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1. INTRODUCTION

This is an exposition on the Matts Essén’s part of the Lecture Notes in Mathe-
matics [2]. We supplement missing conditions and details of proofs in some state-
ments. Sections 2, 3, 4 and 5 in this article correspond to Sections 2, 4, 5 and 7
of that book, respectively. In Section 2] we study comparability, outer and inner
relations of the Hausdorff measure and net measures. In Section [l we discuss the
maximum principle and the continuity principle for potentials of measures, and
give more details than [2, Section 4]. In Section d we define a capacity and discuss
the existence and the uniqueness of the equilibrium measure. We mention relation-
ships among capacity, the Chebychev’s constant and the generalized diameter in
Section

2. HAUSDORFF MEASURES

2.1. Definition. Let h be a measure function, i.e. an increasing function from
(0, o0) to (0, 0o) such that lim, gk (r) = 0. We denote B(z, r) = {y € RY; |z —
yl <r}.

Definition 2.1 (Hausdorff measure). For E C RY we define

A (E) = inf{Zh(Tj) . EC UB(xj, ri), i < p}
J J
when 0 < p < 0o. A? is defined as the limiting value as p — 0.

It is easy to see that A} decreases when p increases, and thus A is well-defined.
AY is called the Hausdorff measure.

Theorem 2.1. A} is subadditive.
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16 H. KURATA

Proof. First we assume that 0 < p < co. Let {B (i, 7jx)}, be a covering of a set
Ej with rj, < p. Since {B (z;, )}, , is a covering of |J; Ej,

4 (Us) <SS nom,
J Jj ok
and thus
w(Us) <X,
J J

Letting p — 0 we have the result in the case p = 0. U

For an integer p let G, be the collection of cubes represented by a form
(n12_p, (ny +1) 2_p] XX (nNZ_p, (ny +1) 2_’)} for some integers nq, ..., ny.

Definition 2.2 (Net measures). For E C RY we define

M{ (B) = inf {Zh (@7); Ec|J@ Qet,, 27 < p}
J j
and

mh (E) = inf{Zh (2*”3') : EC <UQ3> , Q5 € Gy, 27 < p}.

If p =0, then we define as the limiting value.
We can prove similarly that M/ and m/ are subadditive.
2.2. Comparability.

Theorem 2.2. A}, M and mj, are comparable for each p and h; comparison
constants depend only on the dimension N.

Proof. We shall show that
A (E) <My (E) <comh (E) < c3A) (E) for any set E,

where ¢1, co and c3 are constants depending only on N. We may assume that p > 0.
The second inequality is trivial.
For the first inequality we take cubes {Qj}j such that F C | ;Qj and 0; < p,

where §; is the side length of @;. Then we can find {z;},", such that Q; C
j1 B (1, 6;) for each j. Since {B (w1, J;)}, ,, is a covering of £,

c1
AM(E)<D Y h(d)=c1 > h(5)).
J k=1 J
Therefore
N} (B) < el (B).
Next we shall prove the third inequality. Let {B (z;, r;)}, be a covering of E
such that r; < p. Let p; be an integer such that 2777 < r; < 277t Then we
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can find cubes {Q;,};*, such that B (z;, r;) C (Ujl, Q;x)° for each j and the side
length of Qi is 2777, where ¢4 is a constant depending only on N. Therefore

Cq
mh (E) <> Y h(27) <e ) h(ry),
i k=1 J
and thus

mg (E) < i (E).
Hence we conclude the result. O

Theorem 2.3. If 0 < p; < py < 00, then AY' and A} are comparable; comparison
constants depend on py/p1 and N.

Proof. Let {B (z;, r;)}; be a covering of E such that r; < p». Then we can find
{x;c},_, such that B(z;, r;) C Ui_; B (zjk, p17;/p2), where ¢ is a constant de-
pends on py/py and N. Since pi7;/p2 < p1,

C

A(E) <D Y hipirs/pe) < th(rj),

j k=1
and thus

Ay (E) < ehp? (B).
The opposite is clear, and the theorem is proved. O

Example 2.1. If 0 < p < oo, then there is a measure function h such that

(i) A and A3 are not comparable;
(ii) A? and AY) are not comparable.

Proof. () Take ¢ > pand let h(r) =rif0<r<cand h(r)=cifr>c. If Eis a
line segment of length I, then A° (E) < ¢ and A} (E) > [/2. Since [ is arbitrarily
large, the result follows.

(@) Let h(r) = /r and let E be a line segment whose length is [ with | < p.
Then A9 (E) = 0o and A? (E) < V1. O

Theorem 2.4. For 0 < p; < py < oo, A} (E) =0 if and only if A})* (E) = 0.

Proof. Tt 0 < p; < py < 00, then A (E) < AP (E) < AP (E) < AY) (E). Therefore
we have only to prove that A (E) = 0 implies AY (E) = 0. For given € > 0 there
is a covering {B;}; of E such that >, h(r;) <h(g). Since r; <e,

A;(E)gZh(rj)<h(g).

Letting € to 0, we have AY) (E) = 0. O
Theorem 2.5. Let hy and hy be measure functions such that

lim 727

r—0 h1 (7‘)

If A} (E) < oo, then A} (E)=0.
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Proof. Let {B (z;, r;)}; be a covering of E such that r; < p. Then

A? (E) < Z hy (r;) < sup ha (:3 Z hy (r;)

j 0<r<p hl (
therefore o ()
A (E) < sup 260 ().
ha ( ) — 0<rI<)p hl (7”) h1 ( )
The right hand side tends to 0 as p — 0, and thus the result follows. U

Theorem implies that M/ or m/ satisfies similar relations.

2.3. Hausdorff dimension. When & (r) = 7 with s > 0, A} is called the outer
s-dimensional Hausdorff measure. Theorem implies that there exists an sy > 0

such that
A, () = 00 %f0<s<30,
0 ifsg<s.

The number sq is called the Hausdorff dimension of E, denoted by dim (E).
Example 2.2. dim (E) =1 if E is a line segment.

Proof. Let E be a line segment with length [. Take an integer n such that [/n < p,
and cover E by n balls with radii [/n. If s > 1, then

A (E)<n(l/n)”—0 asn — oo.
Thus A (E) = 0.
Let {B (z;, r;)}, be a covering of ' with r; < p. Since the length of B (z;, r;)NE
is less than 2r;, we have ). 2r; > 1, and thus 2A? (E)) > I. Therefore 2A) (E) > 1.
Hence dim (£) = 1.
Since A} is subadditive, the conclusion follows immediately even when F is a
line with infinite length. 0

We can similarly prove that dim (£) = 2 when E is a square, and dim (£) = 3
when FE' is a cube, and so on. But when E is not such a set, it is intricate.

Example 2.3. dim (E) = log2/log3 if E is the 1/3-Cantor set.

Proof. Let Ey = [0, 1], By = [0, 1/3] U [2/3, 1], .... Then E =), E,. Since E, is
covered by 2" balls with radii 37",

AL (BE) <AL (Bp) <27 (377) = (2-379)".

If s > log2/log3, then the right hand side tends to 0 as n — oo, and thus
AY (E) =0, ie.
dim (F) < log2/log3.
Next we consider the opposite inequality. Let w be a union of finite number of
open intervals contained in [0, 1] and let A,, (w) be the number of intervals of £,
which intersects w. Then, since A, (w) < 24, (w), we have that A, (w)2™" is

decreases, and thus
¢ (w) := lim A, (w)27"

n—oo
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exists. Since A, (w1 Uws) < A, (w1) + 4, (w2),
P (w1 UWQ> S P (wl) + P (CUQ) .

If £ C w, then A, (w) = 2", and thus ® (w) = 1. Let I be an interval with length
d such that 3=t < d < 37", Then A, (I) < 1. Therefore

O(I) <A, (127" < 27" < (3d)"

where o = log 2/ log 3.
Let {I;}7, be a covering of E where /; is an open interval with length d;. Since
E' is compact, we may assume that m < co. Then

DAy =37 B (I) =370 ( Ij> =37
j=1 j=1 =1

J

=

Hence
A (E) > 37,
Therefore we have the result. O

2.4. Outer relations.
Theorem 2.6. If0 < p < oo, then A} (E) = inf {A} (O) ; O is open, E C O}.

Proof. Let {B (z;, r;)}, be a covering of E such that r; < p. Then, since {J; B (z;, r;)
is an open set containing F,

inf A} (0) < A} (LJJ Bj> < 23: h(r;),

therefore
irolf Az (0) < AZ ().

The opposite inequality is clear, and thus the theorem is proved. O
Similar discussion works for m,.

Theorem 2.7. If0 < p < 0o and h satisfies

liminf r*~Vh (r) = 0,

r—0
then M (E) = inf {M? (O) ; O is open, E C O}.

Proof. First we shall show that A} (A) = 0 where A is a face of a cube. From the
assumption we can take {r;}, such that r; \, 0 and
jli—{?o rjl-_Nh (r;) =0.

N

Take a covering {B (zj, r;)},2; of A, where n; < ¢r;™" and ¢ is a constant

depending on the side length of A. Then

AP (A) < Zh(rj) <eri™Mh(r;) — 0 as j — oo.
k=1
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By Theorem we can take an open set O containing A such that A} (O) is
arbitrarily small. Therefore Theorem 2.2 implies that M} (O) is arbitrarily small.

Let {Qj}j be a covering of E with Q; € G, . For given ¢ > 0, we can find a
covering {Q;x}, of an open set containing the faces of @); such that

Z h (5Jk) < 2_j6
k

where 0, is the side length of Q). Since ((U] Qj> U <U] Us ij>> is an open
set containing F,

inf M} (0) <3 h(5)+ Z;h(éjk) <D h(E) +e
J j j
Therefore
irolfM,f (0O) < M (E)+e.
Since ¢ is arbitrary, we have the result. 0
Example 2.4. There is a measure function h and a set E such that
A) (E) # inf {A} (O) ; O is open, E C O} .

Proof. Let h(r) = vN~1/2 and E a set of one point. Then A9 (E) = 0 and AY (O)
oo for any non-empty open set O, and thus the result follows.

Ol

Example 2.5. If h satisfies

liminf r'~h (r) > 0,

r—0
then M[ (E) # inf {M} (O) ; O is open, E C O} for some E.
See [3] for the proof.

2.5. Inner relations.
Lemma 2.1. When 0 < p < oo, if E,, /" E, then lim, .., M} (E,) = M} (E).

Proof. First assume that 0 < p < oo. If M (E,) = oo for some n, then the lemma
is trivial. Thus we may assume that M} (E,) < oo for all n.

For given € > 0 let &, = 27"c. For every n there is a covering {Qn;}; of E, such
that d,; < p and

> h(6n;) < M (E,) +en
J
where 9, is the side length of (),,;. For every cube @),,;,, since p < 0o, we can find
the largest cube in {Q; ; Qnyjo C Qnj}. We denote all such cubes by {Q;},. Fix
n. Let {ngl)}k ={Qi};, N{Qy;}; and 1 = E, N <Uk Qé”). Also let {ng)}k =
{an ; Qnj C U, le)}. Take x € C}. Since x € E,, there is a j with z € Q,,;.
Also there is an i with z € le). Since ;s are the largest, Q,; C le). Therefore
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(2

Qn; € {le,j}k, and thus z € |, st), i.e. Ch1 C U, ng) Since {Q1;}; \ {QEI)}
covers F; \ C1,

S h (55},3) ber 4+ MBI\ CY) > M (BN Cy) + e + M. (B \ Cy)
k
> MP(E) 4623 h@y) =S h (@“’) ML (BN CY).
J i

Hence

2. CHEDE > (5.
Let {Q,(E)}k - {QZ}’LQ<{Q2J}J \ {Qlj}j> and let { fk)}k = {Qn] L Quy C U, QZ(Q)}‘

Then
Ek: h(0) +2 > Z n(6?).

Repeat this argument. We have

33 () £ S () + S < )+ Yo

m=1 1 m=1 k
S M{(E)+en+ Y em
m=1

Therefore
M{(E) <> h(6) < lim Mf(E,)+e.

n—oo

Since ¢ is arbitrary,
M (E) < lim M} (E,).

n—oo

The opposite inequality is trivial, thus the lemma is proved in this case.
Next we consider the case p = 0. For € > 0 there is a p > 0 such that

M} (E) < M (E) +e¢.

Therefore
M} (E) < lim M} (E,)+¢ < lim M} (E,) +e.
Since ¢ is arbitrary, we have the lemma. O

If p = oo, then the same relation holds for a bounded set E. Also we can prove
a similar relation for m/.

Question 2.1. Does A} satisfy a similar relation?
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2.6. The Frostman lemma.

Theorem 2.8 (Frostman). (i) Let pu be a non-negative and subadditive set func-
tion such that p (B (x, r)) < h(r) for any x, then p(E) < Ay (E).
(ii) There is a constant ¢ such that, for any compact set F', there exists a mea-
sure p such that suppu C F, pu(F) > M (F), and p(B (z, r)) < h(r)
for any x.

Proof. (i) Take a covering {B (z;, 1)}, of E. Then
p(E) <> u(Blwg, ) <Y hi(ry),
J J

and thus we conclude the result.
(@) Take an integer p sufficiently large such that F C (—2P~1 2P71) x ... x

(—=2r~1, 2P71). For a fixed integer n we define measures { #?};L:,p as follows. Take

Qn € Gp. f QN F =0 then p} (Q,) =0forj=n,n—1,...,—p. fQ,NF #0,
then take a sequence {Qj}?:_p such that Q; € Gj and @, C Q,—1 C -+ C Q_,,
and let
MZ (Qn) =h (2—n) )
: h(277) .
:u’n(Qn):mln<1an—>/1’n (Qn) forj:n—l,n—2,,—p
! My (QJ) 7

where pf distributes uniformly in each Q.

Now we assume that @, N F # (. First we have u” (Q,) = h(27"). Next, if
122 (Qur) < h(2771) then

fin—1 (Qn) =ty (Qn) = h (27n) :
If 4" (Qn_1) > h(27"1), then every cube @', € G,, included in Q,,_; satisfies

n ooy = P o
Hp—1 (Qn> - MZ (Qn—l)un (Qn> ’
and thus h (2
ot (@not) = S (Quet) = h (27).

After several steps we have similarly that there is a j with —p < 7 < n such that
(2.1 i (Q) = h(27).

For every x € F, we take ), € G, including x and we take the smallest
J satisfying (ZI). We denote {Q™} = for all such cubes, ie. Q" € G,,, and

p, (Q™) = h(277m) for some jp,. Then F C |J,, @™ and Q™ NQ™ =0 if m #m'.
Therefore

(22) M (F) <> h(279m) => " u", Q™) < p”, (RY).

Let —p < j <nand Q; € G;. Then
p, (Q) < ply (Q) < - < i (Q)
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and h(279)
9—J .
n(0). B S ) =h(277).
1 (Qj) < i (Qj),UJH (@) ( )
Therefore
(2.3) u, Q) < h (277).

Since supp ", C (=2P, 2P) X - -+ x (=2, 2P) and the right hand side is included
in 2V cubes of G_,, (Z3) gives
(2.4) pt, (RY) < 2Vp (27).

Therefore by taking a subsequence we may assume that { /ﬂp}n converges weakly
to a measure u.

Let FE be a compact set with £ N F = (). Since supp p”, is disjoint from £ for
sufficiently large n, supp p is also disjoint from F| i.e. supppu C F.

Also from (2.2))

p(F) = lim g (RY) > M (F).
Finally, let B = B (a, r). If r > 2P, then we have by (2.4
p(B) < p (RY) = lim g2, (RY) < 2Vh(27) <2Vh(r).

If r < 2P, then we take p and j such that 277 < r < p < 27771 and we let ¢ be a
continuous function such that 0 < ¢ <1 and

1 if |z —a| <,
p () = .
0 if |z —al>p.

Since B (a, p) is covered by at most ¢ cubes of G; where ¢ is a constant depending
only on N, ([23) gives

p(B) = / pdu < /@duz lim /@du”p < lim u", (B (a, p)) < ch (277) < ch(r).
B n—oo n—oo
The measure ¢!y satisfies the theorem. 0

3. POTENTIAL THEORY

Let K (r) be a non-negative, decreasing and lower semi-continuous function such
that lim, o K (r) = oo, lim, o K (r) = 0 and

/ K (r)r¥~'dr < 0o for sufficiently small a > 0.
0

For simplicity we denote K (z) = K (]z|) for z € RY. Thus the assumption above
can be represented by
K (x) dr < .
lz|<a

We denote all of Radon measures by 91, and all of non-negative Radon measures
by MM+,
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Definition 3.1 (Potential and energy). For o, 7 € 9t we define the potential as

/ K (z —vy) do(y),
and the mutual energy as

(o, T) := /K:L’— ) do (y)dr (x /KJ ) dr (x

when they can be defined. If ¢ = 7, then we denote simply

Ix (0) := Ik (0, 0)

and we call it the energy.

Lemma 3.1. (1) If p € M* has finite mass, then K is lower semi-continuous.
(i) If {pn}, C M converges weakly to p € M, then

liminf Kp, () > Ku(x).

(iii) If {pn},, C MT and {v,,},, C IMT converge weakly to p € M* and p € M
respectively, then

lminf Iy (pn, vn) > Ik (1, v).

n—oo

Proof. (i) Let {K,}, be an increasing sequence of continuous functions with com-
pact supports which converges to K. Then {Kp,u}p is an increasing sequence of
continuous functions and converges to K u. Therefore Ky is lower semi-continuous.

() First we shall prove that du, (z) dv, (y) — du(z) dv (y). Let f(z, y) be
a continuous function with compact support. Also let By, B, and Bs be open
balls in RV such that supp f C By x B; and By C By C B, C Bs;. The Weier-
strass approximation theorem implies that there is a sequence {P,, (z, y)},, of
polynomials which converges uniformly to f (x, y) in By x By. We can take con-
tinuous functions {¢m;},, ; and {¢n;},, - such that ¢,; = 1hm; = 0 outside B; and

{Z i Omi () Ymg (y)} converges uniformly to f (z, y) in RY. Therefore, for given
e>0and any z, y € RV,

Zsomj ) Vg ()

< e for sufficiently large m.

Hence

lim sup / / [ (@, y) dpn (z) dv, (y)
gnmsup(//zsomj 2) U (9) dpo (&) dv (9) + pr (B2) n<B)>

n—oo

:hmsup<2/¢mj ) dpn (2 /% ) di (9) + <tin (Bo) n(B))

n—oo
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<y / o () dp (1) / g () dv (y) + 41 (Bs) v (Bs)

<[] 1 0) dute) v 9) + 220 (B (Ba),
Similarly we have the opposite inequality. Therefore

dpin () dvy (y) — dp(2) dv (y) .
Take K, as in (). Then

lminf I (pn, v >11m1nf//K (x —y) dun, (x) dv, (y)

n—oo n—oo

_ / K, (x —y) dy (z) dv (y)

Therefore the monotone convergence theorem implies the result.
() Since Ik (4, 9;) = Kp(x) where 6, is the Dirac measure at x, () implies
i O

Theorem 3.1 (Weak maximum principle). There exists a constant ¢ such that if
€M™ satisfies Ky < 1 on supp p, then Ku < ¢ everywhere.

Proof. We can find {e;}7_; C R such that |e;| = 1 and RV \ {z} = |J;_, I; for
z € RV \ supp u, where I'; = {y ; (e;, y — x) > |y — x| cos7/6} and (-, -) denotes
the inner product. Let &; be (one of) the closest point to = in I'; Nsupp p. Remark
that |y — &;| < |y — x| for any y € T'; N supp p. Therefore

DY [ Ka-n) i) <3 [ K6 - dut) < Kn(e) <

We denote Cyw = Cy (K) for the minimal constant satisfying Theorem Bl

Lemma 3.2. Let € MT. Then the following two conditions are equivalent :

(i) K,p converges uniformly to Ku on E where K, (x) := min (K (z), n);
(ii) For any e > 0, there is an n > 0 such that

/ K (zr—vy)du(y) <e foranyx€ E.

lz—yl<n

Proof. First suppose that the condition () holds, i.e. for any € > 0 and any z € E
/(K (x —y) — K, (xr—y)) du(y) <e for sufficiently large n.

Take 1 such that K () > 2n. Since K (r) — K, (r) > n for r < n,

nu(B(fc,n))é/B( ()~ Ko ) de ) < <



26 H. KURATA

and thus

[ Ke-pdiws [ Koy duly)+e =B ) 4= <2
B(x,n) B(z,n)

this means the condition (i) holds.

Next suppose that the condition () holds. If K (n) < n, then, since K (r) —
K,(r)=0forr >nand K (r) — K, (r) < K (r) for all r,

K (z) — Kopt () :/ (K (2 — ) — Ko (2 — 9)) dpt ()

lz—yl<n
S/ K(z—y) duly) <e,
lz—y|<n

this means the condition (i) holds. O

Definition 3.2 (Uniform convergence of potentials). Let p € 9*. Then Kpu
converges uniformly on a set E if p satisfies (one of) the conditions of Lemma B2

Lemma 3.3. Suppose that K is continuous on (0, 00). Let u € MY with finite
mass such that Ku converges uniformly on supp p. Then K is continuous every-
where.

Proof. From the assumption, for any € > 0, there is an n such that

/ K (x—y) du(y) <e for any x € supp p.
B(z,2n)

Let z be any point and let {z,}, be a sequence of points converging to z. Also let
= u|m and ps = p — py. If © € supp pg, then x € suppp and |z — z| < 7.
Therefore

Kul(w)Z/B( )K(m—y)du(y)ﬁ/ K (x—y) duy) <<

B(z,2n)

The weak maximum principle implies that
Kpy < Cwe  everywhere.

Next we consider
Kpa (2,) =/ K (20 —y) du(y) -
lz—y|>n

We may assume that |z, —y| > n/2. Since K (2, —y) is bounded, the bounded
convergence theorem implies

lim K (z0) = /| L KG) ) S Kn (o)

n—oo

Hence
limsup K (z,) < Cwe + Ku(2).

n—oo

Using Lemma 3.1 (i), we have the result. O
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Theorem 3.2 (Continuity principle). Suppose that K is continuous on (0, 00).
Let € M with compact support. If Kpu is continuous on supp p, then Ky is
continuous everywhere.

Proof. Since K, i is continuous and converges to Ku as n — oo, Dini’s theorem
implies that K, converges uniformly to Ky on supp u, i.e. Ky converges uniformly
on supp . Therefore Lemma gives the result. O

Lemma 3.4. Let u € M+ with finite mass such that Ky < oo p-a.e. For anye > 0
there exists a closed set ' such that (RN \ F) < e and Ku converges uniformly
on F. Moreover, if K is continuous on (0, 00), then Ku|p continuous everywhere.

Proof. Since K, converges to Ky, the Egorov theorem implies that there is a set
FE such that pu (RN \ E) < ¢ and K,u converges uniformly to Ku on E, i.e. for
any 0 > 0 we have

/(K (x—y)— K, (r—y)) du(y) <d forany x € E and sufficiently large n.

Let F' be the closure of E. It is clear that
p(RY\F) <e.
Now let z € F' and let {:Uj}j be a sequence in E which converges to x. Since K
is lower semi-continuous, Fatou’s lemma implies

/(K(:c—y) — Ky (z—y)) du(y) < /hminf (K (zj —y) — Ko (25 —y)) du(y)

Jj—oo
< liminf/ (K (2 —y) = Kn (z; —y)) du(y) < 0.
J]—00
Therefore Ky converges uniformly on F. Lemma [3.3] implies the remaining part.
O

Theorem 3.3 (Strong maximum principle). Suppose that K (r) is absolutely con-
tinuous and that K' (r)r™=1 is increasing. Then Cw (K) = 1.

Proof. When N > 3 we let H (t) = K (¢"/@~V). Then
H' (t) = t(IN=1)/(2=N) ¢ (tl/(2—N)) /(2—N),
which is increasing. Therefore K can be written as
K (r) = H(®(r))

with a convex function H where ® (r) = r>~%. Similarly, when N = 2, the above
holds for @ (r) = —logr-.

Let p € 9" such that Kpu < 1 on suppp. First we assume that supp p is
compact. From Lemma B4, for any § > 0 there is a closed set F' C supp p such
that 4 (RV \ F) < § and Kp|p is continuous everywhere. We let 111 = pi|.

We shall prove that Ky, is subharmonic outside F'. Let o be the surface measure
of |y| = p such that ||o|| = 1. Then, by Jensen’s inequality,

K (x4 y) do (y) = H<¢<x+y>>da<y>zH(/|

lyl=p lyl=p yl=p

O (r+vy) do (y)) .
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If |z| > p, then, since ® is harmonic except the origin, we have fly|=p O (x+y) do(y) =
® (). Therefore

K(z+vy)do(y) > H(®(z) =K (2).

lyl=p

Let x ¢ F and 0 < p < dist (z, F'). Then

Km— o) = [ [ K9 o) i)

lyl=p

If z € F, then |z — x| > dist (x, F') > p, and thus

" K((z—2)+y) do(y) > K(z—x).

Therefore
K9 do )2 [ K (=) d () = K (),
yl=p

which means Ky, is subharmonic.

If z is a boundary point of RY \ F, then x € supp u, and
Ky (2) < Kp(a) < 1.

When |z| tends to oo, we have Ky () — 0. Hence, by the maximum principle of
subharmonic functions,
Kup(z) <1 forxé¢ F.

This inequality also holds for x € F', thus it holds everywhere.
Let x ¢ supp p and p = dist (z, supp p). Then, since u (]RN \ F) <9,

Kpu(z) = K (z) + RN\FK(ﬂf—y) du(y) < 1+06K (p).

Since ¢ is arbitrary, we have the theorem in this case.
Next we consider the general case. Let vp = ,u|m. Then the previous part
implies
Kvg <1 everywhere.

Therefore the monotone convergence theorem gives

Ku(z) = lim Kvg(xz) <1 everywhere,

R—o00

and thus the result follows. O

Question 3.1. Find a necessary condition for K to satisfy the strong mazimum
principle.
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4. CAPACITY
4.1. Definitions and some properties.
Definition 4.1 (Capacity). For a set E
Ck (E) :=sup {,u (E) ; peM, suppp C E, Ku<1 everywhere} )

Definition 4.2 (Quasi-everywhere). A property is said to hold quasi-everywhere,
g.e. for short, if it holds except a set F such that Ck (F) = 0.

Lemma 4.1. If E is an F,-set with Cx (F) = 0 and Ku is bounded on E, then
n(E)=0.

Proof. First we assume that E is compact. Let M = supy Kpand 7 = (MCyw) ™" .
Then K7 < Cv_vl on supp 7, and thus K7 < 1 everywhere. Therefore

p(E) = MCwt (E) < MCwCk (E) = 0.

Now we consider the general case. Take a sequence {F},} of compact sets which
converges increasingly to E. Since Ck (F,) < Ck (E) = 0, we have p(F,) =0
from the first part, and thus we have the result. O

Lemma 4.2. If {E,}, is a sequence of F,-sets, then

(gm)exe

Proof. Let p € 9M™* such that suppp C |, E, and Kpu < 1 everywhere. First we
assume that all £, are compact. Since supp p|g, C F, and Kpu|g, <1 everywhere,
we have u (E,) < Ck (E,). Therefore

K (UEn> gZN(En) SZCK<E

Hence the lemma follows in this case.
Next we consider the general case. Take a compact set F,, C FE, for every n.
Then

p(Fn) < Ck (Fy) < Ck (E)-
<

(E
Since p (E,) = supy, p(F,), we have p(E,) < Ck (E,). Therefore the lemma
follows similarly to the first part. U

4.2. Equilibrium measure.
Lemma 4.3. Let F' be a non-empty compact set and let
v =inf {Ix (p) ; p € M", suppu C F, p(F) =1}.

Then Ck (F) < 47! < CwCk (F) and there is a measure i € M such that
supppu C F, p(F) =1, Ix () =, K>y g.e. on F and Ky <~ on supp p.
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Proof. First assume that v = co. If Cx (F) > 0, then there is a measure p € 9"
such that suppp C F, p(F) =1 and Kpu is bounded. Then Ik (1) < oo, which
is a contradiction. Therefore Ck (F) = 0. Hence any measure p € 9" with
supp 4 C F and p (F) = 1 satisfies the conditions.

Next assume that v < co. Let {u,}, C M be a sequence such that supp p, C
F, p, (F)=1and

Tim T (pin) = 7.
By taking a subsequence we may assume that u, converges weakly to a measure
p. Then it is easy to see that suppu C F and p (F) = 1. Lemma B.1] (i) yields
v < g (p) < liminf I (pa) =7,

that is

I (1) =7

Let T, ={z€F; Ku(x) <yv—m'}and T = {x € F; Ku(x) <~}. Sup-

pose that Cx (T,,) > 0. Then we can find a measure 7 € M™* such that supp7 C
T, 7(T) = 1 and K7 < ¢y < oo everywhere. Now let pu; = (1 —¢) p + t7 for
0 <t < 1. Then supp us C F and pu; (F) = 1. Therefore

I (pe) = -
On the other hand, since

Ix (p,7) = /K,udr < (7 — mfl) T(Tp) =7 —m™*
and
I (1) = /KTdT < ¢y,
we have
T (pe) < (1— ) 42t (1 —t) ('y — m_l)—l—tho = 7—2m_1t+(2m_1 — v+ co) 2 <y
when ¢ is sufficiently small, which is a contradiction. Therefore Ck (T,,) = 0. Since

T =J,, T, Lemma L2 gives
Cx (T) <Y Ck (Tn) =0,

which means that Ky > v q.e. on F. Also, using Lemma [L.] we have p (7') = 0.
Next suppose that there is an x € suppp with Ku(z) > . Then we can
take a neighborhood O of x such that Ky > v on O. Since u(7) = 0 and
v = I (p) = [ Kpdy, we have Ky = v p-ae. Hence p(O) = 0, which is a
contradiction. Therefore Kp < v on supp p.
Finally let v € 9" such that suppr C F and Kv < 1 everywhere. Let vy =
v (F)"v. Then suppry C F and v, (F) = 1. Therefore

v < Ik () = v (F) Ik (v).
Since Ix (v) = [ Kvdv < [ dv = v (F), we have v (F') <~~'. Hence
Ck (F) S’Y_l.
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On the other hand, let 1, = (Cw7) ™' . Then Kpu; < Cy' on supp s, and thus
Ky <1 everywhere. Therefore

Crc (F) = i (F) = (Cw) ™,
and we have the lemma. 0
Since 7 > 0, we have C (F) < oo for a bounded set E.

Theorem 4.1 (Equilibrium measure). Let F' be a non-empty compact set. There
is a measure u € MT such that suppu C F, Ku <1 on suppu, Kpu > 1 g.e. on

Proof. Let 119 be a measure given by Lemma 3 and let y = v 1. Then the
conclusion is trivial. O

Theorem 4.2. Suppose that K is continuous on (0, 00). Let F be a non-empty
compact set and suppose that, for every x € F, there is a bounded cone V, with
vertex at x such that V, C F. Also suppose that K satisfies the doubling condition,
i.e. there is a constant C' such that K (r) < CK (2r). Then there is a measure
w € MY such that suppp C F, Ku <1 onsupppu, Ku>1 on F and Ck (F) <
p(F) =Ix (p) < CwCrk (F).

Proof. Let p be an equilibrium measure for F. We have only to prove that Kp (z) >
1 for x € F. Without loss of generality, we can assume that 0 € F', and we shall
prove K (0) > 1.

Let ¢ = Area (Vo N OB (0, R)) /Area (0B (0, R)). Remark that ¢ depends only
on Vy. For oo > 0

e

r=t

tends to 0 as t — « and tends to oo as t — 0. Therefore we can find ¢, (o) such

that
o K N-1
/ _ (r) rN_l PR
to(e) Jo K (s) sN=1ds
Let
_ K@
Io () = Jiyi<ia K@) dy if z € Vo and 1o (o) < |z] < a,
0 otherwise.
Then

« K N—-1
/Qa(x) dx—c/ - (T)TN dr = 1.
to(a) Jo K (s) sN—1ds

o(e) Jo
The weak maximum principle shows that [ K (y) du(y) = Kp(0) is finite.
Therefore, for € > 0, we can find p > 0 such that

K (y) du(y) <e.

lyl<p
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Now we consider the integration

/Ka:— Y) go () da.

If |z —y| > |y| /2, then K (x — y) < K (y/2). Therefore
[ Ke-pa d< K2,
lz—y>[yl/2

If |z — y| < |y| /2, then |y| /2 < |z|. Therefore

K (z—y) K (z)
K (x — o (T) dr < dx
/|"”y|<|y/2 o) /Iwy<|y|/2 flz\<|x\ K (2) dz

K-y ., _
= Kwi2) /|xy|<|y/2 Sateryye K (2) dz do=Kly/2)-

Hence, using the doubling condition, we have

[ K@= (@) do < 2K (4/2) < 20K ).

Therefore
/ / K (v —y)an (@) dedu(y) <20 [ K (y) du(y) < 2.
ly|<p lyl<p

Since K is uniformly continuous in {y; |y| > p} Nsupp u, there is an « such that
K (y—2z)—K(y) <e if [z| <o
for any y € {y; |y| > p} Nsupp p. Therefore
K- D@ -6 < 1K=~ KOl d <

for any y € {y; |y| > p} Nsupp p. Hence

/l/K y ) o (x) dodu(y) - ylZpK<y>du<y>\

< [ eduly) < en(P) = cOwCic ().
ly|>p
Therefore

J[56-20@ dan —Kum)] < (20 +14 CoCx (F)) =

Hence
}jglo//K(y — ) o () dzdp(y) = Kp(0).

On the other hand, since K > 1 gq.e. on F' and the potential of the Lebesgue
measure is bounded, we have Ky > 1 a.e. on F. Therefore

//K ) g (@) ddp(y /Ku qa()dx>/qa()d:1.
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Hence the theorem is proved. O

4.3. Extremal problems.
Theorem 4.3. Let F be a compact set with Ck (F') > 0. Let
A:inf{y(RN) cveEMT, Kv>1 qe. onF},

B:sup{z/(F) v eMT, Kv <1 qe. on F, Kv is bounded, supp v C F}
Then
Ck (F) /Cw < A< CwCk (F),
Cx (F) /Cw < B < CywCir (F).

Proof. Let p be an equilibrium measure for F. Let v; € 9" such that Ky, > 1
g.e. on F'. Since Ky is bounded, we have K1y > 1 p-a.e. Therefore

Ce(F) < u(F) < [ Kvdu= [ Ky, < Cum ().
F

Hence Ck (F) < CwA.
Since pu satisfies K > 1 q.e. on F,
A< p(F) < CwCk (F).

Let v, € M* such that Ky, < 1 q.e. on F, Kvy is bounded and suppr, C F.
Then Kvy < 1 p-a.e. Also since K > 1 q.e. on F, we have Ky > 1 vr-a.e.
Therefore

C'WCK(F)Z,u(F)Z/KVQdu—/KudVQZVQ(F).
F F

Hence CwCk (F) > B.
Since pu/Cw satisfies K (u/Cw) < 1 q.e. on F, K (u/Cw) is bounded and
supp (1/Cw) C F,
Ck (F) /Cw < pu(F)/Cw < B.

O
Lemma 4.4. I[f Kv <1 g.e. onsupp v and Kv is bounded, then Kv <1 on suppv.

Proof. Let E = {x € suppv ; Kv(x) > 1} and suppose that z € E. We can find
a neighborhood O of = such that Kv > 1 on O. Since Ck (E) = 0 and Kv is
bounded, Lemma [L1] implies that v (E£) = 0, and thus v (O) = 0, which is a
contradiction. O

Lemma 4.5. Suppose that N > 2. Also suppose that K (r) is absolutely continu-
ous, K' (r)rN=1 is increasing and that K (r) = 0 for sufficiently large r. Then the
Fourier transformation of K is strictly positive, i.e.

K (€)= /K(x) e dy >0 for any €

where (-, -) is the inner product.
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Proof. Tt is easy to see that K (0) > 0, therefore we may assume that £ # 0.
Without loss of generality we may assume that |{| = 1. Let r = |z| and ¢ the angle
between x and £. Then

(4.1) f((g): / /K _ZTCOWTN Lsin" 2 o dp dr

LIEI
= / K (r / sl cosN 720 df dr
—m/2
/2
:20/ K (r) rN_l/ cos (rsin 6) cos™ 2 0 df dr
0 0

where c is a positive constant.

Let

/ cos (rsin 6) cos™ 2 df.

Then "
/ sin (7 sin @) sin 6 cos™ 2 6 d,
0
J"( / cos (1 sin 6) sin” 6 cos™ "2 0 d6).

Therefore '
(4.2)

rJ"(r)+ (N =1)J" (r)+7rJ(r)

w/2 w/2
= r/ cos (rsinf) cos™ df — (N — 1)/ sin (7 sin 6) sin 6 cos™ 2 6 df
0 0

= [sin (rsin6) cos" ' 4] 3/2

Since [sin ¢| < |p|, we have

=0.

| (r)] < /”/2 rsin® 0 cos™ 20 df < %777“.
On the other hand, since :
/TK(t)tNldtZK(r)/rtNldt:
0 0
and we assume that [ K (t)tV ' dt < co, we have
(4.3) lim K (r) N =0.
Therefore

1
NK(T)TN,

< ElimK(T)'r’N = 0.

- 2 r—0

lim | K (r) 7V~ (r)]

r—0

We have by (1)) and (£2))
K (&) = QC/OOK(’I")T‘Nlj(T> dr
0
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N -1
r

_—y /0 T K ()N <J” )+ 2Ly (7“)) dr

- —2c/ooo (K (r) PN U7 () 4 K () (N — 1) N 20 (1) dr
= —2¢ [K (1) r¥ L ()], + 2 /0 TR () () dr
py /0 TE ()N ()

Now we shall show that liminf,_ (—K’ (r) rN“) = 0. If not, there are cg > 0
and ry > 0 such that

—K'(r)rNT > ¢y for 0 <7 < 7.

Therefore
0 ro
K(r) = K (ro) = —/ K'(t) dt > co/ pN=1 gy CNO (rN — VY,
and thus

N (K (r) = K (ro)) > NO (1—rNrgN).

The equation (£3]) shows that 0 > ¢y/N, which is a contradiction. Hence we can
find a sequence {r;}; such that r; \, 0 and

—K'(rj)r™ -0 asj — occ.

Since
w/2
J(0)—J(r)= / (1 —cos (rsinf))cos™260do >0 for r >0,
0

we have
o0

jlirglo | (J(0) = J(r) d (K (r)r""1) = /Ooo (J(0) = J(r) d (K" (r)r¥ ).
Since J' (0) = 0, we have J (r) = J (0) + O (r?), and thus

(J(0) = J (rj) K' (rj) ;=" = O (K" (rj)rj""") — 0.
Since J' (r) < 0 for sufficiently small r» and K’ (r) <0,

/00 J (K (r)yr¥tdr — /000 J (YK (r)yrN"tdr = QLCIA((Q as j — oo.
Therefore
0< /0 (J(0)—J(r)) d (K' (r) rN_l) = jlirglo | (J(0)—J(r)) d (K' (r) TN_I)

J—00

= lim ([(J(O) — J(r) K'(r) rN—l]jj + /Oo J (r)K' (r)r¥ ! dr) = %K(g).

Hence we have the lemma. O
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Lemma 4.6. Suppose that N > 2. Also suppose that K (r) is absolutely continu-
ous, K' (r)rN=1 is increasing and that K (r) = 0 for sufficiently large r. Let o € M
with compact support such that Ik (|o|) < oo and the total variation ||o|| is finite.
Then Ik (o) > 0, and the equality holds if and only if o0 = 0.

Proof. From the assumption Ix (0) = [ Ko do is finite, thus Ko can be defined at
|o|-a.e. points. The Fourier transformatlon of o is

6 (€)= / e 18 do ().

Now let
D, (z) = (n/m)"*exp (—n |:1:|2) :
It is easy to see that
B, (§) = exp (= ¢ / (4n)) ,
which is a positive and integrable function. Since ’f( (5)‘ < [ K (z) de < oo and

6 (€)| < [ d|o| < oo, we have &, K& is also integrable. Therefore

[e0E@©lo @ d - / 3(6) [ 9 do o) de
—//@n@) 6 de do (y).

B, Ko (y) = (2m) / b, (6) Ko (6) 69 de

Here

= (2n) " / D, (6) K ()6 (&) ¥ dg  for ae. y.

Since the potential of the Lebesgue measure is bounded, Ko is integrable. Thus
the both sides are continuous, therefore the above holds everywhere. Hence

(4.4) / B, (6) K (€)16 (©) de = (2m)" / B, Ko (y) do ().

Now we assume that K¢ is continuous. Since supp o is compact, Ko is bounded.
Therefore @, x Ko converges to Ko as n — oo. Since &, x Ko and Ko are
continuous, we have that ®, x Ko converges locally uniformly to Ko. Also we have
$,K |6]* converges increasingly to K |6]°. Therefore (@) becomes

(4.5) / K ()16 (©) de = (2m) / Ko (y) do (y) = 2m)" I (o).

Next we consider the general case. By Lemma [3.4] there exists a closed set F),
such that |o| (RN \ F,,) < 1/m and K |o||p, continuous everywhere. We may
assume that F,, increases as m increases. Let 0, = o|g, and divide it into two
parts, o, = o — o,.. Then, since Ko and Ko, continuous everywhere, thus
Ko,, = Ko}, — Ko, is also continuous.
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Let 7,, = 0 — 0,,. Then
2y (0, i) — I (Tim) = 2I (0) — 21 (0, o) — (I (0) — 21 (0, o) + I (0m))
=Ix (o) — Ik (o).
Since |7,,,| < |o],
[k (0) = I (om)| < 20k (o] [Tm]) + Ik (ITm]) < 31k (lo], [7m]) -
Since |o| (RN\ F,,,) — 0 and [ K |o| d|o| < oo,

ellol Il = [ Klol dlo] >0 asm - oc,
RN\ F,,

and thus
lim IK (O’m) = [K (O’) .

m—00

Since
#€) = 6 (O] < [ diral < 1/m,

0m converges uniformly to 6 as m — oco. We apply (@5 for o, and obtain
[E@I6@F de= [tmint & (©)16, € de < tmint [ & (€)]6n (€)1 de
= (2n)" lim inf I (o) = 27)Y Ik (0) .

m—

Therefore Ik (0) > 0. If I (o) = 0 and 6 (§) # 0 for some &, then ¢ # 0 in some
neighborhood of ¢, and thus the above equation implies that K (§) = 0, which
contradict Lemma Therefore 6 = 0, and thus o = 0. O

Theorem 4.4. Suppose that N > 2. Also suppose that K (r) is absolutely contin-
uous and that K' (r)rN=1 is increasing. Let F be a compact set with Cg (F) > 0.
Then there uniquely exists the measure oy which minimaizes

{Ic (1) 5 pe MY, suppp C F, u(F) =1}
(cf. Lemma[]-3). Also there uniquely exists the measure vy which mazimizes
{v(F); veM", Kv<1 ge onF, Kv is bounded, suppv C F'}
(cf. Theorem[{.3), and they satisfies
vy = Ck (F) po.

Proof. Let ¢ (r) = —K' (r)r¥=1. Then ¢ is non-negative decreasing function which
satisfies

K(r)= /Oo o (t) N dt.

Let rg = 2diam F' and take r; > rg such that

/r1 ¢ (ro) t' N dt = /Oo o (1)t N at.
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Let

(b(T) if r < To, .
¢1 (T) =49 (7‘0) if rg <r <, and Ky (r) = / o (t) AN gt
0 ifry <r r

Then K, (r) = K (r) if r < 7o and K; (r) = 0 if r; < r. Then we see easily that
Ck (F) = Ck, (F) and Ky = Kypon F and Ik (1) = Ik, (1) for any measure p
whose support is in F'. Note that Cyww = 1 by Theorem

Let pq and po be measures which minimize

{Ix (n) ; peM*, supppu C F, u(F) =1} .
By Lemma [£3]
Ky =Ck, (F)™" qe. onF

and Kjps is bounded, thus the above holds ps-a.e. Therefore

T (an, 1) = / Cue, (F) ™" dpy = Cie, (F)™"

Hence
I, (i — p2) = I, () — 215, (pa, pi2) + I, (p2) = 0.
Also we have
T, (1 — pal) < Iy (pn + p2) = I, (1) + 205, (pas p2) + Iy (p12) < 0.

Therefore Lemma [£.6] implies p11 = po, i.e. the minimizing measure is unique.
Let v be a measure which maximizes

{v(F); veM", Kv<1qe onF, Kvisbounded, suppr C F} .

And let
M:CK1 (F)_ly'

Then p € MT such that suppp C F and p (F) = 1. Since Kjv < 1 q.e. on F, we
have Kiv < 1 v-a.e. Therefore

I, () = Cr, (F) I, (v) < Ci, (F) .
This means p minimizes
{Ic () 5 peM*, suppp C F, u(F) =1}.
Hence we have the theorem. 0
Example 4.1. A measure which minimizes
{I/(RN) v eEMT, Kv>1 qe. on F}
need not be unique (cf. Theorem[].3).
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Proof. Let F = {r € R?; |z| =1} and K (r) = log" (2/r). Let u be a measure on
F such that

dp = df/ (2mlog?2).
Then

2T
Ku(z) = (27rlog2)_1/ log® (2/ |z —€”|) db
0

depends only on |z|. Since Ky is harmonic in |z| < 1,
2m
Ku(0) = (2%)_1/ Kp (re) dt = Kp (re')  for any 0 < r < 1 and any o
0

Thus Kp is constant in |z| < 1. Also we have

27
Ku(0) = (27rlog2)_1/ log2df = 1.
0

Therefore Kpu =1 on |z| < 1. Since K is lower semi-continuous, we have Kpu <1
on |z| = 1. On the other hand, since

1 ifr <2
K/ — 9
(r)r {o ifr> 2,

K satisfies the strong maximum principle. Hence Ky =1 on |z| = 1. This means
that p € 9T satisfies Ky > 1 q.e. on F. Thus Theorem implies

Cre (F) < (RY) = (log2) ™"
Also, since p € M+, suppp C E and Kp < 1 on supp 4,
Cx (F) > p(F) = (log2)™" .

Therefore
Cre (F) = (log2)™"

and p is a minimizing measure.
Next let

v=203/log2
where 6 is the Dirac measure at the origin. When |z| < 1, we have
Kv(zx) =K (z) /log2 > 1,
i.e. v € M such that Kv > 1 q.e. on F. Also we have
v (RY) = (log 2)7".

This means that v is also a minimizing measure. 0]
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4.4. The Choquet capacity.

Definition 4.3 (Choquet capacity). A set function c is called a Choquet capacity
if it satisfies the following :
(i) 0 < ¢(F) < oo for any E.
(11) if E1 C EQ, then C(El) S C (EQ)
(iii) if £, /7 E, then ¢ (E,) — ¢(E).
(iv) if E, is compact and E, \, E, then ¢ (E,) — c(FE).

Definition 4.4 (Capacitable). A set E is called to be c-capacitable if
c(E) =sup{c(F) ; F is compact, FF C E}.
Definition 4.5 (C},). For a set E
Cyk (E) :=inf {Ck (O) ; O is open, E C O}.

We shall show that C} is a Choquet capacity under some assumptions. It is
clear that C; satisfies the conditions (i) and (i) of Definition 3l

Lemma 4.7. For any set E
Ck (E) =sup{Ck (F) ; F is compact, F' C E}.

Proof. Let p € 9" such that supppy € E and Kpu < 1 everywhere. Also let
v = ,u]m and F' = suppr. Then F is a compact set in £ and Kv < 1
everywhere. Therefore

sup O (F) > Cx (F) > v (F) = (EmB(o, R)) .
F
Letting R — oo, we have
sup Cie (F) = p(E).
Hence
sup Cie (F) > Cic (E).
F
The opposite is trivial, and we have the lemma. 0
Lemma 4.8. For any compact set F
Ck (F) = Ck (F).
Proof. Let O,, = {z ; dist (z, F) < 1/n}. We can find p,, € 9" such that supp u, C
O, K, <1 everywhere and
tn (On) > Ck (O,) — 1/n.

Since O; is bounded, we have Ck (O;) < oo, and thus {,un (RN)}n is bounded.
Therefore by taking a subsequence we may assume that {y,}, converges weakly to
a measure g. Then Lemma 3] () gives

Kp(z) <liminf Kp, () < 1.
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Since supp u C F,
Ck (F)> p(F)= lim u, (0,) > lim (Ck (O,) — 1/n) = lim Ck (0,) > Cx (F).

n—o0

The opposite is clear, and we have the lemma. 0]

Theorem 4.5. Let {F,}, be a decreasing sequence of compact sets which converges
to E. Then

Ck (Fn) — Ck (B),
i.e. O satisfies the condition (i) of Definition[{.3

Proof. Let O be an open set containing . Then F,, C O for sufficiently large n.
Therefore

lim C% (F,) < C% (F,) < Ck (0).

Hence
lim C (Fy) < C (E).
The opposite is clear, and we have the theorem. [l

Lemma 4.9. For any sets {E,},

Ck <U E) < Ci(E).
Proof. For any € > 0 we find an open set O,, containing F£,, such that

Ck (0,) < Ck (E,) +27"e.
Then Lemma implies

C (U En) < Ok <U 0n> < Cx(0,) <) Cx (Ey) +e.

Since ¢ is arbitrary, we have the lemma. 0

Lemma 4.10. Suppose that K is continuous on (0, 00). Let pu € Mt with finite
mass such that Kp < oo p-a.e. For given € > 0 there is an open set O such that
Ck (0) < e and Kp is continuous outside O.
Proof. Take {n;}, and {d;}, such that n; — oo, §; — 0 and }_;n;d; < &/Cw. For
each j Lemma [3.4] gives that there exists a restricted measure p; of p such that
Ky is continuous and v; (RY) < §; where v; = p — p;. Let

O; ={z; Kv;(x) > 1/n;, |z| <n,},

and let ' be a compact set C O;. Since K (n;vj) = n;Kv; > 1 on F, Theorem (3]
yields

CK (F) /CW < n;v; (RN) < njéj.
Therefore Lemma .7 implies

CK (OJ) S C’an5j.
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If we set O = J; Oy, then by Lemma
ZCK <sznj5 <e.

Now let « ¢ O. Then x ¢ O; for each j. Since |x| < n; for sufficiently large j,
Kv;(x) <1/n; for sufficiently large j.
Hence for any =g ¢ O
limsup [Kp(z) — Kp (o)

z—x0,2¢0
< limsup |Kp;(x) — Kp; (zo)] + limsup |Kv;(z) — Kv; (x0)]
z—x0,x¢0 z—x0,¢0
Letting 7 — oo we have the lemma. O

Lemma 4.11. Suppose that K is continuous on (0, 0o). Let {u,}, C M and
€ M such that {,un (]RN)}n is bounded, |J,, supp pn, is bounded, K, < 00 fi,-
a.e., Kp < oo p-a.e. and p, — p. Then there is a set E such that Cj. (E) = 0
and

liminf K, () = Ku(z) forax ¢ E.

n—oo

Proof. For each m we can find an open set O,, such that Ky and Kpu,’s are con-
tinuous outside O,, and Ck (O,,) < 1/m (By Lemma [L.I0 we find an open set for
each of p and p,’s, and we set O,, to the union of them).

Let

Forpm ={x; Kp(z) <r, Kp, () > p, x ¢ O}
for rational numbers r and p with r < p, and let

nrpm - ﬂ Fkrpm
Take 2 outside the closure of | J,, supp p,,. Since K (x — -) is continuous in | J,, supp ftn,
lim Kp, (x)=lim | K(x—vy) du, (y /K r—y) du(y) = Ku(z).

Therefore x ¢ F,,,, for sufficiently large n, and thus x ¢ Gpm. Hence Gyyppm, is
compact.

If Ck (Gnrpm) > 0, then, using Lemma 3.4, we can find a positive measure
v € MT such that suppv C G,ypm and Kv is continuous. Since fi — [,

O—khm Kyd(uk—,u):klim/(f(uk—[(,u) dv>(p—r)v(RY),

which is a contradiction. Therefore C (Gpppm) = 0. Hence Lemma implies

Ck (Gprpm) = 0.
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E= (ngmGnm) U (Q 0m) .

Since C% (N,,O0m) < Ck (0y) < 1/m for any m, we have Ck ((),,Om) = 0.
Therefore by Lemma 4.9 we have

Let

Cr(B)< Y Cr(Gurpm) + Cic (ﬂ 0m> = 0.

n,r,p,m

Let = be a point such that liminf, . Ku, () > Kp(x). Then there are r and
p such that

Ky, (z) > p>r> Kpu(x) for sufficiently large n.

If x € O, for any m, then z € (,, O, C E. Otherwise we can find an m with
x ¢ Oy, thus © € Fppm. Therefore x € Gyppm C E. Hence if © ¢ E then
liminf,, o K, () < Kp(x). Lemma 311 (i) implies the result. O

Lemma 4.12. Suppose that the strong maximum principle holds and K is contin-
uous on (0, 00). Let O be a bounded open set. Then there exist a measure p € T

and a set E such that suappp C O, Kp < 1, p(RY) = Ck (0), Ck (E) = 0 and
Ku=10onO\E, .

Proof. By Lemma 7 we can find a sequence {F,}, of compact sets such that
F, /" O and pu, (F,) — Ck (O) where pu, is a equilibrium measure for F,. By
taking a subsequence we may assume that {su,}, converges weakly to a measure
. We have

Kp(z) <liminf Kp, () <1

n—oo

and
p(RY) = lim g, (RY) = Ck (O).
Let Uy ={z € F,; Ku, (zr) <1—-1/k} and U = Unk U,k. Then, since U, is

compact and Ck (Uy,y) = 0,

Cr (U) <Y Cre (Uni) =Y Cic (Un) = 0.

n, k n,k
Also let V' be an exceptional set of Lemma [4.11] and let £ = U U V. Then
Ck (E) < Ck (U)+Ck (V) =0,

and

Kp(z) =liminf Ky, () =1 forz e O\ E.
Thus we have the lemma. 0

Theorem 4.6. Suppose that the strong maximum principle holds and K is contin-
uous on (0, c0). Then Cj; is a Choquet capacity.
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Proof. We have only to prove that C}; satisfies the condition (i) of Definition F.3]
i.e. if £, /* E, then C (F) = lim,, . Cy (E,).
We can find an open set O,, D E,, and

Ck (On) < Cx (E,) +1/n.

By Lemma we find a measure p, and a set U, such that C} (U,) = 0 and
Kp, =1 on O, \ U,. We find a subsequence {ji,, }, of {un}, converges weakly
to a measure p. By Lemma 1T we can find a set V' such that C} (V) = 0 and
Kp(x) = liminf,_ Ku,, (z) outside V. Then

Ku(z) = lilgnian,unk (x)=1 forze E\(UUYV)
where U =, U,.

For any ¢ > 0 we set O. = {z; Ku(x) >1—¢}. Then E\ (UUV) C O.. Let
v e MT with suppr C O, and Kv < 1 everywhere. Then

v(0.) < (1-— 5)—1/0 Kpdv=(1—-¢)"" /Kudu <(1—¢e) " u(RY).
Therefore E
Cx (0) < (1—e) " p (RY).
Hence
Cic (B) < C (BN (UUV)) + O (U) + C (V) < Cxc (02) < (1 =) (RY)
= (=) lim py, (RY) = (1=¢)7" lim Ci (On,)

< (=)™ Jim (Ci (Bu) + 1/m) = (1— &) Jim Ci (En,).

-1

k—o0
Since {E, }, is monotone increasing,

Cic (B) < (1=2)" lim G (B).
Letting ¢ — 0,
Cic(F) < Jim O (5,).
The opposite is trivial, and we have the theorem. [l
Theorem 4.7. A set E is C.-capacitable if and only if C5. (E) = Ck (F).
Proof. Lemmas .7 and [£.8 imply that
Ck (E) =sup{Cx (F) ; F is compact, F C E}.

Thus the theorem is easily proved. U
Theorem 4.8. If C}. (E) =0 and v € MT such that Kv is bounded, then v (E) =
0.

Proof. For any € > 0 there is an open set O containing £ such that

CK (O) < €.
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Take a compact set F'in O. Let M = sup Kv and y = M ~'v|p. Then supppu C F
and Kpu <1 everywhere. Therefore

M 'w(F)=pu(F)<Ckg(F)<Ckg(0)<e.
Hence
v(E)<v(0)=supv(F) < Me.

Since ¢ is arbitrary, we have the theorem. 0

5. EXTREMAL PROBLEMS
Let F' be a compact set.
Definition 5.1 (Chebychev’s constant).

Definition 5.2 (Generalized diameter).

2 1 .
D, (F) := - 1nanF§K = inf ;K (i — ;).

Theorem 5.1. D, (F) is increasing and
lim D, (F) =~, Dyt (F) < M, (F) < Cg (F)7',

n—oo

Where v is the number defined in Lemma[{.5

Proof. Since K is lower semi-continuous, we can find §§n), ceey S,(L") € F such that
D, = K67 -¢").
P -
1<j
Then
n+1
Dn _ K ( (n+1) n+1 )
T (n+1)(n—1) ; ; 2
2 n (n—1)
Dn = Dn
n(n—i—l)(n—l)z 2

k=1

where qu means the summation over ¢ and j such that ¢ < j, i # k and j # k.
Let p € M* such that suppp C F and p (F) = 1. Since
-1
%DnSZK(%—%) for xy, ..., x, € F,

i<j
we have

M p s [ [ SR =) dinton) (o)

1<)
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= Z//K — ;) dp (z;) dp (z) = (n2_ 1>IK (1) .

1<)

Therefore D, (F') < 7.
Let pi, = n' 37, 0. where d¢ is the Dirac measure at . Also let Ky, (x) =

min (K (z), m). Then

I ) =795 (87 87) =0 D (6= 6) o
i=1 j=1 i#]j
<nt(n-1)D,+n"'m.

Take a subsequence {y,, }, which converges weakly to a measure y. Then

Ig, (p) < lign inf I, (fin,) < lign inf D,,, = lim D,,.

n—oo

Letting m — oo, by the monotone convergence theorem we have
Ix (p) < lim D,
n—oo

Therefore we have the first part.
For j with 1 < j <n+1 and x € F we define

M= K (r-a).

i#]
Then
_ n+1
M, >n %glgA()—nlAj@j(Jr)).
Therefore
1 ntl)  e(n+1) 1 (n+1)
Drm LS (e ) =Ly (o)

1
< N"uM, =M,
- n(n—i—l);n

Now assume that Cx (F)) > 0. Let v € 9" such that suppr C F and Kv <1
everywhere and let 4 = C (F)~" v. Then

Kpu=Ck(F) " Kv<Cg(F)™" everywhere.

Therefore
V) i
Cx (1) iglfwjle(x—%)—H(F)n inf ] K (z — ;)

< / SR (o= ) dp ) =Y Ka(ey) < Ce ()

J
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Take supremum of the left hand side with varying v, then

n

Vinf Y K (z —2;) < Cx (F)".

zeF

J=1
Take supremum of the left hand side with varying x4, ..., x,, then
M, < Cg (F)™
This is trivial when Ck (F') = 0. Thus the theorem follows. O

Now we go back to the classical case. This takes place in the complex plane C,
i.e. N = 2. We shall show a classical result. For example see [I].

Definition 5.3 (Diameter of order n).
d, (F) = sup H |ac2 _ xj‘Q/n(n—l) '

Definition 5.4 (Chebychev polynomial of order n).

zeF

Pn (F) = inf {sup ’xn+an_1xn—1 + - +a0|1/n ;o -5 Up—1 € (C} .

Theorem 5.2. d, is decreasing and
lim d, (F) = lim p, (F).

n—oo n—oo

Proof. Let F be the convex hull of F. Take a > diam F and let K () = log™ (a/r).
Then Theorem implies that K satisﬁes the strong maximum principle. Also

a a
log——== inf —————% log—— =D, (F).
o8 d, (F) m1,..l.,zn€Fn(n—]_ ; 08 |z; — ] (F)
Since a polynomial can be represented by [[i_, (v — z;),
a 1

log = — sup inf log .
(P~ S, 2 s
Take 2, € F and let x| € F be the closest point to z; and vy =xjforj=2,... n

Then it is easy to see that |x — x’1| < |z — a4 for any x € F. Therefore
log > log —
2 2 o8 = ot

Hence

a a
inf | > inf 1 )
zgiiog@_xq—;sw P

This means that

a 1
o8 L) ", S a2 s

T1,.0y T

Hence Theorem [5.1] implies the result. O

— M, (F).

|x_xj|
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