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Abstract. We estimate the Hausdorff measures and the packing premeasures of
symmetric generalized Cantor sets in the d-dimensional Euclidean space Rd. Two
simple estimations will be obtained. Let φ1 and φ2 be two measure functions.
Suppose limt→0 φ2(t)/φ1(t) = 0, limt→0 φ2(t)/td = ∞, and φ1(t)/td is strictly
decreasing as t increases. Then we can construct a compact set K in Rd such
that 0 < Λφ1(K) < ∞ and 0 < φ2 − P (K) < ∞ with the aid of the above
estimations.

1. Introduction

In [2] we evaluated the upper and lower estimates of values of α−dimensional
Hausdorff measures of symmetric generalized Cantor sets. The following estimation
similar to this result is obtained for a slightly generalized measure function φ which
is used in [3]. Falconer obtained the precise value of the α−dimensional Hausdorff
measure of a generalized Cantor set in R1 in [1, Theorem 1.15].

Theorem 1. Let Kd be the d-dimensional symmetric generalized Cantor set con-
structed by the system [{kq}∞q=1, {λq}∞q=0]. Then we have

2−3d lim
q→∞

(k1k2 · · · kq)
dφ(λq)

≤ Λφ(K
d)

≤ lim
q→∞

(k1k2 · · · kq)
dφ(λq).

A Hausdorff dimensional result follows from this theorem.

Corollary 1. Under the same assumption in Theorem 1

dim(Kd) = lim
q→∞

log(k1k2 · · · kq)
d

− log λq

.
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In [4, Examples 2 and 7] Tricot determined the Hausdorff and packing dimen-
sions of Cantor type sets and also these dimensions of their product sets. In the
next theorem we obtain the upper and lower estimates of packing premeasures of
symmetric generalized Cantor sets.

Theorem 2. Let Kd be as in Theorem 1. For a positive integer L let N1 = {q; kq ≤
L} and N2 = {q; kq > L}. Assume that there is a positive number C such that
δq ≤ Cλq for all q ∈ N2. Then

limq→∞(k1k2 · · · kq)
dφ(λq)

≤ φ− P (Kd)

≤ M lim
q→∞

(k1k2 · · · kq)
dφ(λq),

where M is a constant.

We obtain a packing dimensional result from this theorem.

Corollary 2. Under the same assumptions of Theorem 2,

∆(Kd) = Dim(Kd) = lim
q→∞

log(k1k2 · · · kq)
d

− log λq

.

By Theorem 2 it is easily seen that ∆ is uniform on Kd, (for the definition, see
[4] thus it follows from Corollary 3 in [4] that ∆(Kd) = Dim(Kd).

In Section 2 we give the definition of the symmetric generalized Cantor set con-
structed by the system [{kq}∞q=1, {λq}∞q=0]. Then Theorem 1 is proved in Section 3
and the proof of Theorem 2 is given in Section 4. Finally, using these estimates
we can construct a d-dimensional symmetric generalized Cantor set K such that
0 < Λφ1(K) < ∞ and 0 < φ2 − P (K) < ∞ for φ1, φ2, which are measure functions

defined in Section 3, such that limt→0
φ2(t)
φ1(t)

= 0, φ1(t)/t
d is strictly decreasing as t

increases and limt→0 φ2(t)/t
d = ∞.

2. Construction of symmetric generalized Cantor sets

Let {kq}∞q=1 be a sequence of positive integers with kq ≥ 2 and {λq}∞q=0 be a
sequence of positive numbers with kqλq < λq−1(q = 1, 2, · · · ). Take a positive
number δq such that kqλq + (kq − 1)δq = λq−1(q = 1, 2, · · · ). According to [2] we
shall define a symmetric generalized Cantor set in Rd constructed by the system
[{kq}∞q=1, {λq}∞q=0].

In R1, in the first step, from a given closed interval with the length λ0 remove
(k1 − 1) open intervals with the length δ1. This leaves k1 closed intervals with
the length λ1, denoted by I1, · · · , Iq1 . Then there are a remained closed interval
with the length λ1, a removed open interval with the length δ1, a remained closed
interval with the length λ1 and so are chosen in turn. Let J1 = ∪k1

j1=1Ij1 . In the
next step, from each remained closed interval with the length λ1 remove (k2 − 1)
open intervals with the length δ2. Then k2 closed intervals with the length λ2

are obtained as above. These are denoted by Ij1,j2 . Let J2 = ∪k1
j1=1 ∪k2

j2=1 Ij1,j2 .
We continue this process and in the q-th step obtain k1k2 · · · kq closed intervals
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with the length λq, denoted by Ij1,j2,··· ,jq and denote their union by Jq. Then let
K = ∩∞q=1Jq. We call this set a one-dimensional generalized Cantor set constructed
by the system [{kq}∞q=1, {λq}∞q=0].

In Rd(d ≥ 2), we denote by Kd(K1 = K) the product set of d copies K in Rd,
and call it the d-dimensional symmetric generalized Cantor set constructed by the
system [{kq}∞q=1, {λq}∞q=0]. Let Fq be the product set of d copies Jq. Then it is

easily seen that Fq is the union of (k1k2...kq)
d closed cubes with the side λq, each

of which is symbolically denoted by Q(q), and Kd = ∩∞q=1Fq.

3. Estimation of Hausdorff measures

Let M be the family of functions φ which is continuous increasing on [0, t0) for
some t0 > 0 with φ(0) = 0 and φ(t)/td is decreasing on [0, t0). We call an element
of M a measure function. In this paper we assume that φ (defined on [0, t0)) ∈M.

Since φ(t)/td is decreasing, we can see that φ satisfies the doubling condition:

φ(2t) ≤ 2dφ(t) for 0 < t < t0/2,

more precisely,
φ(st) ≤ sdφ(t) for s > 1 and 0 < st < t0

and also
sdφ(t) ≤ φ(st) for 0 < s < 1 and 0 < t < t0.

It is easy to see that if φ is continuous increasing with φ(0) = 0 and φ(t)1/d is
concave on [0, t0), then φ(t)/td is decreasing, and thus φ ∈M.

For a set E ⊂ Rd we put Λ
(ε)
φ (E) = inf{∑i φ(ri)}, where the infimum is taken

over all coverings of E by at most countable open cubes Ii with the side ri ≤ ε < t0.
Then the limit

Λφ(E) = lim
ε→0

Λ
(ε)
φ (E)

exists. We call it the φ−Hausdorff measure of E. We note that if K is a compact

set, then we may consider only finite coverings in the definition of Λ
(ε)
φ (K).

In case φ(t) = tα for 0 < α ≤ d, which is in M, we use Λα instead of Λφ and call
it α-dimensional Hausdorff measure.

The following lemma is slightly generalized in [2, Lemma].

Lemma 1. Let K be a compact set in Rd. Let Φ be a nonnegative set function
defined on every open subset ω which satisfies the following conditions:

(1) Φ(ω1 ∪ ω2) ≤ Φ(ω1) + Φ(ω2).
(2) There exists a positive number b such that Φ(ω) ≥ b for every ω ⊃ K.
(3) There exist positive numbers a and r0(< t0) such that Φ(I) ≤ aφ(r) for

every open cube I with the side r ≤ r0.

Then Λφ(K) ≥ b/a.

Remark 1. Since K is compact and only open cubes are used in the definition of
φ−Hausdorff measure, to obtain the conclusion, the set function Φ which satisfies
the above three conditions is defined only on sets each of which is a finite union of
open cubes.
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Proof. Let ε be a positive number with ε ≤ r0. Since K is a compact set, for any
its finite covering of open cubes {Ii} with the side ri ≤ ε by (3), (1) and (2) we
have

∑
i

φ(ri) ≥ a−1
∑

i

Φ(Ii)

≥ a−1Φ(∪iIi) ≥ b/a,

which implies the desired inequality. ¤

Using this lemma we prove Theorem 1.

Proof of Theorem 1. The right-hand inequality can be easily obtained. Hence to
obtain the left-hand one, we can assume that limq→∞(k1k2 · · · kq)

dφ(λq) > 0. Let

b be a positive number such that b < limq→∞(k1k2 · · · kq)
dφ(λq). Then there is a

positive integer q0 such that λq0 < t0 and (k1k2 · · · kq)
dφ(λq) > b for all q ≥ q0.

We take positive numbers λ′q such that b = (k1k2 · · · kq)
dφ(λ′q) for q ≥ q0. Then we

have λ′q < λq and kd
q+1φ(λ′q+1) = φ(λ′q).

For any open set ω we denote by Nq(ω) the number of closed cubes Q(q) which
meet ω. Since Nq+1(ω) ≤ kd

q+1Nq(ω) and kd
q+1φ(λ′q+1) = φ(λ′q), the sequence

{Nq(ω)φ(λ′q)} is decreasing. Hence we define a nonnegative set function

Φ(ω) = lim
q→∞

Nq(ω)φ(λ′q).

It is easy to check that this Φ satisfies conditions (1) and (2) of Lemma 1 with the
above b. Therefore we shall prove that Φ satisfies condition (3) of the same lemma
with r0 = λq0 and a = 23d.

Let I be an open cube with the side r < r0. Then there exists positive integers
q > q0 and j such that 1 ≤ j < kq+1,

λq+1 ≤ r < λq

and

jλq+1 + (j − 1)δq+1 ≤ r < (j + 1)λq+1 + jδq+1.

Since Nq+1(I) ≤ 2d(j + 1)d ≤ 22djd, we have

Φ(I) ≤ 22djdφ(λ′q+1).

In case j = 1,

Φ(I) ≤ 22dφ(λ′q+1) ≤ 22dφ(λq+1) ≤ 22dφ(r) ≤ aφ(r),

because λ′q+1 < λq+1 ≤ r.

In case 2 ≤ j < kq+1, since (k1k2 · · · kq+1)
dφ(λ′q+1) = b and φ(t)/td is decreasing,

we obtain

jdφ(λ′q+1) = (j/(k1k2 · · · kq+1))
db

= (j/kq+1)
dφ(λ′q) ≤ φ(jλ′q/kq+1).
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Since 2 ≤ j, λq < kq+1(λq+1 + δq+1) and λ′q < λq, we note that

jλ′q/kq+1 < jλq/kq+1 < j(λq+1 + δq+1) ≤ 2(jλq+1 + (j − 1)δq+1)

≤ 2r

which implies

Φ(I) ≤ 22djdφ(λ′q+1) ≤ 22dφ(2r)

≤ 23dφ(r) = aφ(r).

Therefore by Lemma 1 we obtain

Λφ(K
d) ≥ a−1b.

Since b is an arbitrary number such that b < limq→∞(k1 · · · kq)
dφ(λq), the assertion

is proved. ¤

4. Estimation of packing premeasures

In this section we denote a d-dimensional cube by I(x, r) where x is its center
and 2r is the length of its side, or simply the side, if necessary.

According to [3] and [4] for a bounded set E ⊂ Rd we define its packing premea-
sure, denoted by φ− P (E), as follows :

φ− P (E) = lim
ε→0

sup{
∑

φ(2ri);

disjoint finite open cubes {I(xi, ri)},
xi ∈ E, ri ≤ ε}.

In case φ(t) = tα for 0 < α ≤ d, we denote φ − P (E) by α − P (E) and call it
α-packing premeasure. Corresponding these premeasures we define a rarefaction
index as in [4]:

∆(E) = inf{α > 0; α− P (E) = 0}.
Properties and results of these premeasures refer to [4]. As usual, from these
premeasures packing measures are defined. See [3] and [4].

Lemma 2. Let K be a compact set in Rd. Let Ψ be a nonnegative set function
defined on every open subset ω which satisfies the following conditions:

(1) If ω1 ∩ ω2 = ∅, then Ψ(ω1 ∪ ω2) ≥ Ψ(ω1) + Ψ(ω2).
(2) There exists a positive number B such that Ψ(ω) ≤ B for every ω.
(3) There exist positive numbers a and r0(< t0/2) such that φ(2r) ≤ aΨ(I(x, r))

for every x ∈ K and 0 < r < r0.

Then φ− P (K) ≤ aB.

Proof. Let ε be a positive number with ε < r0 and let {I(xi, ri)} be disjoint finite
open cubes with xi ∈ K and ri ≤ ε. Since {I(xi, ri)} are disjoint, thus

by (2), (1) and (3) we have

B ≥ Ψ(∪I(xi, ri)) ≥
∑

Ψ(I(xi, ri))

≥ a−1
∑

φ(2ri).
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Therefore ∑
φ(2ri) ≤ aB

which proves the assertion. ¤
To prove Theorem 2 we prepare a technical lemma.

Lemma 3. Let K be the one-dimensional generalized Cantor set constructed by
the system [{kq}∞q=1, {λq}∞q=0]. Let I be an open interval of length ` such that 2λq <

` ≤ 2λq−1 for q ≥ 1. Denote the number of Ij1,··· ,jq by Ñq(I) which are completely
contained in I, where Ij1,··· ,jq is a remained closed interval in the q-th step of the
construction of K. Assume that the center of I is contained in K. Then following
two estimates of Ñq(I) are obtained:

(1) If ` ≤ λq−1, then

{Ñq(I)− 1}(λq + δq) < ` ≤ 2λq + 2{Ñq(I) + 1}(λq + δq).

(2) If ` > λq−1, then

Ñq(I) ≥ max{(kq − 4)/2, 1}.

Proof. Since x ∈ K, there exists a closed interval, denoted by Ij1,··· ,jq , in its q-th

step which contains x. It follows from the condition 2λq < ` that Ñq(I) ≥ 1.
At first we prove the case (1). Let y be one of the end points of Ij1,··· ,jq−1 which

has a longer (or equal) distance from the point x. Then
∣∣y − x

∣∣ ≥ λq−1/2 ≥ `/2
and so J = (x, x+ `/2) (or J = (x− `/2, x)) is included in Ij1,··· ,jq−1 . Thus we have

Ñq(J)(λq + δq) < `/2 ≤ λq + (Ñq(J) + 1)(λq + δq)

and
Ñq(J) ≤ Ñq(I) ≤ 2Ñq(J) + 1.

These imply the conclusion of (1).
Next, for (2) considering the special case of (1) with ` = λq−1, we obtain

2(Ñq(I) + 1)(λq + δq) ≥ λq−1 − 2λq ≥ (kq − 2)(λq + δq)

so
Ñq(I) ≥ (kq − 4)/2.

Thus the desired result is obtained, because Ñq(I) ≥ 1. ¤
Using above two lemmas we prove Theorem 2.

Proof of Theorem 2. Since the left bottom corner of each closed cube Q(q) is in Kd,
it is easily seen that (k1k2 · · · kq)

d open cubes centered at these points with the
side λq are disjoint. Hence by the definition of packing premeasure we obtain the
left-hand side inequality of the theorem.

Therefore in the following we assume that limq→∞(k1k2 · · · kq)
dφ(λq) is finite, and

we prove the right-hand side inequality. Because otherwise the desired inequality
is evident.
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Let B be a number such that B > limq→∞(k1k2 · · · kq)
dφ(λq). Then as in

the case of the Hausdorff measure there is a positive integer q0 such that λq0 <
t0, B/(k1 · · · kq0)

d < φ(λ0) and (k1k2 · · · kq)
dφ(λq) < B for q ≥ q0. We take λ′q

such that (k1 · · · kq)
dφ(λ′q) = B for q ≥ q0. Then for q ≥ q0 λq < λ′q < λ0 and

kd
q+1φ(λ′q+1) = φ(λ′q).
For an open set ω we denote by Mq(ω) the number of closed cubes Q(q) which

are completely included in ω. Then the sequence Mq(ω)φ(λ′q) is increasing, because

Mq+1(ω) ≥ kd
q+1Mq(ω) and kd

q+1φ(λ′q+1) = φ(λ′q). Thus we define a nonnegative set
function Ψ(ω) = limq→∞ Mq(ω)φ(λ′q). It is easy to see that this set function satisfies
the conditions (1) and (2) of Lemma 2 with the above number B. It remains to
prove that condition (3) of the lemma is fulfilled.

Set r0 = λq0 . Let I(x, r) be an open cube centered at x ∈ Kd with the side
2r ≤ r0. Then there exists an integer q(> q0) such that λq < r ≤ λq−1. Since x ∈
Kd ⊂ Fq = ∪Q(q) and λq < r, then x ∈ Q(q) for some Q(q) and thus Q(q) ⊂ I(x, r).
So Mq(I(x, r)) ≥ 1.

In the following we divide two cases and estimate Ψ(I(x, r)) from below.
Case 1: q ∈ N1. Since kq ≤ L and Mq(I(x, r)) ≥ 1, we have by the doubling

condition

φ(2r) ≤ φ(2λq−1) ≤ 2dφ(λq−1) ≤ 2dB/(k1 · · · kq−1)
d

≤ (2L)dB/(k1 · · · kq)
d = (2L)dφ(λ′q) ≤ MMq(I(x, r))φ(λ′q)

≤ MΨ(I(x, r)).

Next the case 2: q ∈ N2, projecting Kd and I on each xi−axis, we denote them
by Ki and Ii, respectively. We note that each Ki is the one-dimensional generalized
Cantor set constructed by the system [{kq}∞q=1, {λq}∞q=0]. Thus we write Ñq(I) in

Lemma 3 with respect to Ki as Ñq,i(Ii). In case q ∈ N2 and 2r ≤ λq−1, then by
(1) of Lemma 3 with ` = 2r, we obtain

2r ≤ 2λq + 2(Ñq,i(Ii) + 1)(λq + δq)

≤ 6(1 + C)Ñq,i(Ii)λq,

since δq ≤ Cλq and Ñq,i(Ii) ≥ 1, and hence

φ(2r) = ψ(2r)d ≤ ψ(6(1 + C)Ñq,1(I1)λq) · · ·ψ(6(1 + C)Ñq,d(Id)λq)

≤ {6(1 + C)}dÑq,1(I1)ψ(λq) · · · Ñq,d(Id)ψ(λq)

≤ {6(1 + C)}dMq(I)φ(λq) ≤ {6(1 + C)}dΨ(I),

where ψ = φ1/d. In case q ∈ N2 and 2r > λq−1, then similarly by using (2 of Lemma
3, we have

kd
q ≤ 6dMq(I), 2r ≤ 2λq−1 ≤ 2(1 + C)kqλq
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and

φ(2r) ≤ φ(2λq−1) ≤ {2(1 + C)kq}dφ(λq)

≤ 6d{2(1 + C)}dMq(I)φ(λq) ≤ MΨ(I).

Therefore we have proved that Ψ satisfies the three conditions of Lemma 2. Hence
it follows from Lemma 2 that φ− P (Kd) ≤ MB. Since B is an arbitrary number
such that B > limq→∞(k1k2 · · · kq)

dφ(λq), the proof is complete. ¤

Remark 2. Suppose that φ satisfies only the doubling condition: φ(2t) ≤ Cφ(t) for
t > 0. If the sequence {kq} is bounded, by using the case 1 of the above proof of
Theorem 2 we can obtain a similar estimation to the result of Theorem 2.

The next example shows that the condition of Theorem 2: δq ≤ Cλq for all
q ∈ N2 is necessary for its conclusion.

Example 1. Let α be a number with 0 < α < d. Let {kq} be an increasing sequence
of integers such that k1 ≥ 2, limq→∞ kq = ∞ and

(k
d/α
q − kq)

(kq − 1)k
d/α
q

≤ (k
d/α
q−1 − kq−1)

(kq−1 − 1)
,

and let two sequences {λq} and {δq} be determined by

λ0 = 1, (k1k2 · · · kq)
dλα

q = 1

and

kqλq + (kq − 1)δq = λq−1 for q ≥ 1.

Let Kd be the d-dimensional symmetric generalized Cantor set constructed by the
system [{kq}∞q=1, {λq}∞q=0]. Then we obtain

lim
q→∞

δq/λq = ∞, δq ≤ δq−1, lim
q→∞

(k1k2 · · · kq)
dδq

α = ∞

and so α − P (Kd) = ∞, because there are (k1 · · · kq)
d disjoint open cubes with the

side δq centered at the left bottom corner of each remaining closed cube Q(q) in the
q-th step which is in Kd.

Example 2. For given φ1, φ2 ∈ M such that limt→0
φ2(t)
φ1(t)

= 0, φ1(t)/t
d is strictly

decreasing as t increases and limt→0 φ2(t)/t
d = ∞. Then there exists a compact set

K such that 0 < Λφ1(K) < ∞ and 0 < φ2 − P (K) < ∞.

In the following we inductively determine two sequences {kq}∞q=1 and {λq}∞q=0

which satisfy the following conditions:

λ0 > 0, k1 = k3 = · · · = k2q−1 = · · · = 2, k2q ≥ 2

(k1k2 · · · k2q−1)
dφ1(λ2q−1) = φ1(λ0),

φ1(λ0) ≤ (k1k2 · · · k2q)
dφ2(λ2q) < 2dφ1(λ0), δ2q ≤ 2λ2q,

where kqλq + (kq − 1)δq = λq−1.
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In fact set ψ1 = φ
1/d
1 and ψ2 = φ

1/d
2 . Then by the assumptions we obtain that

ψ2(t) < ψ1(t) for 0 < t ≤ t0, ψ1(t)/t is strictly decreasing as t increases and
ψ1(st) < sψ1(t) for s > 1, st ≤ t0 and t > 0.

At first we take λ0 such that 0 < λ0 < t0 and next, k1 = 2 and λ1 with
k1ψ1(λ1) = ψ1(λ0). Since ψ1(t)/t is strictly decreasing, we have 2λ1 < λ0 and so
δ1 = λ0 − 2λ1 > 0.

In the third step, we divide two cases:
Case 1: ψ1(λ0) ≤ 2k1ψ2(λ1/4) and Case 2: 2k1ψ2(λ1/4) < ψ1(λ0). In case 1 we

let k2 = 2, λ2 = λ1/4 and δ2 = λ1/2. Then we have

ψ1(λ0) ≤ k1k2ψ2(λ2) = 22ψ1(λ1)
ψ2(λ1/4)

ψ1(λ1)
< 2ψ1(λ0) and δ2/λ2 ≤ 2,

because k1ψ1(λ1) = ψ1(λ0) and ψ2(λ1/4) ≤ ψ2(λ1) < ψ1(λ1). In case 2 let p be
an integer (≥ 2) which is determined later, and put k2 = p, λ2 = λ1/(2p) and
δ2 = λ1/(2p− 2). Since 2k1ψ2(λ1/4) < ψ1(λ0),

k1k2ψ2(λ2) = 2pψ2(λ1/(2p)) = λ1ψ2(λ1/(2p))/(λ1/(2p))

is increasing as p increases and limt→0 ψ2(t)/t = ∞, we take the smallest integer
p(> 2) which satisfies 2pψ2(λ1/(2p)) ≥ ψ1(λ0). Then we obtain

ψ1(λ0) ≤ k1k2ψ2(λ2)

= (2p− 2)ψ2(λ1/(2p− 2))
p

p− 1
ψ2(λ1/(2p))/ψ2(λ1/(2p− 2))

<
p

p− 1
ψ1(λ0) < 2ψ1(λ0)

and δ2/λ2 ≤ 2. Therefore in both cases we have determined k2, λ2 and δ2 satisfying
the given conditions:

k2 ≥ 2, ψ1(λ0) ≤ k1k2ψ2(λ2) < 2ψ1(λ0), δ2/λ2 ≤ 2.

In the fourth step, since ψ1(λ0) ≤ k1k2ψ2(λ2) < k1k2ψ1(λ2), we take λ′2 as
k1k2ψ1(λ

′
2) = ψ1(λ0). Then

0 < λ′2 < λ2 and so k3 = 2, 2ψ1(λ3) = ψ1(λ
′
2) and δ3 = λ2 − 2λ3 > 0.

Hence we have obtained

k3 = 2, k1k2k3ψ1(λ3) = ψ1(λ0).

Considering two cases similar to the above third step we can take k4, λ4 and δ4

which satisfy

k4 ≥ 2, δ4 ≤ 2λ4, ψ1(λ0) ≤ k1 · · · k4ψ2(λ4) < 2ψ1(λ0).

Repeating these processes we can obtain desired two sequences {kq} and {λq},
because ψ1 = φ

1/d
1 and ψ2 = φ

1/d
2 .

Let K be the d-dimensional symmetric generalized Cantor set constructed by the
system [{kq}∞q=1, {λq}∞q=0]. Then by Theorems 1and 2 it is seen that 0 < Λφ1(K) <
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∞, 0 < φ2 − P (K) < ∞, because

lim
q→∞

(k1k2 · · · kq)
dφ1(λq) = φ1(λ0)

and
φ1(λ0) ≤ lim

q→∞
(k1k2 · · · kq)

dφ2(λq) ≤ 2dφ1(λ0).

Remark 3. This construction may be considered as a mutual embedding of Cantor
sets of two different types.

Remark 4. Let φ2(t) = td, φ1 ∈ M such that limt→0
φ2(t)
φ1(t)

= 0. Since φ2(t) = td

and so φ2 − P (E) is comparable to Λd(E) = Λφ2(E) for every bounded set E and

limt→0
φ2(t)
φ1(t)

= 0, if a bounded set E is a set of finite Λφ1 measure, then it is a set

of zero φ2 − P premeasure. Thus there does not exist a compact set K such that
Λφ1(K) < ∞ and φ2 − P (K) > 0.

Example 3. For given φ ∈M such that φ(t)/td is strictly decreasing as t increases,
there exists a compact set K such that 0 < Λφ(K) < ∞ and 0 < φ− P (K) < ∞.

To see this let λ0 be a positive number such that λ0 < t0. Then for any bounded
sequence of integers with kq ≥ 2 we determine the sequence of positive number λq

such that (k1k2 · · · kq)
dφ(λq) = φ(λ0). Hence we have

φ(kqλq) < kd
qφ(λq) = φ(λq−1)

which implies
kqλq < λq−1.

Therefore we can construct the d-dimensional symmetric generalized Cantor set K
constructed by the system [{kq}∞q=1, {λq}∞q=0]. By Theorems 1 and 2 this K is the
desired one.
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