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INTRODUCTION

A helical curve (or a heliz) is a curve in 3-dimensional space form M3(c) of
constant curvature ¢ whose both curvature and torsion are constants. It reduces to
a Riemannian circle or a geodesic, if its curvature is constant and torsion is zero,
or if its curvature is zero, respectively. A helical curve is said to be a proper heliz
if both curvaure and torsion are non zero constants.

As is well known, circular cylinders in Euclidean 3-space £ contain these curves
as geodesics.

On the other hand, although a helicoid in E? contains ordinary helices, they are
not geodecics. Furthermore, (meridian) circles on a surface of revolution in E? are
not always geodesics. Based on these facts, we mean by a helical geodesic on a
surface M in M?3(c) a curve which is helical as a curve in M3(c) and a geodesic as
a curve on M.

In our previous paper [12], we have shown that complete surfaces of constant
mean curvature in F® on which there exist two helical geodesics through each
point are planes, spheres or circular cylinders.

In this paper we generalize this characterization obtained in [I2] to Riemannian
space forms of non-negative curvature. More precisely we show the following result
for surfaces in the 3-sphere. We assume that all surfaces in M?3(c) are smooth and
connected in this paper.

Theorem Let M be a complete surface of constant mean curvature in the 3-sphere
S3. If there exist two helical geodesics on M through each point of M, then M is
either a great sphere, a small sphere, or a Hopf torus over a circle.

1. PRELIMINARIES

Throughout this paper, we denote by M?3(c) the simply connected
3-dimensional Riemannian space form of constant curvature ¢ with metric (-, ).
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Without loss of generality, we may choose ¢ = 0,4+1. Namely M3(0) = E? (Eu-
clidean 3-space), M?(1) = S* (unit 3-sphere) or M*(—1) = H? (unit hyperbolic
3-space).

Let M be surface in space form M?3(c). Let X(M) be the Lie algebra of all
smooth tangent vector fields to M. Further, let D be the Levi-Civita connection
of M3(c), and let V be the Levi-Civita connection of M with the metric induced
by (-,-). Let & be a unit normal vector field to M. Then the second fundamental
form I of M derived from ¢ is defined by the Gauss formula:

(1) I(X,Y)E = DyxY — VyY
for all X, Y € X(M). The shape operator S of M derived from ¢ is a (1,1)-tensor
field on M given by I(X,Y) = (S(X),Y) for all X, Y € X(M). It is well known

that Dx& = —S(X) for all X € X(M).
The shape operator S satisfies the Codazzi equation:

(2) (VyS)W = (Vi S)V

for all vector fields V' and W on M.
The Gaussian curvature K and the mean curvature H are computed by the
formulas:

1
K =c+detS, H:§trS.

The determinant det S of S is called the Gauss-Kronecker curvatue of M in M3(c)
and denoted by K..

Let v be a helical curve in M?3(c) parametrized by the arc length. Then, by the
Frenet-Serret formula, there exist unit vector fields X, Y along ~ and constants &,
7 such that

D~ = kX,
D, X = —ry +7Y,
DY = —rX,

where v denotes the unit tangent vector field of 7. A helical curve with non-zero
curvature and zero torsion is called a Riemannian circle. A helical curve is said to
be proper if both x and 7 are non-zero.

Example 1. (Helices in S®) Let S* be the unit 3-sphere imbedded in the Euclidean
4-space E*. A model heliz in S® C E* is given by
v(s) = (cos ¢ cos(as), cos ¢ sin(as), sin ¢ cos(bs), sin ¢ sin(bs)),
with
a®cos® ¢+ b?sin® ¢ = 1.
Here s is the arclength parameter. It is easy to see that v lies in the flat torus:
x] + 13 = cos® ¢, a3 + 27 = sin’ ¢.
Note that this flat torus has constant mean curvature H = cot(2¢). The curvature
k and torsion T are given by

k=1/(a2 —1)(1—02), T = ab.
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Every proper heliz in S® is congruent to one of these helices.

The following lemma due to Liouville (see e.g., p.291 in Spivak [I1]) plays basic
role in our proof of Theorems 1 and 2.

Lemma 1.1. Let M be a Riemannian 2-manifold. If two families of
geodesics intersect at a constant angle everywhere on M, then M 1is flat.

To close this section, here we recall the classification of isoparametric surfaces
(surfaces with constant principal curvatures) in M?(c) with ¢ > 0 and flat surfaces
in E3.

Proposition 1.1. ([2], [5], [8]) Let M be a complete flat surface in Euclidean
3-space B3. Then M is a cylinder over a plane curve.

Let us denote by 7 : S* — S5%(4) be the Hopf fibering of S* onto the 2-sphere
of curvature 4 and let 4 be a curve in S?(4) with curvature 5. Then the inverse
image M = 7 '{y} is a flat surface in S®. This flat surface has mean curvature
H = (kom)/2 and called the Hopf cylinder over 7. In particular, if 7 is closed, then
M is diffeomorphic to torus and called the Hopf torus over 4 (H. B. Lawson. See
Pinkall [7]). The Hopf cylinder over a geodesic in S?(4) is the Clifford (minimal)
torus. Flat tori in S? are classified by Kitagawa [3].

Proposition 1.2. ([4]) Let M be an isoparametric surface in E3. Then M is either
a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.

Proposition 1.3. (¢f. [1]) Let M be an isoparametric surface in S®. Then M is
either a totally geodesic 2-sphere, or a totally umbilical 2-sphere or a Hopf tori over
circles.

2. PROOF OF THEOREM
To prove Theorem, we give the following two results.

Theorem 2.1. Let M be a complete surface of constant mean curvature in space
form M3(c). If M has no umbilic points, and there exists a helical geodesic on M
through each point of M whose curvature (as a curve in M3(c)) is never zero, then
M is a “circular cylinder”.

Here by a “circular cylinder” in M3(c), ¢ # 0, we mean a Hopf cylinder (torus)
over a circle in S3, and tubes (equidistant surface) around geodesics in H®. Note
that Theorem [2.1] holds for negative c.

Lemma 2.1. Let M be a surface of constant mean curvature in M?(c) and U be
an open set in M. Assume that there exist two families of asymptotic curves on
U all of which are geodesics in the ambient space. Then U is totally geodesic or
congruent to an open portion of a circular cylinder in E3 or a Hopf torus over a
circle in S3.

Proof. If U is totally geodesic then U admits two families of asymptotic curves
which are ambient geodesics.
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Thus without loss of generality, we may restrict our attention to the case U is
non totally geodesic.

Let a1 and a be the asymptotic curves on U through a point p € U which are
geodesics as a curve in M>3(c).

Let A and 2H — X be the principal curvatures of M with corresponding principal
vector fields F; and Es. Here H is the mean curvature of M which is constant by
our assumption. Further let 6 be the angle between E; and «] so that

o) = cosOF; + sinfE,,
ay = —cosOFE; +sinfF,,
where o) and o), denote the unit tangent vector fields of o and g, respectively.

Put VE1E1 = CYEQ and VE2E1 = ﬁEQ, then VE1E2 = —OéEl and VE2E2 = —ﬁEl
Then the Codazzi equation () implies

(3) Ve A=-28A—H), Vg\=2a(A—H).
Since both asymptotic curves a; ay are geodesics in M,
(4) Va0 + acost + Fsint = 0,
(5) Va0 +acosd — Bsind = 0.

Since, ap and ap are asymptotic curves and I(Ey, Ey) = A, I(Es, Ey) = 2H — ),
(6) Acos® 0 + (2H — \)sin* 0 = 0.
Differentiating (6) with respect to o/ and o), and using (@) and (5), respectively,
asin0(3 cos? @ — sin? 0) — B cosf(cos? § — 3sin ) = 0,
asin 0(3 cos? @ — sin? 0) + B cosf(cos? @ — 3sin? ) = 0.

Hence a or 3 is zero, 3cos? @ = sin? 6, or cos? @ = 3sin®6f. The equations (@) and
(@) imply that curvature lines are geodesics on U, since U is not totally geodesic.
As is well known, two families of curvature lines intersect at a constant angle /2.
Therefore by Lemma [[L1l U is flat. Thus det.S = —c. On the other hand, since
U admits two family of asymptotic curves, det S < 0. Hence ¢ > 0. Moreover (3))
implies that U has constant principal curvatures. 0]

Theorem 2.2. Let M be a complete surface of constant mean curvature in M?>(c)
of non-negative curvature. If there exist two helical geodesics on M through each
point of M, then M 1is either a totally geodesic surface, a totally umbilical surface,
a circular cylinder (¢ =0) or a Hopf torurs (c > 0).

Proof. The case M?(c) = E? is proved in [12]. It suffices to consider the case
M3(c) = S5.
If v is a helical geodesic of M, then the following three cases will be occurred,
CASE 1. k # 0 and 7 # 0. In this case we can take X = ¢ in the Frenet-Serret
formula, because D, = 1(v',7){ is normal to M. Then

D& =—ry+7Y and DY =-7¢
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CASE 2. k # 0 and 7 = 0. Also we can take X = ¢ in the Frenet-Serret formula.
Then

D ¢ =—kry.
CASE 3. k = 0. By the Gauss formula (Il) and the Frenet-Serret formula,
I(y',7") = 0.
Now, let v and 7, be helical geodesics on M through a point p € M. Then, by
Cases 1-3, we have following possibilities:

(i) ’yl and ~, are ambient geodesics,
(ii) 71 and -, are Riemannian circles,
(111) 1 and 7, are proper helices,
(iv) 1 is an ambient geodesic and 7, is a Riemannian circle,
(v) 71 is an ambient geodesic and s is a proper helix,
(vi) 71 is a Riemannian circle and v, is a proper helix.

Firstly suppose that the Gauss-Kronecker curvature K, is positive at least one
point, and put
My ={pe M | K.(p) > 0}.

Then each point of M; is a point of types (ii), (iii) or (vi). Let M;; be the set of
all umbilic points of M, and My = My — M. If My # 0, then K = 0 on M, by
Theorem 2.1l This contradicts K, > 0 on Mj,, so M; is totally umbilic. Therefore,
M is a totally umbilic surface since M; is open and closed.

Secondly suppose that K, < 0 on M and put

My ={pe M| Kp) <0}.
Then each point of M; can be a point of all types (i)—(vi). Put
My, = {p € M, | there exists a circle or a proper helix through p}

and Moy = My — Msy. Then My = My U My and it is easily seen that My, =
Cl My, UInt Myy and My = Cl Moy U Int Moy, Here, for a set A, Cl A is the closure
of A, and Int A denotes the interior of A. Hence Ms; or My, has interior points;
or else My; or My, is dense in M,. Now we show that M, is flat. If Int My # () or
My, is dense in M,, then M, is flat by Theorem 2.1 Next, if Int Moy # () and Mo,
is dense in M,. Then all asymptotic curves on M, are ambient geodesics. Hence,
by Lemma 21 K = 0 on My. Thus My = {p € M | K.(p) = —1}. Hece M, is
closed. This implies that M is flat since M5 is open and closed.

Therefore M is a Hopf torus over a circle. Because M is complete flat and
isoparametric.

This completes the proof of Theorem 2.2l [l

APPENDIX

Theorem 2] can be proved in much the same way in our previous paper [12].
For completeness and reader’s convinence (making the paper to be selfcontained),
we give the proof.
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First we recall the classification of complete flat surfaces and isoparametric sur-
faces in H?3.
Proposition A.1 ([10],[13]) Let M be a complete flat surface in hyperbolic 3-space
H3. Then M is either a (totally umbilical) horosphere or an equidistant tube of a
geodesic in H3.
Proposition A.2 ([1]) Let M be an isoparametric surface in H®. Then M is either
a totally geodesic hyperbolic 2-space, or a totally umbilical surface or an equidistant
tube around a geodesic.

Proof of Theorem[2.1. Let v be a helical geodesic on M through a point p € M.
Then the Gauss formula () implies D" = I(v',~')§, which is normal to M.
Hence we can take X = ¢ in the Frenet-Serret formula, that is,

(7) H<7177/) =K, H(’}/v Y) =T
Let A and 2H — X be the principal curvatures of M with corresponding principal
vector fields on M, as before. Let 6 be the angle between 4’ and FE; so that

{ ~v' = cosOF; + sin 0 Fs,
Y = —sinfFE; + cos O Es.
Then, since I(Ey, E1) = X and I(Es, Ey) = 2H — A,
(8) 0(+v,7) = Acos®6+ (2H — \)sin® 0,
(9) I(Y,Y) = Asin®6+ (2H — \) cos* 0.

The equations (7)) and (8) imply & = Acos?8 + (2H — )\)sin? 6, hence by (@),
I(Y,Y) = 2H — k. Then the Gaussian curvature K of M is

K = c+I(y,y)-I(Y,Y) = {I(y,Y)}?
= c+k(2H — k) — T2

Since this must equal to ¢ + A\(2H — \), the function A is constant along v (and

hence 2H — X is also constant along 7).
Now, differentiating () with respect to 7/,

(10) V.0 =0

because M has no umbilic points. Put Vg, E; = aF, and Vg, E; = fF,. Then
Vg FEy = —akE; and Vg, Ey = —(FE;. Since 7 is a geodesic, from ([I0),

(11) acosf + Bsinf = 0.

On the other hand, using the Codazzi equation, we obtain (). Hence, from the
fact that the normal part of D,/ () vanishes and the equation (),

(12) asinf — fcosf = 0.

Therefore, from ([[I]) and (I2)), « = § = 0 along . This implies all lines of curvature
on M are geodesics on M. Hence, as in the proof of Lemmal[2.1] M is flat by Lemma
[Tl and hence M has constant principal curvatures A and 2H — A. Therefore M
is either a totally geodesic surface, totally umbilic surfaces or “circular cylinders”.
However by our assumtion, M is umbilic free. Thus M is a “circular cylinder”.
This completes the proof of Theorem 2.1l O
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