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1. Introduction

This is an exposition on the Matts Essén’s part of the Lecture Notes in Mathe-
matics [2]. We supplement missing conditions and details of proofs in some state-
ments. Sections 2, 3, 4 and 5 in this article correspond to Sections 2, 4, 5 and 7
of that book, respectively. In Section 2 we study comparability, outer and inner
relations of the Hausdorff measure and net measures. In Section 3 we discuss the
maximum principle and the continuity principle for potentials of measures, and
give more details than [2, Section 4]. In Section 4 we define a capacity and discuss
the existence and the uniqueness of the equilibrium measure. We mention relation-
ships among capacity, the Chebychev’s constant and the generalized diameter in
Section 5.

2. Hausdorff measures

2.1. Definition. Let h be a measure function, i.e. an increasing function from
(0, ∞) to (0, ∞) such that limr→0 h (r) = 0. We denote B(x, r) = {y ∈ RN ; |x −
y| < r}.
Definition 2.1 (Hausdorff measure). For E ⊂ RN we define

Λρ
h (E) := inf

{∑
j

h (rj) ; E ⊂
⋃
j

B (xj, rj) , rj < ρ

}

when 0 < ρ ≤ ∞. Λ0
h is defined as the limiting value as ρ → 0.

It is easy to see that Λρ
h decreases when ρ increases, and thus Λ0

h is well-defined.
Λ0

h is called the Hausdorff measure.

Theorem 2.1. Λρ
h is subadditive.
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16 H. KURATA

Proof. First we assume that 0 < ρ ≤ ∞. Let {B (xjk, rjk)}k be a covering of a set
Ej with rjk < ρ. Since {B (xjk, rjk)}j, k is a covering of

⋃
j Ej,

Λρ
h

(⋃
j

Ej

)
≤

∑
j

∑

k

h (rjk) ,

and thus

Λρ
h

(⋃
j

Ej

)
≤

∑
j

Λρ
h (Ej) .

Letting ρ → 0 we have the result in the case ρ = 0. ¤
For an integer p let Gp be the collection of cubes represented by a form(

n12
−p, (n1 + 1) 2−p

]×· · ·×(
nN2−p, (nN + 1) 2−p

]
for some integers n1, . . . , nN .

Definition 2.2 (Net measures). For E ⊂ RN we define

Mρ
h (E) := inf

{∑
j

h
(
2−pj

)
; E ⊂

⋃
j

Qj, Qj ∈ Gpj
, 2−pj < ρ

}

and

mρ
h (E) := inf

{∑
j

h
(
2−pj

)
; E ⊂

(⋃
j

Qj

)◦

, Qj ∈ Gpj
, 2−pj < ρ

}
.

If ρ = 0, then we define as the limiting value.

We can prove similarly that Mρ
h and mρ

h are subadditive.

2.2. Comparability.

Theorem 2.2. Λρ
h, Mρ

h and mρ
h are comparable for each ρ and h; comparison

constants depend only on the dimension N .

Proof. We shall show that

Λρ
h (E) ≤ c1M

ρ
h (E) ≤ c2m

ρ
h (E) ≤ c3Λ

ρ
h (E) for any set E,

where c1, c2 and c3 are constants depending only on N . We may assume that ρ > 0.
The second inequality is trivial.

For the first inequality we take cubes {Qj}j such that E ⊂ ⋃
j Qj and δj < ρ,

where δj is the side length of Qj. Then we can find {xjk}c1
k=1 such that Qj ⊂⋃c1

k=1 B (xjk, δj) for each j. Since {B (xjk, δj)}j, k is a covering of E,

Λρ
h (E) ≤

∑
j

c1∑

k=1

h (δj) = c1

∑
j

h (δj) .

Therefore
Λρ

h (E) ≤ c1M
ρ
h (E) .

Next we shall prove the third inequality. Let {B (xj, rj)}j be a covering of E

such that rj < ρ. Let pj be an integer such that 2−pj ≤ rj < 2−pj+1. Then we
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can find cubes {Qjk}c4
k=1 such that B (xj, rj) ⊂ (

⋃c4
k=1 Qjk)

◦
for each j and the side

length of Qjk is 2−pj , where c4 is a constant depending only on N . Therefore

mρ
h (E) ≤

∑
j

c4∑

k=1

h
(
2−pj

) ≤ c4

∑
j

h (rj) ,

and thus
mρ

h (E) ≤ c4Λ
ρ
h (E) .

Hence we conclude the result. ¤
Theorem 2.3. If 0 < ρ1 < ρ2 < ∞, then Λρ1

h and Λρ2

h are comparable; comparison
constants depend on ρ2/ρ1 and N .

Proof. Let {B (xj, rj)}j be a covering of E such that rj < ρ2. Then we can find

{xjk}c
k=1 such that B (xj, rj) ⊂

⋃c
k=1 B (xjk, ρ1rj/ρ2), where c is a constant de-

pends on ρ2/ρ1 and N . Since ρ1rj/ρ2 < ρ1,

Λρ1

h (E) ≤
∑

j

c∑

k=1

h (ρ1rj/ρ2) ≤ c
∑

j

h (rj) ,

and thus
Λρ1

h (E) ≤ cΛρ2

h (E) .

The opposite is clear, and the theorem is proved. ¤
Example 2.1. If 0 < ρ < ∞, then there is a measure function h such that

(i) Λρ
h and Λ∞h are not comparable;

(ii) Λρ
h and Λ0

h are not comparable.

Proof. (i) Take c > ρ and let h (r) = r if 0 ≤ r ≤ c and h (r) = c if r ≥ c. If E is a
line segment of length l, then Λ∞h (E) ≤ c and Λρ

h (E) ≥ l/2. Since l is arbitrarily
large, the result follows.

(ii) Let h (r) =
√

r and let E be a line segment whose length is l with l < ρ.

Then Λ0
h (E) = ∞ and Λρ

h (E) ≤
√

l. ¤
Theorem 2.4. For 0 ≤ ρ1 ≤ ρ2 ≤ ∞, Λρ1

h (E) = 0 if and only if Λρ2

h (E) = 0.

Proof. If 0 ≤ ρ1 ≤ ρ2 ≤ ∞, then Λ∞h (E) ≤ Λρ2

h (E) ≤ Λρ1

h (E) ≤ Λ0
h (E). Therefore

we have only to prove that Λ∞h (E) = 0 implies Λ0
h (E) = 0. For given ε > 0 there

is a covering {Bj}j of E such that
∑

j h (rj) < h (ε). Since rj < ε,

Λε
h (E) ≤

∑
j

h (rj) < h (ε) .

Letting ε to 0, we have Λ0
h (E) = 0. ¤

Theorem 2.5. Let h1 and h2 be measure functions such that

lim
r→0

h2 (r)

h1 (r)
= 0.

If Λ0
h1

(E) < ∞, then Λ0
h2

(E) = 0.
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Proof. Let {B (xj, rj)}j be a covering of E such that rj < ρ. Then

Λρ
h2

(E) ≤
∑

j

h2 (rj) ≤ sup
0<r<ρ

h2 (r)

h1 (r)

∑
j

h1 (rj) ,

therefore

Λρ
h2

(E) ≤ sup
0<r<ρ

h2 (r)

h1 (r)
Λρ

h1
(E) .

The right hand side tends to 0 as ρ → 0, and thus the result follows. ¤
Theorem 2.2 implies that Mρ

h or mρ
h satisfies similar relations.

2.3. Hausdorff dimension. When h (r) = rs with s > 0, Λ0
h is called the outer

s-dimensional Hausdorff measure. Theorem 2.5 implies that there exists an s0 ≥ 0
such that

Λ0
rs (E) =

{
∞ if 0 < s < s0,

0 if s0 < s.

The number s0 is called the Hausdorff dimension of E, denoted by dim (E).

Example 2.2. dim (E) = 1 if E is a line segment.

Proof. Let E be a line segment with length l. Take an integer n such that l/n < ρ,
and cover E by n balls with radii l/n. If s > 1, then

Λρ
rs (E) ≤ n (l/n)s → 0 as n →∞.

Thus Λ0
rs (E) = 0.

Let {B (xj, rj)}j be a covering of E with rj < ρ. Since the length of B (xj, rj)∩E

is less than 2rj, we have
∑

j 2rj ≥ l, and thus 2Λρ
r (E) ≥ l. Therefore 2Λ0

r (E) ≥ l.

Hence dim (E) = 1.
Since Λ0

h is subadditive, the conclusion follows immediately even when E is a
line with infinite length. ¤

We can similarly prove that dim (E) = 2 when E is a square, and dim (E) = 3
when E is a cube, and so on. But when E is not such a set, it is intricate.

Example 2.3. dim (E) = log 2/ log 3 if E is the 1/3-Cantor set.

Proof. Let E0 = [0, 1], E1 = [0, 1/3] ∪ [2/3, 1], . . .. Then E =
⋂

n En. Since En is
covered by 2n balls with radii 3−n,

Λρ
rs (E) ≤ Λρ

rs (En) ≤ 2n
(
3−n

)s
=

(
2 · 3−s

)n
.

If s > log 2/ log 3, then the right hand side tends to 0 as n → ∞, and thus
Λ0

rs (E) = 0, i.e.
dim (E) ≤ log 2/ log 3.

Next we consider the opposite inequality. Let ω be a union of finite number of
open intervals contained in [0, 1] and let An (ω) be the number of intervals of En

which intersects ω. Then, since An+1 (ω) ≤ 2An (ω), we have that An (ω) 2−n is
decreases, and thus

Φ (ω) := lim
n→∞

An (ω) 2−n
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exists. Since An (ω1 ∪ ω2) ≤ An (ω1) + An (ω2),

Φ (ω1 ∪ ω2) ≤ Φ (ω1) + Φ (ω2) .

If E ⊂ ω, then An (ω) = 2n, and thus Φ (ω) = 1. Let I be an interval with length
d such that 3−(n+1) ≤ d < 3−n. Then An (I) ≤ 1. Therefore

Φ (I) ≤ An (I) 2−n ≤ 2−n ≤ (3d)α

where α = log 2/ log 3.
Let {Ij}m

j=1 be a covering of E where Ij is an open interval with length dj. Since
E is compact, we may assume that m < ∞. Then

m∑
j=1

dα
j ≥ 3−α

m∑
j=1

Φ (Ij) ≥ 3−αΦ

(
m⋃

j=1

Ij

)
= 3−α.

Hence
Λ0

rα (E) ≥ 3−α.

Therefore we have the result. ¤

2.4. Outer relations.

Theorem 2.6. If 0 < ρ ≤ ∞, then Λρ
h (E) = inf {Λρ

h (O) ; O is open, E ⊂ O}.
Proof. Let {B (xj, rj)}j be a covering of E such that rj < ρ. Then, since

⋃
j B (xj, rj)

is an open set containing E,

inf
O

Λρ
h (O) ≤ Λρ

h

(⋃
j

Bj

)
≤

∑
j

h (rj) ,

therefore
inf
O

Λρ
h (O) ≤ Λρ

h (E) .

The opposite inequality is clear, and thus the theorem is proved. ¤
Similar discussion works for mρ

h.

Theorem 2.7. If 0 < ρ ≤ ∞ and h satisfies

lim inf
r→0

r1−Nh (r) = 0,

then Mρ
h (E) = inf {Mρ

h (O) ; O is open, E ⊂ O}.
Proof. First we shall show that Λρ

h (A) = 0 where A is a face of a cube. From the
assumption we can take {rj}j such that rj ↘ 0 and

lim
j→∞

r1−N
j h (rj) = 0.

Take a covering {B (xjk, rj)}nj

k=1 of A, where nj ≤ cr1−N
j and c is a constant

depending on the side length of A. Then

Λρ
h (A) ≤

nj∑

k=1

h (rj) ≤ cr1−N
j h (rj) → 0 as j →∞.
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By Theorem 2.6 we can take an open set O containing A such that Λρ
h (O) is

arbitrarily small. Therefore Theorem 2.2 implies that Mρ
h (O) is arbitrarily small.

Let {Qj}j be a covering of E with Qj ∈ Gpj
. For given ε > 0, we can find a

covering {Qjk}k of an open set containing the faces of Qj such that
∑

k

h (δjk) < 2−jε

where δjk is the side length of Qjk. Since
((⋃

j Qj

)
∪

(⋃
j

⋃
k Qjk

))◦
is an open

set containing E,

inf
O

Mρ
h (O) ≤

∑
j

h (δj) +
∑

j

∑

k

h (δjk) ≤
∑

j

h (δj) + ε.

Therefore

inf
O

Mρ
h (O) ≤ Mρ

h (E) + ε.

Since ε is arbitrary, we have the result. ¤
Example 2.4. There is a measure function h and a set E such that

Λ0
h (E) 6= inf

{
Λ0

h (O) ; O is open, E ⊂ O
}

.

Proof. Let h (r) = rN−1/2 and E a set of one point. Then Λ0
h (E) = 0 and Λ0

h (O) =
∞ for any non-empty open set O, and thus the result follows. ¤
Example 2.5. If h satisfies

lim inf
r→0

r1−Nh (r) > 0,

then Mρ
h (E) 6= inf {Mρ

h (O) ; O is open, E ⊂ O} for some E.

See [3] for the proof.

2.5. Inner relations.

Lemma 2.1. When 0 ≤ ρ < ∞, if En ↗ E, then limn→∞ Mρ
h (En) = Mρ

h (E).

Proof. First assume that 0 < ρ < ∞. If Mρ
h (En) = ∞ for some n, then the lemma

is trivial. Thus we may assume that Mρ
h (En) < ∞ for all n.

For given ε > 0 let εn = 2−nε. For every n there is a covering {Qnj}j of En such
that δnj < ρ and ∑

j

h (δnj) ≤ Mρ
h (En) + εn

where δnj is the side length of Qnj. For every cube Qn0j0 , since ρ < ∞, we can find
the largest cube in {Qnj ; Qn0j0 ⊂ Qnj}. We denote all such cubes by {Qi}i. Fix

n. Let
{

Q
(1)
k

}
k

= {Qi}i ∩ {Q1j}j and C1 = En ∩
(⋃

k Q
(1)
k

)
. Also let

{
Q

(1)
nk

}
k

={
Qnj ; Qnj ⊂

⋃
i Q

(1)
i

}
. Take x ∈ C1. Since x ∈ En, there is a j with x ∈ Qnj.

Also there is an i with x ∈ Q
(1)
i . Since Qi’s are the largest, Qnj ⊂ Q

(1)
i . Therefore
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Qnj ∈
{

Q
(1)
nk

}
k
, and thus x ∈ ⋃

k Q
(1)
nk , i.e. C1 ⊂

⋃
k Q

(1)
nk . Since {Q1j}j \

{
Q

(1)
i

}
i

covers E1 \ C1,

∑

k

h
(
δ
(1)
nk

)
+ ε1 + Mρ

h (E1 \ C1) ≥ Mρ
h (E1 ∩ C1) + ε1 + Mρ

h (E1 \ C1)

≥ Mρ
h (E1) + ε1 ≥

∑
j

h (δ1j) ≥
∑

i

h
(
δ
(1)
i

)
+ Mρ

h (E1 \ C1) .

Hence ∑

k

h
(
δ
(1)
nk

)
+ ε1 ≥

∑
i

h
(
δ
(1)
i

)
.

Let
{

Q
(2)
k

}
k

= {Qi}i∩
(
{Q2j}j \ {Q1j}j

)
and let

{
Q

(2)
nk

}
k

=
{

Qnj ; Qnj ⊂
⋃

i Q
(2)
i

}
.

Then ∑

k

h
(
δ
(2)
nk

)
+ ε2 ≥

∑
i

h
(
δ
(2)
i

)
.

Repeat this argument. We have

n∑
m=1

∑
i

h
(
δ
(m)
i

)
≤

n∑
m=1

∑

k

h
(
δ
(m)
nk

)
+

n∑
m=1

εm ≤
∑

j

h (δnj) +
n∑

m=1

εm

≤ Mρ
h (En) + εn +

n∑
m=1

εm.

Therefore

Mρ
h (E) ≤

∑
i

h (δi) ≤ lim
n→∞

Mρ
h (En) + ε.

Since ε is arbitrary,

Mρ
h (E) ≤ lim

n→∞
Mρ

h (En) .

The opposite inequality is trivial, thus the lemma is proved in this case.
Next we consider the case ρ = 0. For ε > 0 there is a ρ > 0 such that

M0
h (E) ≤ Mρ

h (E) + ε.

Therefore

M0
h (E) ≤ lim

n→∞
Mρ

h (En) + ε ≤ lim
n→∞

M0
h (En) + ε.

Since ε is arbitrary, we have the lemma. ¤

If ρ = ∞, then the same relation holds for a bounded set E. Also we can prove
a similar relation for mρ

h.

Question 2.1. Does Λρ
h satisfy a similar relation?
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2.6. The Frostman lemma.

Theorem 2.8 (Frostman). (i) Let µ be a non-negative and subadditive set func-
tion such that µ (B (x, r)) ≤ h (r) for any x, then µ (E) ≤ Λ∞h (E).

(ii) There is a constant c such that, for any compact set F , there exists a mea-
sure µ such that supp µ ⊂ F , µ (F ) ≥ cM∞

h (F ), and µ (B (x, r)) ≤ h (r)
for any x.

Proof. (i) Take a covering {B (xj, rj)}j of E. Then

µ (E) ≤
∑

j

µ (B (xj, rj)) ≤
∑

j

h (rj) ,

and thus we conclude the result.
(ii) Take an integer p sufficiently large such that F ⊂ (−2p−1, 2p−1) × · · · ×

(−2p−1, 2p−1). For a fixed integer n we define measures
{
µn

j

}n

j=−p
as follows. Take

Qn ∈ Gn. If Qn ∩F = ∅ then µn
j (Qn) = 0 for j = n, n− 1, . . . ,−p. If Qn ∩F 6= ∅,

then take a sequence {Qj}n
j=−p such that Qj ∈ Gj and Qn ⊂ Qn−1 ⊂ · · · ⊂ Q−p,

and let
µn

n (Qn) = h
(
2−n

)
,

µn
j (Qn) = min

(
1,

h (2−j)

µn
j+1 (Qj)

)
µn

j+1 (Qn) for j = n− 1, n− 2, . . . , −p

where µn
j distributes uniformly in each Qn.

Now we assume that Qn ∩ F 6= ∅. First we have µn
n (Qn) = h (2−n). Next, if

µn
n (Qn−1) ≤ h (2−n+1) then

µn
n−1 (Qn) = µn

n (Qn) = h
(
2−n

)
.

If µn
n (Qn−1) ≥ h (2−n+1), then every cube Q′

n ∈ Gn included in Qn−1 satisfies

µn
n−1 (Q′

n) =
h (2−n+1)

µn
n (Qn−1)

µn
n (Q′

n) ,

and thus

µn
n−1 (Qn−1) =

h (2−n+1)

µn
n (Qn−1)

µn
n (Qn−1) = h

(
2−n+1

)
.

After several steps we have similarly that there is a j with −p ≤ j ≤ n such that

(2.1) µn
−p (Qj) = h

(
2−j

)
.

For every x ∈ F , we take Qn ∈ Gn including x and we take the smallest
j satisfying (2.1). We denote {Qm}m for all such cubes, i.e. Qm ∈ Gjm and
µn
−p (Qm) = h (2−jm) for some jm. Then F ⊂ ⋃

m Qm and Qm∩Qm′
= ∅ if m 6= m′.

Therefore

(2.2) M∞
h (F ) ≤

∑
m

h
(
2−jm

)
=

∑
m

µn
−p (Qm) ≤ µn

−p

(
RN

)
.

Let −p ≤ j ≤ n and Qj ∈ Gj. Then

µn
−p (Qj) ≤ µn

−p+1 (Qj) ≤ · · · ≤ µn
j (Qj)
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and

µn
j (Qj) ≤ h (2−j)

µn
j+1 (Qj)

µn
j+1 (Qj) = h

(
2−j

)
.

Therefore

(2.3) µn
−p (Qj) ≤ h

(
2−j

)
.

Since supp µn
−p ⊂ (−2p, 2p)× · · · × (−2p, 2p) and the right hand side is included

in 2N cubes of G−p, (2.3) gives

(2.4) µn
−p

(
RN

) ≤ 2Nh (2p) .

Therefore by taking a subsequence we may assume that
{
µn
−p

}
n

converges weakly
to a measure µ.

Let E be a compact set with E ∩ F = ∅. Since supp µn
−p is disjoint from E for

sufficiently large n, supp µ is also disjoint from E, i.e. supp µ ⊂ F .
Also from (2.2)

µ (F ) = lim
n→∞

µn
−p

(
RN

) ≥ M∞
h (F ) .

Finally, let B = B (a, r). If r ≥ 2p, then we have by (2.4)

µ (B) ≤ µ
(
RN

)
= lim

n→∞
µn
−p

(
RN

) ≤ 2Nh (2p) ≤ 2Nh (r) .

If r < 2p, then we take ρ and j such that 2−j ≤ r < ρ < 2−j+1, and we let ϕ be a
continuous function such that 0 ≤ ϕ ≤ 1 and

ϕ (x) =

{
1 if |x− a| < r,

0 if |x− a| > ρ.

Since B (a, ρ) is covered by at most c cubes of Gj where c is a constant depending
only on N , (2.3) gives

µ (B) =

∫

B

ϕdµ ≤
∫

ϕdµ = lim
n→∞

∫
ϕdµn

−p ≤ lim
n→∞

µn
−p (B (a, ρ)) ≤ ch

(
2−j

) ≤ ch (r) .

The measure c−1µ satisfies the theorem. ¤

3. Potential theory

Let K (r) be a non-negative, decreasing and lower semi-continuous function such
that limr→0 K (r) = ∞, limr→∞ K (r) = 0 and

∫ a

0

K (r) rN−1 dr < ∞ for sufficiently small a > 0.

For simplicity we denote K (x) = K (|x|) for x ∈ RN . Thus the assumption above
can be represented by ∫

|x|<a

K (x) dx < ∞.

We denote all of Radon measures by M, and all of non-negative Radon measures
by M+.
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Definition 3.1 (Potential and energy). For σ, τ ∈ M we define the potential as

Kσ (x) :=

∫
K (x− y) dσ (y) ,

and the mutual energy as

IK (σ, τ) :=

∫∫
K (x− y) dσ (y) dτ (x) =

∫
Kσ (x) dτ (x) ,

when they can be defined. If σ = τ , then we denote simply

IK (σ) := IK (σ, σ)

and we call it the energy.

Lemma 3.1. (i) If µ ∈ M+ has finite mass, then Kµ is lower semi-continuous.
(ii) If {µn}n ⊂ M+ converges weakly to µ ∈ M+, then

lim inf
n→∞

Kµn (x) ≥ Kµ (x) .

(iii) If {µn}n ⊂ M+ and {νn}n ⊂ M+ converge weakly to µ ∈ M+ and µ ∈ M+

respectively, then

lim inf
n→∞

IK (µn, νn) ≥ IK (µ, ν) .

Proof. (i) Let {Kp}p be an increasing sequence of continuous functions with com-

pact supports which converges to K. Then {Kpµ}p is an increasing sequence of
continuous functions and converges to Kµ. Therefore Kµ is lower semi-continuous.

(iii) First we shall prove that dµn (x) dνn (y) ⇁ dµ (x) dν (y). Let f (x, y) be
a continuous function with compact support. Also let B1, B2 and B3 be open
balls in RN such that supp f ⊂ B1 × B1 and B̄1 ⊂ B2 ⊂ B̄2 ⊂ B3. The Weier-
strass approximation theorem implies that there is a sequence {Pm (x, y)}m of
polynomials which converges uniformly to f (x, y) in B̄2 × B̄2. We can take con-
tinuous functions {ϕmj}m,j and {ψmj}m,j such that ϕmj = ψmj = 0 outside B3 and{∑

j ϕmj (x) ψmj (y)
}

m
converges uniformly to f (x, y) in RN . Therefore, for given

ε > 0 and any x, y ∈ RN ,∣∣∣∣∣f (x, y)−
∑

j

ϕmj (x) ψmj (y)

∣∣∣∣∣ < ε for sufficiently large m.

Hence

lim sup
n→∞

∫∫
f (x, y) dµn (x) dνn (y)

≤ lim sup
n→∞

(∫∫ ∑
j

ϕmj (x) ψmj (y) dµn (x) dνn (y) + εµn

(
B̄2

)
νn

(
B̄2

)
)

= lim sup
n→∞

(∑
j

∫
ϕmj (x) dµn (x)

∫
ψmj (y) dνn (y) + εµn

(
B̄2

)
νn

(
B̄2

)
)
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≤
∑

j

∫
ϕmj (x) dµ (x)

∫
ψmj (y) dν (y) + εµ (B3) ν (B3)

≤
∫∫

f (x, y) dµ (x) dν (y) + 2εµ (B3) ν (B3) .

Similarly we have the opposite inequality. Therefore

dµn (x) dνn (y) ⇁ dµ (x) dν (y) .

Take Kp as in (i). Then

lim inf
n→∞

IK (µn, νn) ≥ lim inf
n→∞

∫∫
Kp (x− y) dµn (x) dνn (y)

=

∫∫
Kp (x− y) dµ (x) dν (y)

Therefore the monotone convergence theorem implies the result.
(ii) Since IK (µ, δx) = Kµ (x) where δx is the Dirac measure at x, (iii) implies

(ii). ¤

Theorem 3.1 (Weak maximum principle). There exists a constant c such that if
µ ∈ M+ satisfies Kµ ≤ 1 on supp µ, then Kµ ≤ c everywhere.

Proof. We can find {ej}c
j=1 ⊂ RN such that |ej| = 1 and RN \ {x} =

⋃c
j=1 Γj for

x ∈ RN \ supp µ, where Γj = {y ; 〈ej, y − x〉 > |y − x| cos π/6} and 〈·, ·〉 denotes
the inner product. Let ξj be (one of) the closest point to x in Γj ∩ supp µ. Remark
that |y − ξj| ≤ |y − x| for any y ∈ Γj ∩ supp µ. Therefore

Kµ (x) ≤
c∑

j=1

∫

Γj

K (x− y) dµ (y) ≤
c∑

j=1

∫

Γj

K (ξj − y) dµ (y) ≤
c∑

j=1

Kµ (ξj) ≤ c.

¤

We denote CW = CW (K) for the minimal constant satisfying Theorem 3.1.

Lemma 3.2. Let µ ∈ M+. Then the following two conditions are equivalent :

(i) Knµ converges uniformly to Kµ on E where Kn (x) := min (K (x) , n);
(ii) For any ε > 0, there is an η > 0 such that

∫

|x−y|<η

K (x− y) dµ (y) < ε for any x ∈ E.

Proof. First suppose that the condition (i) holds, i.e. for any ε > 0 and any x ∈ E
∫

(K (x− y)−Kn (x− y)) dµ (y) < ε for sufficiently large n.

Take η such that K (η) ≥ 2n. Since K (r)−Kn (r) ≥ n for r < η,

nµ (B (x, η)) ≤
∫

B(x, η)

(K (x− y)−Kn (x− y)) dµ (y) < ε,
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and thus∫

B(x, η)

K (x− y) dµ (y) ≤
∫

B(x, η)

Kn (x− y) dµ (y) + ε = nµ (B (x, η)) + ε < 2ε,

this means the condition (ii) holds.
Next suppose that the condition (ii) holds. If K (η) ≤ n, then, since K (r) −

Kn (r) = 0 for r ≥ η and K (r)−Kn (r) ≤ K (r) for all r,

Kµ (x)−Knµ (x) =

∫

|x−y|<η

(K (x− y)−Kn (x− y)) dµ (y)

≤
∫

|x−y|<η

K (x− y) dµ (y) < ε,

this means the condition (i) holds. ¤
Definition 3.2 (Uniform convergence of potentials). Let µ ∈ M+. Then Kµ
converges uniformly on a set E if µ satisfies (one of) the conditions of Lemma 3.2.

Lemma 3.3. Suppose that K is continuous on (0, ∞). Let µ ∈ M+ with finite
mass such that Kµ converges uniformly on supp µ. Then Kµ is continuous every-
where.

Proof. From the assumption, for any ε > 0, there is an η such that∫

B(x, 2η)

K (x− y) dµ (y) < ε for any x ∈ supp µ.

Let z be any point and let {zn}n be a sequence of points converging to z. Also let
µ1 = µ|B(z, η) and µ2 = µ − µ1. If x ∈ supp µ1, then x ∈ supp µ and |z − x| ≤ η.
Therefore

Kµ1 (x) =

∫

B(z, η)

K (x− y) dµ (y) ≤
∫

B(x, 2η)

K (x− y) dµ (y) < ε.

The weak maximum principle implies that

Kµ1 ≤ CWε everywhere.

Next we consider

Kµ2 (zn) =

∫

|z−y|≥η

K (zn − y) dµ (y) .

We may assume that |zn − y| ≥ η/2. Since K (zn − y) is bounded, the bounded
convergence theorem implies

lim
n→∞

Kµ2 (zn) =

∫

|z−y|≥η

K (z − y) dµ (y) ≤ Kµ (z) .

Hence

lim sup
n→∞

Kµ (zn) ≤ CWε + Kµ (z) .

Using Lemma 3.1 (i), we have the result. ¤



NOTES ON HAUSDORFF MEASURE AND CLASSICAL CAPACITY 27

Theorem 3.2 (Continuity principle). Suppose that K is continuous on (0, ∞).
Let µ ∈ M+ with compact support. If Kµ is continuous on supp µ, then Kµ is
continuous everywhere.

Proof. Since Knµ is continuous and converges to Kµ as n → ∞, Dini’s theorem
implies that Knµ converges uniformly to Kµ on supp µ, i.e. Kµ converges uniformly
on supp µ. Therefore Lemma 3.3 gives the result. ¤
Lemma 3.4. Let µ ∈ M+ with finite mass such that Kµ < ∞ µ-a.e. For any ε > 0
there exists a closed set F such that µ

(
RN \ F

)
< ε and Kµ converges uniformly

on F . Moreover, if K is continuous on (0, ∞), then Kµ|F continuous everywhere.

Proof. Since Knµ converges to Kµ, the Egorov theorem implies that there is a set
E such that µ

(
RN \ E

)
< ε and Knµ converges uniformly to Kµ on E, i.e. for

any δ > 0 we have∫
(K (x− y)−Kn (x− y)) dµ (y) < δ for any x ∈ E and sufficiently large n.

Let F be the closure of E. It is clear that

µ
(
RN \ F

)
< ε.

Now let x ∈ F and let {xj}j be a sequence in E which converges to x. Since K
is lower semi-continuous, Fatou’s lemma implies∫

(K (x− y)−Kn (x− y)) dµ (y) ≤
∫

lim inf
j→∞

(K (xj − y)−Kn (xj − y)) dµ (y)

≤ lim inf
j→∞

∫
(K (xj − y)−Kn (xj − y)) dµ (y) ≤ δ.

Therefore Kµ converges uniformly on F . Lemma 3.3 implies the remaining part.
¤

Theorem 3.3 (Strong maximum principle). Suppose that K (r) is absolutely con-
tinuous and that K ′ (r) rN−1 is increasing. Then CW (K) = 1.

Proof. When N ≥ 3 we let H (t) = K
(
t1/(2−N)

)
. Then

H ′ (t) = t(N−1)/(2−N)K ′ (t1/(2−N)
)
/ (2−N) ,

which is increasing. Therefore K can be written as

K (r) = H (Φ (r))

with a convex function H where Φ (r) = r2−N . Similarly, when N = 2, the above
holds for Φ (r) = − log r.

Let µ ∈ M+ such that Kµ ≤ 1 on supp µ. First we assume that supp µ is
compact. From Lemma 3.4, for any δ > 0 there is a closed set F ⊂ supp µ such
that µ

(
RN \ F

)
< δ and Kµ|F is continuous everywhere. We let µ1 = µ|F .

We shall prove that Kµ1 is subharmonic outside F . Let σ be the surface measure
of |y| = ρ such that ‖σ‖ = 1. Then, by Jensen’s inequality,∫

|y|=ρ

K (x + y) dσ (y) =

∫

|y|=ρ

H (Φ (x + y)) dσ (y) ≥ H

(∫

|y|=ρ

Φ (x + y) dσ (y)

)
.
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If |x| > ρ, then, since Φ is harmonic except the origin, we have
∫
|y|=ρ

Φ (x + y) dσ (y) =

Φ (x). Therefore
∫

|y|=ρ

K (x + y) dσ (y) ≥ H (Φ (x)) = K (x) .

Let x /∈ F and 0 < ρ < dist (x, F ). Then
∫

|y|=ρ

Kµ1 (x− y) dσ (y) =

∫ ∫

|y|=ρ

K ((z − x) + y) dσ (y) dµ1 (z) .

If z ∈ F , then |z − x| ≥ dist (x, F ) > ρ, and thus
∫

|y|=ρ

K ((z − x) + y) dσ (y) ≥ K (z − x) .

Therefore
∫

|y|=ρ

Kµ1 (x− y) dσ (y) ≥
∫

K (z − x) dµ1 (z) = Kµ1 (x) ,

which means Kµ1 is subharmonic.
If x is a boundary point of RN \ F , then x ∈ supp µ, and

Kµ1 (x) ≤ Kµ (x) ≤ 1.

When |x| tends to ∞, we have Kµ1 (x) → 0. Hence, by the maximum principle of
subharmonic functions,

Kµ1 (x) ≤ 1 for x /∈ F.

This inequality also holds for x ∈ F , thus it holds everywhere.
Let x /∈ supp µ and ρ = dist (x, supp µ). Then, since µ

(
RN \ F

)
< δ,

Kµ (x) = Kµ1 (x) +

∫

RN\F
K (x− y) dµ (y) ≤ 1 + δK (ρ) .

Since δ is arbitrary, we have the theorem in this case.
Next we consider the general case. Let νR = µ|B(0, R). Then the previous part

implies

KνR ≤ 1 everywhere.

Therefore the monotone convergence theorem gives

Kµ (x) = lim
R→∞

KνR (x) ≤ 1 everywhere,

and thus the result follows. ¤

Question 3.1. Find a necessary condition for K to satisfy the strong maximum
principle.
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4. Capacity

4.1. Definitions and some properties.

Definition 4.1 (Capacity). For a set E

CK (E) := sup
{
µ (E) ; µ ∈ M+, supp µ ⊂ E, Kµ ≤ 1 everywhere

}
.

Definition 4.2 (Quasi-everywhere). A property is said to hold quasi-everywhere,
q.e. for short, if it holds except a set E such that CK (E) = 0.

Lemma 4.1. If E is an Fσ-set with CK (E) = 0 and Kµ is bounded on E, then
µ (E) = 0.

Proof. First we assume that E is compact. Let M = supE Kµ and τ = (MCW)−1 µ|E.
Then Kτ ≤ C−1

W on supp τ , and thus Kτ ≤ 1 everywhere. Therefore

µ (E) = MCWτ (E) ≤ MCWCK (E) = 0.

Now we consider the general case. Take a sequence {Fn}n of compact sets which
converges increasingly to E. Since CK (Fn) ≤ CK (E) = 0, we have µ (Fn) = 0
from the first part, and thus we have the result. ¤

Lemma 4.2. If {En}n is a sequence of Fσ-sets, then

CK

(⋃
n

En

)
≤

∑
n

CK (En) .

Proof. Let µ ∈ M+ such that supp µ ⊂ ⋃
n En and Kµ ≤ 1 everywhere. First we

assume that all En are compact. Since supp µ|En ⊂ En and Kµ|En ≤ 1 everywhere,
we have µ (En) ≤ CK (En). Therefore

µ

(⋃
n

En

)
≤

∑
n

µ (En) ≤
∑

n

CK (En) .

Hence the lemma follows in this case.
Next we consider the general case. Take a compact set Fn ⊂ En for every n.

Then

µ (Fn) ≤ CK (Fn) ≤ CK (En) .

Since µ (En) = supFn
µ (Fn), we have µ (En) ≤ CK (En). Therefore the lemma

follows similarly to the first part. ¤

4.2. Equilibrium measure.

Lemma 4.3. Let F be a non-empty compact set and let

γ = inf
{
IK (µ) ; µ ∈ M+, supp µ ⊂ F, µ (F ) = 1

}
.

Then CK (F ) ≤ γ−1 ≤ CWCK (F ) and there is a measure µ ∈ M+ such that
supp µ ⊂ F , µ (F ) = 1, IK (µ) = γ, Kµ ≥ γ q.e. on F and Kµ ≤ γ on supp µ.
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Proof. First assume that γ = ∞. If CK (F ) > 0, then there is a measure µ ∈ M+

such that supp µ ⊂ F , µ (F ) = 1 and Kµ is bounded. Then IK (µ) < ∞, which
is a contradiction. Therefore CK (F ) = 0. Hence any measure µ ∈ M+ with
supp µ ⊂ F and µ (F ) = 1 satisfies the conditions.

Next assume that γ < ∞. Let {µn}n ⊂ M+ be a sequence such that supp µn ⊂
F , µn (F ) = 1 and

lim
n→∞

IK (µn) = γ.

By taking a subsequence we may assume that µn converges weakly to a measure
µ. Then it is easy to see that supp µ ⊂ F and µ (F ) = 1. Lemma 3.1 (iii) yields

γ ≤ IK (µ) ≤ lim inf
n→∞

IK (µn) = γ,

that is
IK (µ) = γ.

Let Tm = {x ∈ F ; Kµ (x) ≤ γ −m−1} and T = {x ∈ F ; Kµ (x) < γ}. Sup-
pose that CK (Tm) > 0. Then we can find a measure τ ∈ M+ such that supp τ ⊂
Tm, τ (Tm) = 1 and Kτ ≤ c0 < ∞ everywhere. Now let µt = (1− t) µ + tτ for
0 < t < 1. Then supp µt ⊂ F and µt (F ) = 1. Therefore

IK (µt) ≥ γ.

On the other hand, since

IK (µ, τ) =

∫
Kµ dτ ≤ (

γ −m−1
)
τ (Tm) = γ −m−1

and

IK (τ) =

∫
Kτ dτ ≤ c0,

we have

IK (µt) ≤ (1− t)2 γ+2t (1− t)
(
γ −m−1

)
+t2c0 = γ−2m−1t+

(
2m−1 − γ + c0

)
t2 < γ

when t is sufficiently small, which is a contradiction. Therefore CK (Tm) = 0. Since
T =

⋃
m Tm, Lemma 4.2 gives

CK (T ) ≤
∑
m

CK (Tm) = 0,

which means that Kµ ≥ γ q.e. on F . Also, using Lemma 4.1, we have µ (T ) = 0.
Next suppose that there is an x ∈ supp µ with Kµ (x) > γ. Then we can

take a neighborhood O of x such that Kµ > γ on O. Since µ (T ) = 0 and
γ = IK (µ) =

∫
F

Kµ dµ, we have Kµ = γ µ-a.e. Hence µ (O) = 0, which is a
contradiction. Therefore Kµ ≤ γ on supp µ.

Finally let ν ∈ M+ such that supp ν ⊂ F and Kν ≤ 1 everywhere. Let ν1 =
ν (F )−1 ν. Then supp ν1 ⊂ F and ν1 (F ) = 1. Therefore

γ ≤ IK (ν1) = ν (F )−2 IK (ν) .

Since IK (ν) =
∫

Kν dν ≤ ∫
dν = ν (F ), we have ν (F ) ≤ γ−1. Hence

CK (F ) ≤ γ−1.
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On the other hand, let µ1 = (CWγ)−1 µ. Then Kµ1 ≤ C−1
W on supp µ1, and thus

Kµ1 ≤ 1 everywhere. Therefore

CK (F ) ≥ µ1 (F ) = (CWγ)−1 ,

and we have the lemma. ¤

Since γ > 0, we have CK (E) < ∞ for a bounded set E.

Theorem 4.1 (Equilibrium measure). Let F be a non-empty compact set. There
is a measure µ ∈ M+ such that supp µ ⊂ F , Kµ ≤ 1 on supp µ, Kµ ≥ 1 q.e. on
F and CK (F ) ≤ µ (F ) = IK (µ) ≤ CWCK (F ).

Proof. Let µ0 be a measure given by Lemma 4.3, and let µ = γ−1µ0. Then the
conclusion is trivial. ¤

Theorem 4.2. Suppose that K is continuous on (0, ∞). Let F be a non-empty
compact set and suppose that, for every x ∈ F , there is a bounded cone Vx with
vertex at x such that Vx ⊂ F . Also suppose that K satisfies the doubling condition,
i.e. there is a constant C such that K (r) ≤ CK (2r). Then there is a measure
µ ∈ M+ such that supp µ ⊂ F , Kµ ≤ 1 on supp µ, Kµ ≥ 1 on F and CK (F ) ≤
µ (F ) = IK (µ) ≤ CWCK (F ).

Proof. Let µ be an equilibrium measure for F . We have only to prove that Kµ (x) ≥
1 for x ∈ F . Without loss of generality, we can assume that 0 ∈ F , and we shall
prove Kµ (0) ≥ 1.

Let c = Area (V0 ∩ ∂B (0, R)) /Area (∂B (0, R)). Remark that c depends only
on V0. For α > 0

∫ α

t

K (r) rN−1

∫ r

0
K (s) sN−1 ds

dr =

[
log

∫ r

0

K (s) sN−1 ds

]α

r=t

tends to 0 as t → α and tends to ∞ as t → 0. Therefore we can find t0 (α) such
that ∫ α

t0(α)

K (r) rN−1

∫ r

0
K (s) sN−1 ds

dr = c−1.

Let

qα (x) =

{
K(x)R

|y|<|x|K(y) dy
if x ∈ V0 and t0 (α) < |x| < α,

0 otherwise.

Then ∫
qα (x) dx = c

∫ α

t0(α)

K (r) rN−1

∫ r

0
K (s) sN−1 ds

dr = 1.

The weak maximum principle shows that
∫

K (y) dµ (y) = Kµ (0) is finite.
Therefore, for ε > 0, we can find ρ > 0 such that

∫

|y|<ρ

K (y) dµ (y) < ε.
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Now we consider the integration∫
K (x− y) qα (x) dx.

If |x− y| ≥ |y| /2, then K (x− y) ≤ K (y/2). Therefore∫

|x−y|≥|y|/2

K (x− y) qα (x) dx ≤ K (y/2) .

If |x− y| < |y| /2, then |y| /2 ≤ |x|. Therefore
∫

|x−y|<|y|/2

K (x− y) qα (x) dx ≤
∫

|x−y|<|y|/2

K (x− y) K (x)∫
|z|<|x| K (z) dz

dx

≤ K (y/2)

∫

|x−y|<|y|/2

K (x− y)∫
|z|<|y|/2

K (z) dz
dx = K (y/2) .

Hence, using the doubling condition, we have∫
K (x− y) qα (x) dx ≤ 2K (y/2) ≤ 2CK (y) .

Therefore∫

|y|<ρ

∫
K (x− y) qα (x) dx dµ (y) ≤ 2C

∫

|y|<ρ

K (y) dµ (y) ≤ 2Cε.

Since K is uniformly continuous in {y ; |y| ≥ ρ}∩ supp µ, there is an α such that

|K (y − x)−K (y)| < ε if |x| ≤ α

for any y ∈ {y ; |y| ≥ ρ} ∩ supp µ. Therefore∣∣∣∣
∫

K (y − x) qα (x) dx−K (y)

∣∣∣∣ ≤
∫
|K (y − x)−K (y)| qα (x) dx ≤ ε

for any y ∈ {y ; |y| ≥ ρ} ∩ supp µ. Hence∣∣∣∣
∫

|y|≥ρ

∫
K (y − x) qα (x) dx dµ (y)−

∫

|y|≥ρ

K (y) dµ (y)

∣∣∣∣

≤
∫

|y|≥ρ

ε dµ (y) ≤ εµ (F ) = εCWCK (F ) .

Therefore∣∣∣∣
∫∫

K (y − x) qα (x) dx dµ (y)−Kµ (0)

∣∣∣∣ ≤ (2C + 1 + CWCK (F )) ε.

Hence

lim
α→0

∫∫
K (y − x) qα (x) dx dµ (y) = Kµ (0) .

On the other hand, since Kµ ≥ 1 q.e. on F and the potential of the Lebesgue
measure is bounded, we have Kµ ≥ 1 a.e. on F . Therefore∫∫

K (y − x) qα (x) dx dµ (y) =

∫
Kµ (x) qα (x) dx ≥

∫
qα (x) dx = 1.
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Hence the theorem is proved. ¤

4.3. Extremal problems.

Theorem 4.3. Let F be a compact set with CK (F ) > 0. Let

A = inf
{
ν

(
RN

)
; ν ∈ M+, Kν ≥ 1 q.e. on F

}
,

B = sup
{
ν (F ) ; ν ∈ M+, Kν ≤ 1 q.e. on F, Kν is bounded, supp ν ⊂ F

}
.

Then

CK (F ) /CW ≤ A ≤ CWCK (F ) ,

CK (F ) /CW ≤ B ≤ CWCK (F ) .

Proof. Let µ be an equilibrium measure for F . Let ν1 ∈ M+ such that Kν1 ≥ 1
q.e. on F . Since Kµ is bounded, we have Kν1 ≥ 1 µ-a.e. Therefore

CK (F ) ≤ µ (F ) ≤
∫

F

Kν1 dµ =

∫
Kµ dν1 ≤ CWν1

(
RN

)
.

Hence CK (F ) ≤ CWA.
Since µ satisfies Kµ ≥ 1 q.e. on F ,

A ≤ µ (F ) ≤ CWCK (F ) .

Let ν2 ∈ M+ such that Kν2 ≤ 1 q.e. on F , Kν2 is bounded and supp ν2 ⊂ F .
Then Kν2 ≤ 1 µ-a.e. Also since Kµ ≥ 1 q.e. on F , we have Kµ ≥ 1 ν2-a.e.
Therefore

CWCK (F ) ≥ µ (F ) ≥
∫

F

Kν2 dµ =

∫

F

Kµ dν2 ≥ ν2 (F ) .

Hence CWCK (F ) ≥ B.
Since µ/CW satisfies K (µ/CW) ≤ 1 q.e. on F , K (µ/CW) is bounded and

supp (µ/CW) ⊂ F ,

CK (F ) /CW ≤ µ (F ) /CW ≤ B.

¤
Lemma 4.4. If Kν ≤ 1 q.e. on supp ν and Kν is bounded, then Kν ≤ 1 on supp ν.

Proof. Let E = {x ∈ supp ν ; Kν (x) > 1} and suppose that x ∈ E. We can find
a neighborhood O of x such that Kν > 1 on O. Since CK (E) = 0 and Kν is
bounded, Lemma 4.1 implies that ν (E) = 0, and thus ν (O) = 0, which is a
contradiction. ¤
Lemma 4.5. Suppose that N ≥ 2. Also suppose that K (r) is absolutely continu-
ous, K ′ (r) rN−1 is increasing and that K (r) = 0 for sufficiently large r. Then the
Fourier transformation of K is strictly positive, i.e.

K̂ (ξ) :=

∫
K (x) e−i〈ξ, x〉 dx > 0 for any ξ

where 〈·, ·〉 is the inner product.
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Proof. It is easy to see that K̂ (0) > 0, therefore we may assume that ξ 6= 0.
Without loss of generality we may assume that |ξ| = 1. Let r = |x| and ϕ the angle
between x and ξ. Then

K̂ (ξ) = c

∫ ∞

0

∫ π

0

K (r) e−ir cos ϕrN−1 sinN−2 ϕdϕ dr(4.1)

= c

∫ ∞

0

K (r) rN−1

∫ π/2

−π/2

eir sin θ cosN−2 θ dθ dr

= 2c

∫ ∞

0

K (r) rN−1

∫ π/2

0

cos (r sin θ) cosN−2 θ dθ dr

where c is a positive constant.
Let

J (r) =

∫ π/2

0

cos (r sin θ) cosN−2 θ dθ.

Then

J ′ (r) = −
∫ π/2

0

sin (r sin θ) sin θ cosN−2 θ dθ,

J ′′ (r) = −
∫ π/2

0

cos (r sin θ) sin2 θ cosN−2 θ dθ.

Therefore

rJ ′′ (r) + (N − 1) J ′ (r) + rJ (r)

(4.2)

= r

∫ π/2

0

cos (r sin θ) cosN θ dθ − (N − 1)

∫ π/2

0

sin (r sin θ) sin θ cosN−2 θ dθ

=
[
sin (r sin θ) cosN−1 θ

]π/2

0
= 0.

Since |sin ϕ| ≤ |ϕ|, we have

|J ′ (r)| ≤
∫ π/2

0

r sin2 θ cosN−2 θ dθ ≤ 1

2
πr.

On the other hand, since∫ r

0

K (t) tN−1 dt ≥ K (r)

∫ r

0

tN−1 dt =
1

N
K (r) rN ,

and we assume that
∫ r

0
K (t) tN−1 dt < ∞, we have

(4.3) lim
r→0

K (r) rN = 0.

Therefore
lim
r→0

∣∣K (r) rN−1J ′ (r)
∣∣ ≤ π

2
lim
r→0

K (r) rN = 0.

We have by (4.1) and (4.2)

K̂ (ξ) = 2c

∫ ∞

0

K (r) rN−1J (r) dr
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= −2c

∫ ∞

0

K (r) rN−1

(
J ′′ (r) +

N − 1

r
J ′ (r)

)
dr

= −2c

∫ ∞

0

(
K (r) rN−1J ′′ (r) + K (r) (N − 1) rN−2J ′ (r)

)
dr

= −2c
[
K (r) rN−1J ′ (r)

]∞
r=0

+ 2c

∫ ∞

0

K ′ (r) rN−1J ′ (r) dr

= 2c

∫ ∞

0

K ′ (r) rN−1J ′ (r) dr.

Now we shall show that lim infr→0

(−K ′ (r) rN+1
)

= 0. If not, there are c0 > 0
and r0 > 0 such that

−K ′ (r) rN+1 ≥ c0 for 0 < r < r0.

Therefore

K (r)−K (r0) = −
∫ r0

r

K ′ (t) dt ≥ c0

∫ r0

r

t−N−1 dt =
c0

N

(
r−N − r−N

0

)
,

and thus
rN (K (r)−K (r0)) ≥ c0

N

(
1− rNr−N

0

)
.

The equation (4.3) shows that 0 ≥ c0/N , which is a contradiction. Hence we can
find a sequence {rj}j such that rj ↘ 0 and

−K ′ (rj) rN+1
j → 0 as j →∞.

Since

J (0)− J (r) =

∫ π/2

0

(1− cos (r sin θ)) cosN−2 θ dθ > 0 for r > 0,

we have

lim
j→∞

∫ ∞

rj

(J (0)− J (r)) d
(
K ′ (r) rN−1

)
=

∫ ∞

0

(J (0)− J (r)) d
(
K ′ (r) rN−1

)
.

Since J ′ (0) = 0, we have J (r) = J (0) + O (r2), and thus

(J (0)− J (rj)) K ′ (rj) rN−1
j = O

(
K ′ (rj) rN+1

j

) → 0.

Since J ′ (r) ≤ 0 for sufficiently small r and K ′ (r) ≤ 0,∫ ∞

rj

J ′ (r) K ′ (r) rN−1 dr →
∫ ∞

0

J ′ (r) K ′ (r) rN−1 dr =
1

2c
K̂ (ξ) as j →∞.

Therefore

0 <

∫ ∞

0

(J (0)− J (r)) d
(
K ′ (r) rN−1

)
= lim

j→∞

∫ ∞

rj

(J (0)− J (r)) d
(
K ′ (r) rN−1

)

= lim
j→∞

(
[
(J (0)− J (r)) K ′ (r) rN−1

]∞
rj

+

∫ ∞

rj

J ′ (r) K ′ (r) rN−1 dr

)
=

1

2c
K̂ (ξ) .

Hence we have the lemma. ¤
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Lemma 4.6. Suppose that N ≥ 2. Also suppose that K (r) is absolutely continu-
ous, K ′ (r) rN−1 is increasing and that K (r) = 0 for sufficiently large r. Let σ ∈ M
with compact support such that IK (|σ|) < ∞ and the total variation ‖σ‖ is finite.
Then IK (σ) ≥ 0, and the equality holds if and only if σ ≡ 0.

Proof. From the assumption IK (σ) =
∫

Kσ dσ is finite, thus Kσ can be defined at
|σ|-a.e. points. The Fourier transformation of σ is

σ̂ (ξ) =

∫
e−i〈ξ, x〉 dσ (x) .

Now let

Φn (x) = (n/π)N/2 exp
(−n |x|2) .

It is easy to see that

Φ̂n (ξ) = exp
(− |ξ|2 / (4n)

)
,

which is a positive and integrable function. Since
∣∣∣K̂ (ξ)

∣∣∣ ≤
∫

K (x) dx < ∞ and

|σ̂ (ξ)| ≤ ∫
d |σ| < ∞, we have Φ̂nK̂σ̂ is also integrable. Therefore

∫
Φ̂n (ξ) K̂ (ξ) |σ̂ (ξ)|2 dξ =

∫
Φ̂n (ξ) K̂ (ξ) σ̂ (ξ)

∫
ei〈ξ, y〉 dσ (y) dξ

=

∫∫
Φ̂n (ξ) K̂ (ξ) σ̂ (ξ) ei〈ξ, y〉 dξ dσ (y) .

Here

Φn ∗Kσ (y) = (2π)−N

∫
Φ̂n (ξ) K̂σ (ξ) ei〈ξ, y〉 dξ

= (2π)−N

∫
Φ̂n (ξ) K̂ (ξ) σ̂ (ξ) ei〈ξ, y〉 dξ for a.e. y.

Since the potential of the Lebesgue measure is bounded, Kσ is integrable. Thus
the both sides are continuous, therefore the above holds everywhere. Hence

(4.4)

∫
Φ̂n (ξ) K̂ (ξ) |σ̂ (ξ)|2 dξ = (2π)N

∫
Φn ∗Kσ (y) dσ (y) .

Now we assume that Kσ is continuous. Since supp σ is compact, Kσ is bounded.
Therefore Φn ∗ Kσ converges to Kσ as n → ∞. Since Φn ∗ Kσ and Kσ are
continuous, we have that Φn ∗Kσ converges locally uniformly to Kσ. Also we have
Φ̂nK̂ |σ̂|2 converges increasingly to K̂ |σ̂|2. Therefore (4.4) becomes

(4.5)

∫
K̂ (ξ) |σ̂ (ξ)|2 dξ = (2π)N

∫
Kσ (y) dσ (y) = (2π)N IK (σ) .

Next we consider the general case. By Lemma 3.4, there exists a closed set Fm

such that |σ| (RN \ Fm

)
< 1/m and K |σ| |Fm continuous everywhere. We may

assume that Fm increases as m increases. Let σm = σ|Fm and divide it into two
parts, σm = σ+

m − σ−m. Then, since Kσ+
m and Kσ−m continuous everywhere, thus

Kσm = Kσ+
m −Kσ−m is also continuous.
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Let τm = σ − σm. Then

2IK (σ, τm)− IK (τm) = 2IK (σ)− 2IK (σ, σm)− (IK (σ)− 2IK (σ, σm) + IK (σm))

= IK (σ)− IK (σm) .

Since |τm| ≤ |σ|,
|IK (σ)− IK (σm)| ≤ 2IK (|σ| , |τm|) + IK (|τm|) ≤ 3IK (|σ| , |τm|) .

Since |σ| (RN \ Fm

) → 0 and
∫

K |σ| d |σ| < ∞,

IK (|σ| , |τm|) =

∫

RN\Fm

K |σ| d |σ| → 0 as m →∞,

and thus

lim
m→∞

IK (σm) = IK (σ) .

Since

|σ̂ (ξ)− σ̂m (ξ)| ≤
∫

d |τm| < 1/m,

σ̂m converges uniformly to σ̂ as m →∞. We apply (4.5) for σm and obtain
∫

K̂ (ξ) |σ̂ (ξ)|2 dξ =

∫
lim inf
m→∞

K̂ (ξ) |σ̂m (ξ)|2 dξ ≤ lim inf
m→∞

∫
K̂ (ξ) |σ̂m (ξ)|2 dξ

= (2π)N lim inf
m→∞

IK (σm) = (2π)N IK (σ) .

Therefore IK (σ) ≥ 0. If IK (σ) = 0 and σ̂ (ξ) 6= 0 for some ξ, then σ̂ 6= 0 in some

neighborhood of ξ, and thus the above equation implies that K̂ (ξ) = 0, which
contradict Lemma 4.5. Therefore σ̂ ≡ 0, and thus σ ≡ 0. ¤

Theorem 4.4. Suppose that N ≥ 2. Also suppose that K (r) is absolutely contin-
uous and that K ′ (r) rN−1 is increasing. Let F be a compact set with CK (F ) > 0.
Then there uniquely exists the measure µ0 which minimizes

{
IK (µ) ; µ ∈ M+, supp µ ⊂ F, µ (F ) = 1

}

(cf. Lemma 4.3). Also there uniquely exists the measure ν0 which maximizes
{
ν (F ) ; ν ∈ M+, Kν ≤ 1 q.e. on F, Kν is bounded, supp ν ⊂ F

}

(cf. Theorem 4.3), and they satisfies

ν0 = CK (F ) µ0.

Proof. Let φ (r) = −K ′ (r) rN−1. Then φ is non-negative decreasing function which
satisfies

K (r) =

∫ ∞

r

φ (t) t1−N dt.

Let r0 = 2 diam F and take r1 > r0 such that∫ r1

r0

φ (r0) t1−N dt =

∫ ∞

r0

φ (t) t1−N dt.
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Let

φ1 (r) =





φ (r) if r < r0,

φ (r0) if r0 ≤ r < r1,

0 if r1 ≤ r

and K1 (r) =

∫ ∞

r

φ1 (t) t1−N dt.

Then K1 (r) = K (r) if r < r0 and K1 (r) = 0 if r1 < r. Then we see easily that
CK (F ) = CK1 (F ) and Kµ = K1µ on F and IK (µ) = IK1 (µ) for any measure µ
whose support is in F . Note that CW = 1 by Theorem 3.3

Let µ1 and µ2 be measures which minimize
{
IK (µ) ; µ ∈ M+, supp µ ⊂ F, µ (F ) = 1

}
.

By Lemma 4.3

K1µ1 = CK1 (F )−1 q.e. on F

and K1µ2 is bounded, thus the above holds µ2-a.e. Therefore

IK1 (µ1, µ2) =

∫
CK1 (F )−1 dµ2 = CK1 (F )−1 .

Hence

IK1 (µ1 − µ2) = IK1 (µ1)− 2IK1 (µ1, µ2) + IK1 (µ2) = 0.

Also we have

IK1 (|µ1 − µ2|) ≤ IK1 (µ1 + µ2) = IK1 (µ1) + 2IK1 (µ1, µ2) + IK1 (µ2) < ∞.

Therefore Lemma 4.6 implies µ1 = µ2, i.e. the minimizing measure is unique.
Let ν be a measure which maximizes

{
ν (F ) ; ν ∈ M+, Kν ≤ 1 q.e. on F, Kν is bounded, supp ν ⊂ F

}
.

And let

µ = CK1 (F )−1 ν.

Then µ ∈ M+ such that supp µ ⊂ F and µ (F ) = 1. Since K1ν ≤ 1 q.e. on F , we
have K1ν ≤ 1 ν-a.e. Therefore

IK1 (µ) = CK1 (F )−2 IK1 (ν) ≤ CK1 (F )−1 .

This means µ minimizes
{
IK (µ) ; µ ∈ M+, supp µ ⊂ F, µ (F ) = 1

}
.

Hence we have the theorem. ¤

Example 4.1. A measure which minimizes
{
ν

(
RN

)
; ν ∈ M+, Kν ≥ 1 q.e. on F

}

need not be unique (cf. Theorem 4.3).
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Proof. Let F = {x ∈ R2 ; |x| = 1} and K (r) = log+ (2/r). Let µ be a measure on
F such that

dµ = dθ/ (2π log 2) .

Then

Kµ (x) = (2π log 2)−1

∫ 2π

0

log+
(
2/

∣∣x− eiθ
∣∣) dθ

depends only on |x|. Since Kµ is harmonic in |x| < 1,

Kµ (0) = (2π)−1

∫ 2π

0

Kµ
(
reit

)
dt = Kµ

(
reiα

)
for any 0 < r < 1 and any α.

Thus Kµ is constant in |x| < 1. Also we have

Kµ (0) = (2π log 2)−1

∫ 2π

0

log 2 dθ = 1.

Therefore Kµ = 1 on |x| < 1. Since Kµ is lower semi-continuous, we have Kµ ≤ 1
on |x| = 1. On the other hand, since

K ′ (r) r =

{
−1 if r < 2,

0 if r > 2,

K satisfies the strong maximum principle. Hence Kµ = 1 on |x| = 1. This means
that µ ∈ M+ satisfies Kµ ≥ 1 q.e. on F . Thus Theorem 4.3 implies

CK (F ) ≤ µ
(
RN

)
= (log 2)−1 .

Also, since µ ∈ M+, supp µ ⊂ E and Kµ ≤ 1 on supp µ,

CK (F ) ≥ µ (F ) = (log 2)−1 .

Therefore

CK (F ) = (log 2)−1

and µ is a minimizing measure.
Next let

ν = δ/ log 2

where δ is the Dirac measure at the origin. When |x| ≤ 1, we have

Kν (x) = K (x) / log 2 ≥ 1,

i.e. ν ∈ M+ such that Kν ≥ 1 q.e. on F . Also we have

ν
(
RN

)
= (log 2)−1 .

This means that ν is also a minimizing measure. ¤
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4.4. The Choquet capacity.

Definition 4.3 (Choquet capacity). A set function c is called a Choquet capacity
if it satisfies the following :

(i) 0 ≤ c (E) ≤ ∞ for any E.
(ii) if E1 ⊂ E2, then c (E1) ≤ c (E2).
(iii) if En ↗ E, then c (En) → c (E).
(iv) if En is compact and En ↘ E, then c (En) → c (E).

Definition 4.4 (Capacitable). A set E is called to be c-capacitable if

c (E) = sup {c (F ) ; F is compact, F ⊂ E} .

Definition 4.5 (C∗
K). For a set E

C∗
K (E) := inf {CK (O) ; O is open, E ⊂ O} .

We shall show that C∗
K is a Choquet capacity under some assumptions. It is

clear that C∗
K satisfies the conditions (i) and (ii) of Definition 4.3.

Lemma 4.7. For any set E

CK (E) = sup {CK (F ) ; F is compact, F ⊂ E} .

Proof. Let µ ∈ M+ such that supp µ ⊂ E and Kµ ≤ 1 everywhere. Also let
ν = µ|B(0, R) and F = supp ν. Then F is a compact set in E and Kν ≤ 1
everywhere. Therefore

sup
F

CK (F ) ≥ CK (F ) ≥ ν (F ) = µ
(
E ∩B (0, R)

)
.

Letting R →∞, we have

sup
F

CK (F ) ≥ µ (E) .

Hence

sup
F

CK (F ) ≥ CK (E) .

The opposite is trivial, and we have the lemma. ¤

Lemma 4.8. For any compact set F

CK (F ) = C∗
K (F ) .

Proof. Let On = {x ; dist (x, F ) < 1/n}. We can find µn ∈ M+ such that supp µn ⊂
On, Kµn ≤ 1 everywhere and

µn (On) > CK (On)− 1/n.

Since O1 is bounded, we have CK (O1) < ∞, and thus
{
µn

(
RN

)}
n

is bounded.
Therefore by taking a subsequence we may assume that {µn}n converges weakly to
a measure µ. Then Lemma 3.1 (ii) gives

Kµ (x) ≤ lim inf
n→∞

Kµn (x) ≤ 1.
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Since supp µ ⊂ F ,

CK (F ) ≥ µ (F ) = lim
n→∞

µn (On) ≥ lim
n→∞

(CK (On)− 1/n) = lim
n→∞

CK (On) ≥ C∗
K (F ) .

The opposite is clear, and we have the lemma. ¤
Theorem 4.5. Let {Fn}n be a decreasing sequence of compact sets which converges
to E. Then

C∗
K (Fn) → C∗

K (E) ,

i.e. C∗
K satisfies the condition (iv) of Definition 4.3.

Proof. Let O be an open set containing E. Then Fn ⊂ O for sufficiently large n.
Therefore

lim
n→∞

C∗
K (Fn) ≤ C∗

K (Fn) ≤ CK (O) .

Hence

lim
n→∞

C∗
K (Fn) ≤ C∗

K (E) .

The opposite is clear, and we have the theorem. ¤
Lemma 4.9. For any sets {En}n

C∗
K

(⋃
n

En

)
≤

∑
n

C∗
K (En) .

Proof. For any ε > 0 we find an open set On containing En such that

CK (On) ≤ C∗
K (En) + 2−nε.

Then Lemma 4.2 implies

C∗
K

(⋃
n

En

)
≤ CK

(⋃
n

On

)
≤

∑
n

CK (On) ≤
∑

n

C∗
K (En) + ε.

Since ε is arbitrary, we have the lemma. ¤
Lemma 4.10. Suppose that K is continuous on (0, ∞). Let µ ∈ M+ with finite
mass such that Kµ < ∞ µ-a.e. For given ε > 0 there is an open set O such that
CK (O) < ε and Kµ is continuous outside O.

Proof. Take {nj}j and {δj}j such that nj →∞, δj → 0 and
∑

j njδj < ε/CW. For
each j Lemma 3.4 gives that there exists a restricted measure µj of µ such that
Kµj is continuous and νj

(
RN

)
< δj where νj = µ− µj. Let

Oj = {x ; Kνj (x) > 1/nj, |x| < nj} ,

and let F be a compact set ⊂ Oj. Since K (njνj) = njKνj > 1 on F , Theorem 4.3
yields

CK (F ) /CW ≤ njνj

(
RN

)
< njδj.

Therefore Lemma 4.7 implies

CK (Oj) ≤ CWnjδj.
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If we set O =
⋃

j Oj, then by Lemma 4.2

CK (O) ≤
∑

j

CK (Oj) ≤ CW

∑
j

njδj < ε.

Now let x /∈ O. Then x /∈ Oj for each j. Since |x| < nj for sufficiently large j,

Kνj (x) ≤ 1/nj for sufficiently large j.

Hence for any x0 /∈ O

lim sup
x→x0, x/∈O

|Kµ (x)−Kµ (x0)|

≤ lim sup
x→x0, x/∈O

|Kµj (x)−Kµj (x0)|+ lim sup
x→x0, x/∈O

|Kνj (x)−Kνj (x0)|

≤ 0 + 2/nj.

Letting j →∞ we have the lemma. ¤

Lemma 4.11. Suppose that K is continuous on (0, ∞). Let {µn}n ⊂ M+ and
µ ∈ M+ such that

{
µn

(
RN

)}
n

is bounded,
⋃

n supp µn is bounded, Kµn < ∞ µn-
a.e., Kµ < ∞ µ-a.e. and µn ⇁ µ. Then there is a set E such that C∗

K (E) = 0
and

lim inf
n→∞

Kµn (x) = Kµ (x) for x /∈ E.

Proof. For each m we can find an open set Om such that Kµ and Kµn’s are con-
tinuous outside Om and CK (Om) < 1/m (By Lemma 4.10 we find an open set for
each of µ and µn’s, and we set Om to the union of them).

Let

Fnrρm = {x ; Kµ (x) ≤ r, Kµn (x) ≥ ρ, x /∈ Om}
for rational numbers r and ρ with r < ρ, and let

Gnrρm =
∞⋂

k=n

Fkrρm.

Take x outside the closure of
⋃

n supp µn. Since K (x− ·) is continuous in
⋃

n supp µn,

lim
n→∞

Kµn (x) = lim
n→∞

∫
K (x− y) dµn (y) =

∫
K (x− y) dµ (y) = Kµ (x) .

Therefore x /∈ Fnrρm for sufficiently large n, and thus x /∈ Gnrρm. Hence Gnrρm is
compact.

If CK (Gnrρm) > 0, then, using Lemma 3.4, we can find a positive measure
ν ∈ M+ such that supp ν ⊂ Gnrρm and Kν is continuous. Since µk ⇁ µ,

0 = lim
k→∞

∫
Kν d (µk − µ) = lim

k→∞

∫
(Kµk −Kµ) dν ≥ (ρ− r) ν

(
RN

)
,

which is a contradiction. Therefore CK (Gnrρm) = 0. Hence Lemma 4.8 implies

C∗
K (Gnrρm) = 0.
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Let

E =

( ⋃
n, r, ρ, m

Gnrρm

)
∪

(⋂
m

Om

)
.

Since C∗
K (

⋂
m Om) ≤ CK (Om) < 1/m for any m, we have C∗

K (
⋂

m Om) = 0.
Therefore by Lemma 4.9 we have

C∗
K (E) ≤

∑
n, r, ρ, m

C∗
K (Gnrρm) + C∗

K

(⋂
m

Om

)
= 0.

Let x be a point such that lim infn→∞ Kµn (x) > Kµ (x). Then there are r and
ρ such that

Kµn (x) ≥ ρ > r ≥ Kµ (x) for sufficiently large n.

If x ∈ Om for any m, then x ∈ ⋂
m Om ⊂ E. Otherwise we can find an m with

x /∈ Om, thus x ∈ Fnrρm. Therefore x ∈ Gnrρm ⊂ E. Hence if x /∈ E then
lim infn→∞ Kµn (x) ≤ Kµ (x). Lemma 3.1 (ii) implies the result. ¤

Lemma 4.12. Suppose that the strong maximum principle holds and K is contin-
uous on (0, ∞). Let O be a bounded open set. Then there exist a measure µ ∈ M+

and a set E such that supp µ ⊂ Ō, Kµ ≤ 1, µ
(
RN

)
= CK (O), C∗

K (E) = 0 and
Kµ = 1 on O \ E, .

Proof. By Lemma 4.7 we can find a sequence {Fn}n of compact sets such that
Fn ↗ O and µn (Fn) → CK (O) where µn is a equilibrium measure for Fn. By
taking a subsequence we may assume that {µn}n converges weakly to a measure
µ. We have

Kµ (x) ≤ lim inf
n→∞

Kµn (x) ≤ 1

and

µ
(
RN

)
= lim

n→∞
µn

(
RN

)
= CK (O) .

Let Unk = {x ∈ Fn ; Kµn (x) ≤ 1− 1/k} and U =
⋃

n, k Unk. Then, since Unk is

compact and CK (Unk) = 0,

C∗
K (U) ≤

∑

n, k

C∗
K (Unk) =

∑

n, k

CK (Unk) = 0.

Also let V be an exceptional set of Lemma 4.11, and let E = U ∪ V . Then

C∗
K (E) ≤ C∗

K (U) + C∗
K (V ) = 0,

and

Kµ (x) = lim inf
n→∞

Kµn (x) = 1 for x ∈ O \ E.

Thus we have the lemma. ¤

Theorem 4.6. Suppose that the strong maximum principle holds and K is contin-
uous on (0, ∞). Then C∗

K is a Choquet capacity.
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Proof. We have only to prove that C∗
K satisfies the condition (iii) of Definition 4.3,

i.e. if En ↗ E, then C∗
K (E) = limn→∞ C∗

K (En).
We can find an open set On ⊃ En and

CK (On) ≤ C∗
K (En) + 1/n.

By Lemma 4.12 we find a measure µn and a set Un such that C∗
K (Un) = 0 and

Kµn = 1 on On \ Un. We find a subsequence {µnk
}k of {µn}n converges weakly

to a measure µ. By Lemma 4.11 we can find a set V such that C∗
K (V ) = 0 and

Kµ (x) = lim infk→∞ Kµnk
(x) outside V . Then

Kµ (x) = lim inf
k→∞

Kµnk
(x) = 1 for x ∈ E \ (U ∪ V )

where U =
⋃

n Un.
For any ε > 0 we set Oε = {x ; Kµ (x) > 1− ε}. Then E \ (U ∪ V ) ⊂ Oε. Let

ν ∈ M+ with supp ν ⊂ Oε and Kν ≤ 1 everywhere. Then

ν (Oε) ≤ (1− ε)−1

∫

Oε

Kµ dν = (1− ε)−1

∫
Kν dµ ≤ (1− ε)−1 µ

(
RN

)
.

Therefore

CK (Oε) ≤ (1− ε)−1 µ
(
RN

)
.

Hence

C∗
K (E) ≤ C∗

K (E \ (U ∪ V )) + C∗
K (U) + C∗

K (V ) ≤ C∗
K (Oε) ≤ (1− ε)−1 µ

(
RN

)

= (1− ε)−1 lim
k→∞

µnk

(
RN

)
= (1− ε)−1 lim

k→∞
CK (Onk

)

≤ (1− ε)−1 lim
k→∞

(C∗
K (Enk

) + 1/nk) = (1− ε)−1 lim
k→∞

C∗
K (Enk

) .

Since {En}n is monotone increasing,

C∗
K (E) ≤ (1− ε)−1 lim

n→∞
C∗

K (En) .

Letting ε → 0,

C∗
K (E) ≤ lim

n→∞
C∗

K (En) .

The opposite is trivial, and we have the theorem. ¤

Theorem 4.7. A set E is C∗
K-capacitable if and only if C∗

K (E) = CK (E).

Proof. Lemmas 4.7 and 4.8 imply that

CK (E) = sup {C∗
K (F ) ; F is compact, F ⊂ E} .

Thus the theorem is easily proved. ¤

Theorem 4.8. If C∗
K (E) = 0 and ν ∈ M+ such that Kν is bounded, then ν (E) =

0.

Proof. For any ε > 0 there is an open set O containing E such that

CK (O) < ε.
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Take a compact set F in O. Let M = sup Kν and µ = M−1ν|F . Then supp µ ⊂ F
and Kµ ≤ 1 everywhere. Therefore

M−1ν (F ) = µ (F ) ≤ CK (F ) ≤ CK (O) < ε.

Hence
ν (E) ≤ ν (O) = sup

F
ν (F ) ≤ Mε.

Since ε is arbitrary, we have the theorem. ¤

5. Extremal Problems

Let F be a compact set.

Definition 5.1 (Chebychev’s constant).

Mn (F ) := n−1 sup
x1, ..., xn

inf
x∈F

n∑
j=1

K (x− xj) .

Definition 5.2 (Generalized diameter).

Dn (F ) :=
2

n (n− 1)
inf

x1, ..., xn∈F

∑
i<j

K (xi − xj) =
1

n (n− 1)
inf

x1, ..., xn∈F

∑

i6=j

K (xi − xj) .

Theorem 5.1. Dn (F ) is increasing and

lim
n→∞

Dn (F ) = γ, Dn+1 (F ) ≤ Mn (F ) ≤ CK (F )−1 ,

Where γ is the number defined in Lemma 4.3.

Proof. Since K is lower semi-continuous, we can find ξ
(n)
1 , . . . , ξ

(n)
n ∈ F such that

Dn =
2

n (n− 1)

∑
i<j

K
(
ξ

(n)
i − ξ

(n)
j

)
.

Then

Dn+1 =
2

n (n + 1) (n− 1)

n+1∑

k=1

(k)∑
i<j

K
(
ξ

(n+1)
i − ξ

(n+1)
j

)

≥ 2

n (n + 1) (n− 1)

n+1∑

k=1

n (n− 1)

2
Dn = Dn

where
∑(k)

i<j means the summation over i and j such that i < j, i 6= k and j 6= k.

Let µ ∈ M+ such that supp µ ⊂ F and µ (F ) = 1. Since

n (n− 1)

2
Dn ≤

∑
i<j

K (xi − xj) for x1, . . . , xn ∈ F,

we have

n (n− 1)

2
Dn ≤

∫
· · ·

∫ ∑
i<j

K (xi − xj) dµ (x1) · · · dµ (xn)
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=
∑
i<j

∫∫
K (xi − xj) dµ (xi) dµ (xj) =

n (n− 1)

2
IK (µ) .

Therefore Dn (F ) ≤ γ.
Let µn = n−1

∑
j δ

ξ
(n)
j

where δξ is the Dirac measure at ξ. Also let Km (x) =

min (K (x) , m). Then

IKm (µn) = n−2

n∑
i=1

n∑
j=1

Km

(
ξ

(n)
i − ξ

(n)
j

)
= n−2

∑

i6=j

Km

(
ξ

(n)
i − ξ

(n)
j

)
+ n−1m

≤ n−1 (n− 1) Dn + n−1m.

Take a subsequence {µnk
}k which converges weakly to a measure µ. Then

IKm (µ) ≤ lim inf
k→∞

IKm (µnk
) ≤ lim inf

k→∞
Dnk

= lim
n→∞

Dn.

Letting m →∞, by the monotone convergence theorem we have

IK (µ) ≤ lim
n→∞

Dn.

Therefore we have the first part.
For j with 1 ≤ j ≤ n + 1 and x ∈ F we define

Aj (x) =
∑

i6=j

K
(
x− ξ

(n+1)
i

)
.

Then

Mn ≥ n−1 inf
x∈F

Aj (x) = n−1Aj

(
ξ

(n+1)
j

)
.

Therefore

Dn+1 =
1

n (n + 1)

∑

i6=j

K
(
ξ

(n+1)
i − ξ

(n+1)
j

)
=

1

n (n + 1)

∑
j

Aj

(
ξ

(n+1)
j

)

≤ 1

n (n + 1)

∑
j

nMn = Mn.

Now assume that CK (F ) > 0. Let ν ∈ M+ such that supp ν ⊂ F and Kν ≤ 1
everywhere and let µ = CK (F )−1 ν. Then

Kµ = CK (F )−1 Kν ≤ CK (F )−1 everywhere.

Therefore

ν (F )

CK (F )
n−1 inf

x∈F

n∑
j=1

K (x− xj) = µ (F ) n−1 inf
x∈F

∑
j

K (x− xj)

≤
∫

F

n−1
∑

j

K (x− xj) dµ (x) = n−1
∑

j

Kµ (xj) ≤ CK (F )−1 .
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Take supremum of the left hand side with varying ν, then

n−1 inf
x∈F

n∑
j=1

K (x− xj) ≤ CK (F )−1 .

Take supremum of the left hand side with varying x1, . . . , xn, then

Mn ≤ CK (F )−1 .

This is trivial when CK (F ) = 0. Thus the theorem follows. ¤
Now we go back to the classical case. This takes place in the complex plane C,

i.e. N = 2. We shall show a classical result. For example see [1].

Definition 5.3 (Diameter of order n).

dn (F ) := sup
x1, ..., xn∈F

∏
i<j

|xi − xj|2/n(n−1) .

Definition 5.4 (Chebychev polynomial of order n).

ρn (F ) = inf

{
sup
x∈F

∣∣xn + an−1x
n−1 + · · ·+ a0

∣∣1/n
; a0, . . . , an−1 ∈ C

}
.

Theorem 5.2. dn is decreasing and

lim
n→∞

dn (F ) = lim
n→∞

ρn (F ) .

Proof. Let F̃ be the convex hull of F . Take a ≥ diam F and let K (r) = log+ (a/r).
Then Theorem 3.3 implies that K satisfies the strong maximum principle. Also

log
a

dn (F )
= inf

x1, ..., xn∈F

2

n (n− 1)

∑
i<j

log
a

|xi − xj| = Dn (F ) .

Since a polynomial can be represented by
∏n

j=1 (x− xj),

log
a

ρn (F )
=

1

n
sup

x1, ..., xn

inf
x∈F

∑
j

log
a

|x− xj| .

Take x1 6∈ F̃ and let x′1 ∈ F̃ be the closest point to x1 and x′j = xj for j = 2, . . . , n.
Then it is easy to see that |x− x′1| ≤ |x− x1| for any x ∈ F . Therefore

∑
j

log
a∣∣x− x′j

∣∣ ≥
∑

j

log
a

|x− xj| .

Hence
inf
x∈F

∑
j

log
a∣∣x− x′j

∣∣ ≥ inf
x∈F

∑
j

log
a

|x− xj| .

This means that

log
a

ρn (F )
=

1

n
sup

x1, ..., xn∈F̃

inf
x∈F

∑
j

log
a

|x− xj| = Mn (F ) .

Hence Theorem 5.1 implies the result. ¤
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