisfies the Codazzi equation:

(2) (∇V S)W = (∇W S)V

for all vector fields V and W on M .
The Gaussian curvature K and the mean curvature H are computed by the

formulas:

K = c + det S, H =
1

2
tr S.

The determinant det S of S is called the Gauss-Kronecker curvatue of M in M3(c)
and denoted by Ke.

Let γ be a helical curve in M3(c) parametrized by the arc length. Then, by the
Frenet-Serret formula, there exist unit vector fields X, Y along γ and constants κ,
τ such that

Dγ′γ
′ = κX,

Dγ′X = −κγ′ + τY,

Dγ′Y = −τX,

where γ′ denotes the unit tangent vector field of γ. A helical curve with non-zero
curvature and zero torsion is called a Riemannian circle. A helical curve is said to
be proper if both κ and τ are non-zero.

Example 1. (Helices in S3) Let S3 be the unit 3-sphere imbedded in the Euclidean
4-space E4. A model helix in S3 ⊂ E4 is given by

γ(s) = (cos φ cos(as), cos φ sin(as), sin φ cos(bs), sin φ sin(bs)),

with
a2 cos2 φ + b2 sin2 φ = 1.

Here s is the arclength parameter. It is easy to see that γ lies in the flat torus:

x2
1 + x2

2 = cos2 φ, x2
3 + x2

4 = sin2 φ.

Note that this flat torus has constant mean curvature H = cot(2φ). The curvature
κ and torsion τ are given by

κ =
√

(a2 − 1)(1− b2), τ = ab.
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Every proper helix in S3 is congruent to one of these helices.

The following lemma due to Liouville (see e.g., p.291 in Spivak [11]) plays basic
role in our proof of Theorems 1 and 2.

Lemma 1.1. Let M be a Riemannian 2-manifold. If two families of
geodesics intersect at a constant angle everywhere on M , then M is flat.

To close this section, here we recall the classification of isoparametric surfaces
(surfaces with constant principal curvatures) in M3(c) with c ≥ 0 and flat surfaces
in E3.

Proposition 1.1. ([2], [5], [8]) Let M be a complete flat surface in Euclidean
3-space E3. Then M is a cylinder over a plane curve.

Let us denote by π : S3 → S2(4) be the Hopf fibering of S3 onto the 2-sphere
of curvature 4 and let γ̄ be a curve in S2(4) with curvature κ̄. Then the inverse
image M = π−1{γ} is a flat surface in S3. This flat surface has mean curvature
H = (κ̄◦π)/2 and called the Hopf cylinder over γ̄. In particular, if γ̄ is closed, then
M is diffeomorphic to torus and called the Hopf torus over γ̄ (H. B. Lawson. See
Pinkall [7]). The Hopf cylinder over a geodesic in S2(4) is the Clifford (minimal)
torus. Flat tori in S3 are classified by Kitagawa [3].

Proposition 1.2. ([4]) Let M be an isoparametric surface in E3. Then M is either
a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.

Proposition 1.3. (cf. [1]) Let M be an isoparametric surface in S3. Then M is
either a totally geodesic 2-sphere, or a totally umbilical 2-sphere or a Hopf tori over
circles.

2. Proof of Theorem

To prove Theorem, we give the following two results.

Theorem 2.1. Let M be a complete surface of constant mean curvature in space
form M3(c). If M has no umbilic points, and there exists a helical geodesic on M
through each point of M whose curvature (as a curve in M3(c)) is never zero, then
M is a “circular cylinder”.

Here by a “circular cylinder” in M3(c), c 6= 0, we mean a Hopf cylinder (torus)
over a circle in S3, and tubes (equidistant surface) around geodesics in H3. Note
that Theorem 2.1 holds for negative c.

Lemma 2.1. Let M be a surface of constant mean curvature in M3(c) and U be
an open set in M . Assume that there exist two families of asymptotic curves on
U all of which are geodesics in the ambient space. Then U is totally geodesic or
congruent to an open portion of a circular cylinder in E3 or a Hopf torus over a
circle in S3.

Proof. If U is totally geodesic then U admits two families of asymptotic curves
which are ambient geodesics.
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Thus without loss of generality, we may restrict our attention to the case U is
non totally geodesic.

Let α1 and α2 be the asymptotic curves on U through a point p ∈ U which are
geodesics as a curve in M3(c).

Let λ and 2H−λ be the principal curvatures of M with corresponding principal
vector fields E1 and E2. Here H is the mean curvature of M which is constant by
our assumption. Further let θ be the angle between E1 and α′1 so that

α′1 = cos θE1 + sin θE2,

α′2 = − cos θE1 + sin θE2,

where α′1 and α′2 denote the unit tangent vector fields of α1 and α2, respectively.
Put ∇E1E1 = αE2 and ∇E2E1 = βE2, then ∇E1E2 = −αE1 and ∇E2E2 = −βE1.
Then the Codazzi equation (2) implies

(3) ∇E1λ = −2β(λ−H), ∇E2λ = 2α(λ−H).

Since both asymptotic curves α1 α2 are geodesics in M ,

∇α′1θ + α cos θ + β sin θ = 0,(4)

∇α′2θ + α cos θ − β sin θ = 0.(5)

Since, α1 and α2 are asymptotic curves and II(E1, E1) = λ, II(E2, E2) = 2H − λ,

(6) λ cos2 θ + (2H − λ) sin2 θ = 0.

Differentiating (6) with respect to α′1 and α′2, and using (4) and (5), respectively,

α sin θ(3 cos2 θ − sin2 θ)− β cos θ(cos2 θ − 3 sin2 θ) = 0,

α sin θ(3 cos2 θ − sin2 θ) + β cos θ(cos2 θ − 3 sin2 θ) = 0.

Hence α or β is zero, 3 cos2 θ = sin2 θ, or cos2 θ = 3 sin2 θ. The equations (3) and
(6) imply that curvature lines are geodesics on U , since U is not totally geodesic.
As is well known, two families of curvature lines intersect at a constant angle π/2.
Therefore by Lemma 1.1, U is flat. Thus det S = −c. On the other hand, since
U admits two family of asymptotic curves, detS ≤ 0. Hence c ≥ 0. Moreover (3)
implies that U has constant principal curvatures. ¤

Theorem 2.2. Let M be a complete surface of constant mean curvature in M3(c)
of non-negative curvature. If there exist two helical geodesics on M through each
point of M , then M is either a totally geodesic surface, a totally umbilical surface,
a circular cylinder (c = 0) or a Hopf torurs (c > 0).

Proof. The case M3(c) = E3 is proved in [12]. It suffices to consider the case
M3(c) = S3.

If γ is a helical geodesic of M , then the following three cases will be occurred,
Case 1. κ 6= 0 and τ 6= 0. In this case we can take X = ξ in the Frenet-Serret

formula, because Dγ′γ
′ = II(γ′, γ′)ξ is normal to M . Then

Dγ′ξ = −κγ′ + τY and Dγ′Y = −τ ξ
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Case 2. κ 6= 0 and τ = 0. Also we can take X = ξ in the Frenet-Serret formula.
Then

Dγ′ξ = −κγ′.

Case 3. κ = 0. By the Gauss formula (1) and the Frenet-Serret formula,

II(γ′, γ′) = 0.

Now, let γ1 and γ2 be helical geodesics on M through a point p ∈ M . Then, by
Cases 1-3, we have following possibilities:

(i) γ1 and γ2 are ambient geodesics,
(ii) γ1 and γ2 are Riemannian circles,
(iii) γ1 and γ2 are proper helices,
(iv) γ1 is an ambient geodesic and γ2 is a Riemannian circle,
(v) γ1 is an ambient geodesic and γ2 is a proper helix,
(vi) γ1 is a Riemannian circle and γ2 is a proper helix.

Firstly suppose that the Gauss-Kronecker curvature Ke is positive at least one
point, and put

M1 = {p ∈ M | Ke(p) > 0}.
Then each point of M1 is a point of types (ii), (iii) or (vi). Let M11 be the set of
all umbilic points of M1 and M12 = M1 −M11. If M12 6= ∅, then K = 0 on M12 by
Theorem 2.1. This contradicts Ke > 0 on M12, so M1 is totally umbilic. Therefore,
M is a totally umbilic surface since M1 is open and closed.

Secondly suppose that Ke ≤ 0 on M and put

M2 = {p ∈ M | Ke(p) < 0}.
Then each point of M2 can be a point of all types (i)–(vi). Put

M21 = {p ∈ M2 | there exists a circle or a proper helix through p}
and M22 = M2 − M21. Then M2 = M21 ∪ M22 and it is easily seen that M2 =
Cl M21 ∪ Int M22 and M2 = Cl M22 ∪ Int M21. Here, for a set A, Cl A is the closure
of A, and Int A denotes the interior of A. Hence M21 or M22 has interior points;
or else M21 or M22 is dense in M2. Now we show that M2 is flat. If IntM21 6= ∅ or
M21 is dense in M2, then M2 is flat by Theorem 2.1. Next, if Int M22 6= ∅ and M22

is dense in M2. Then all asymptotic curves on M2 are ambient geodesics. Hence,
by Lemma 2.1, K = 0 on M2. Thus M2 = {p ∈ M | Ke(p) = −1}. Hece M2 is
closed. This implies that M is flat since M2 is open and closed.

Therefore M is a Hopf torus over a circle. Because M is complete flat and
isoparametric.

This completes the proof of Theorem 2.2. ¤

Appendix

Theorem 2.1 can be proved in much the same way in our previous paper [12].
For completeness and reader’s convinence (making the paper to be selfcontained),
we give the proof.
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First we recall the classification of complete flat surfaces and isoparametric sur-
faces in H3.
Proposition A.1 ([10],[13]) Let M be a complete flat surface in hyperbolic 3-space
H3. Then M is either a (totally umbilical) horosphere or an equidistant tube of a
geodesic in H3.
Proposition A.2 ([1]) Let M be an isoparametric surface in H3. Then M is either
a totally geodesic hyperbolic 2-space, or a totally umbilical surface or an equidistant
tube around a geodesic.

Proof of Theorem 2.1. Let γ be a helical geodesic on M through a point p ∈ M .
Then the Gauss formula (1) implies Dγ′γ

′ = II(γ′, γ′)ξ, which is normal to M .
Hence we can take X = ξ in the Frenet-Serret formula, that is,

(7) II(γ′, γ′) = κ, II(γ′, Y ) = −τ.

Let λ and 2H−λ be the principal curvatures of M with corresponding principal
vector fields on M , as before. Let θ be the angle between γ′ and E1 so that{

γ′ = cos θE1 + sin θE2,
Y = − sin θE1 + cos θE2.

Then, since II(E1, E1) = λ and II(E2, E2) = 2H − λ,

II(γ′, γ′) = λ cos2 θ + (2H − λ) sin2 θ,(8)

II(Y, Y ) = λ sin2 θ + (2H − λ) cos2 θ.(9)

The equations (7) and (8) imply κ = λ cos2 θ + (2H − λ) sin2 θ, hence by (9),
II(Y, Y ) = 2H − κ. Then the Gaussian curvature K of M is

K = c + II(γ′, γ′) · II(Y, Y )− {II(γ′, Y )}2,

= c + κ(2H − κ)− τ 2.

Since this must equal to c + λ(2H − λ), the function λ is constant along γ (and
hence 2H − λ is also constant along γ).

Now, differentiating (8) with respect to γ′,

(10) ∇γ′θ = 0

because M has no umbilic points. Put ∇E1E1 = αE2 and ∇E2E1 = βE2. Then
∇E1E2 = −αE1 and ∇E2E2 = −βE1. Since γ is a geodesic, from (10),

(11) α cos θ + β sin θ = 0.

On the other hand, using the Codazzi equation, we obtain (3). Hence, from the
fact that the normal part of Dγ′(λξ) vanishes and the equation (3),

(12) α sin θ − β cos θ = 0.

Therefore, from (11) and (12), α = β = 0 along γ. This implies all lines of curvature
on M are geodesics on M . Hence, as in the proof of Lemma 2.1, M is flat by Lemma
1.1 and hence M has constant principal curvatures λ and 2H − λ. Therefore M
is either a totally geodesic surface, totally umbilic surfaces or “circular cylinders”.
However by our assumtion, M is umbilic free. Thus M is a “circular cylinder”.

This completes the proof of Theorem 2.1. ¤
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