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ABSTRACT. We estimate the Hausdorff measures and the packing premeasures of
symmetric generalized Cantor sets in the d-dimensional Euclidean space R?. Two
simple estimations will be obtained. Let ¢ and ¢ be two measure functions.
Suppose lim;_.o ¢2(t)/é1(t) = 0, limy g ¢2(t)/t? = oo, and ¢ (t)/t? is strictly
decreasing as t increases. Then we can construct a compact set K in R? such
that 0 < Ag, (K) < o0 and 0 < ¢ — P(K) < oo with the aid of the above
estimations.

1. INTRODUCTION

In [2] we evaluated the upper and lower estimates of values of a—dimensional
Hausdorff measures of symmetric generalized Cantor sets. The following estimation
similar to this result is obtained for a slightly generalized measure function ¢ which
is used in [3]. Falconer obtained the precise value of the a—dimensional Hausdorff
measure of a generalized Cantor set in R! in [I, Theorem 1.15].

Theorem 1. Let K9 be the d-dimensional symmetric generalized Cantor set con-
structed by the system [{k,}o21, {Ag}o2o]- Then we have

273 Tim (kyks -+ k) 6(\,)

q—00
< Ay(KY)
< lim (kiky - - - kg)d(N,).

q—00
A Hausdorff dimensional result follows from this theorem.

Corollary 1. Under the same assumption in Theorem [

AL
d]m(Kd) _ h_m lOg(kle kiq) .
o0 —log A,
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6 K. HATANO

In [4, Examples 2 and 7] Tricot determined the Hausdorff and packing dimen-
sions of Cantor type sets and also these dimensions of their product sets. In the
next theorem we obtain the upper and lower estimates of packing premeasures of
symmetric generalized Cantor sets.

Theorem 2. Let K¢ be as in Theorem[Dl. For a positive integer L let Ny = {q; k, <
L} and Ny = {q;k, > L}. Assume that there is a positive number C' such that
8q < O, for all g € N5. Then

limg oo (K ks -+ k) d(Ag)
< ¢— P(K")
<M lim (]{71]{?2 ce kq>d¢(/\<I)7
q—00
where M 1s a constant.

We obtain a packing dimensional result from this theorem.

Corollary 2. Under the same assumptions of Theorem [2,

DR d
A(K) = Dim(K*) = T 081k ho)”

g—00 —log A\,

By Theorem B it is easily seen that A is uniform on K¢, (for the definition, see
[4] thus it follows from Corollary 3 in [4] that A(K?) = Dim(K?).

In Section 2] we give the definition of the symmetric generalized Cantor set con-
structed by the system [{k,}52;, {A\¢}720]- Then Theorem [Ilis proved in Section
and the proof of Theorem [ is given in Section @l Finally, using these estimates
we can construct a d-dimensional symmetric generalized Cantor set K such that
0 <Ay (K)<ooand 0 < ¢y — P(K) < oo for ¢, ¢2, which are measure functions

defined in Section [ such that lim;_q iig; = 0, ¢1(t)/t? is strictly decreasing as t

increases and lim; o ¢o(t)/t¢ = oco.

2. CONSTRUCTION OF SYMMETRIC GENERALIZED CANTOR SETS

Let {k,}52; be a sequence of positive integers with k; > 2 and {\,}2, be a
sequence of positive numbers with kA, < A\,1(¢ = 1,2,---). Take a positive
number ¢, such that kA, + (k, — 1), = A\j—1(¢ = 1,2,---). According to [2] we
shall define a symmetric generalized Cantor set in R? constructed by the system
{Fqbaze {AabeZol-

In R!, in the first step, from a given closed interval with the length )y remove
(ky — 1) open intervals with the length §;. This leaves k; closed intervals with
the length A, denoted by I;,---,I,. Then there are a remained closed interval
with the length \;, a removed open interval with the length §;, a remained closed
interval with the length \; and so are chosen in turn. Let J; = U?llzlf ;- In the
next step, from each remained closed interval with the length A\; remove (ko — 1)
open intervals with the length d5. Then ks closed intervals with the length Ay
are obtained as above. These are denoted by I;, ;,. Let Jy = Ufllzl U;f:l L -
We continue this process and in the g-th step obtain kiks-- -k, closed intervals
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with the length A,, denoted by I j, .. ;. and denote their union by .J,. Then let
K =ng2,J,. We call this set a one-dimensional generalized Cantor set constructed
by the system [{kq}7Z;, {Aq}520]-

In RY(d > 2), we denote by K¢(K' = K) the product set of d copies K in R,
and call it the d-dimensional symmetric generalized Cantor set constructed by the
system [{kq}o2;, {\g}oZo]. Let Fy be the product set of d copies J,. Then it is
easily seen that F is the union of (kiks...k,)? closed cubes with the side ),, each

of which is symbolically denoted by Q@ and K = N1 By

3. ESTIMATION OF HAUSDORFF MEASURES

Let M be the family of functions ¢ which is continuous increasing on [0, tg) for
some ty > 0 with ¢(0) = 0 and ¢(t)/t? is decreasing on [0,ty). We call an element
of M a measure function. In this paper we assume that ¢ (defined on [0, %)) € M.

Since ¢(t)/t¢ is decreasing, we can see that ¢ satisfies the doubling condition:

B(2t) < 2%p(t) for 0 < t < ty/2,

more precisely,
P(st) < s%p(t) for s > 1 and 0 < st < tg

and also
slp(t) < ¢(st) for 0 < s <1and 0 <t < tg.

It is easy to see that if ¢ is continuous increasing with ¢(0) = 0 and ¢(¢)"/? is
concave on [0,%y), then ¢(t)/t? is decreasing, and thus ¢ € M.

For a set E C R* we put Aéf)(E) = inf{}", ¢(r;)}, where the infimum is taken
over all coverings of F by at most countable open cubes I; with the side r; < e < t,.
Then the limit

Ay(E) = lim A (E)
exists. We call it the ¢—Hausdorff measure of E. We note that if K is a compact
set, then we may consider only finite coverings in the definition of A((;)(K ).

In case ¢(t) = t* for 0 < a < d, which is in M, we use A, instead of A4 and call

it a-dimensional Hausdorff measure.
The following lemma is slightly generalized in [2, Lemmal].

Lemma 1. Let K be a compact set in R%. Let ® be a nonnegative set function
defined on every open subset w which satisfies the following conditions:
(1) ®(wy Uws) < P(wy) + P(wo).
(2) There exists a positive number b such that ®(w) > b for every w O K.
(3) There exist positive numbers a and ro(< to) such that ®(I) < ap(r) for
every open cube I with the side r < ry.

Then Ay(K) > b/a.

Remark 1. Since K is compact and only open cubes are used in the definition of
¢—Hausdorff measure, to obtain the conclusion, the set function ® which satisfies
the above three conditions is defined only on sets each of which is a finite union of
open cubes.
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Proof. Let € be a positive number with ¢ < ry. Since K is a compact set, for any
its finite covering of open cubes {/;} with the side r; < ¢ by @), [ and ) we

have
D o(r) = a™ )y (1)
2 a,_1<I>(Ui[i) Z b/a,
which implies the desired inequality. 0

Using this lemma we prove Theorem [l

Proof of Theorem [1. The right-hand inequality can be easily obtained. Hence to
obtain the left-hand one, we can assume that lim__ _(kika - kg)%d(Ng) > 0. Let
b be a positive number such that b < lim,_, (kiks---kq)?@()g). Then there is a
positive integer gy such that A\, < to and (kika---ky)%0(N,) > b for all ¢ > gp.
We take positive numbers A, such that b = (kik - - - kg)?p(X,) for ¢ > go. Then we
have A, < Ay and k% ¢(A 1) = ¢(N,).

For any open set w we denote by N,(w) the number of closed cubes Q@ which
meet w. Since Nggpi(w) < k% Ny(w) and kf 6(N, ) = @(N,), the sequence
{Ng(w)e(N,)} is decreasing. Hence we define a nonnegative set function

D) = lim N, ()o(X,).

It is easy to check that this ® satisfies conditions (IJ) and (2) of Lemma [I] with the
above b. Therefore we shall prove that ¢ satisfies condition (3)) of the same lemma
with rg = A\, and a = 237,

Let I be an open cube with the side r < ry. Then there exists positive integers
q > qo and j such that 1 < j < kg,

Ag+1 S < Ay
and
G+ (G = 1)0gp1 <7 < (J+ D) Agqa + Jogqa-
Since Ny (I) < 24(5 +1)% < 2245 we have
O(I) < 22750 (Npp)-
In case j =1,
O(I) < 2%p(Nyyy) < 2%p(Agya) < 2%0(r) < ag(r),

because >‘:1+1 < Agy1 <1

In case 2 < j < kgy1, since (kiky - kg1)?@(N, 1) = b and ¢(t)/t? is decreasing,
we obtain

FUoNgy1) = (5 (kaka - kgr))?b
= (j/kq+1)d¢()\;) < ¢(j)\;/kq+1)-
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Since 2 < j, Ay < kgr1(Ags1 + dg41) and A, < Ay, we note that

j)‘;/kq-i-l < j)‘q/kq-i-l < j<>‘q+1 + 5q+1) < 2(j)‘q+1 + (] - 1)5q+1)
< 2r
which implies

O(I) < 2*7jp(Npy) < 2%0(2r)
< 2%9(r) = ag(r).

Therefore by Lemma 1 we obtain
A¢<Kd) Z a_lb.

Since b is an arbitrary number such that b < lim, (k- - k,)ep(N,), the assertion
is proved. U

4. ESTIMATION OF PACKING PREMEASURES

In this section we denote a d-dimensional cube by I(x,r) where z is its center
and 2r is the length of its side, or simply the side, if necessary.

According to [3] and [4] for a bounded set E C R? we define its packing premea-
sure, denoted by ¢ — P(F), as follows :

¢ — P(E) = limsup{)_ ¢(2r:);

disjoint finite open cubes {I(x;,r;)},

x; € Eyry < e}
In case ¢(t) = t* for 0 < a < d, we denote ¢ — P(F) by a — P(E) and call it
a-packing premeasure. Corresponding these premeasures we define a rarefaction
index as in [4]:

A(E) =inf{a > 0;a — P(E) = 0}.

Properties and results of these premeasures refer to [4]. As usual, from these
premeasures packing measures are defined. See [3] and [4].

Lemma 2. Let K be a compact set in R?. Let ¥ be a nonnegative set function
defined on every open subset w which satisfies the following conditions:
(1) If wy Nwy =0, then ¥(w; Uwy) > U(wy) + VU(ws).
(2) There exists a positive number B such that V(w) < B for every w.
(3) There exist positive numbers a and ro(< to/2) such that p(2r) < aV(I(z,7))
for everyx € K and 0 <r < rg.

Then ¢ — P(K) < aB.

Proof. Let € be a positive number with € < rg and let {I(z;,r;)} be disjoint finite
open cubes with z; € K and r; < e. Since {I(x;,7;)} are disjoint, thus

by @), (1) and (@) we have
B > W(Ul(z;, 1)) > Z\D(I(mi,n))

>a' ) o(2r).
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Therefore
> (2r;) < aB

which proves the assertion. O
To prove Theorem 2l we prepare a technical lemma.

Lemma 3. Let K be the one-dimensional generalized Cantor set constructed by
the system [{k,}o21, {\g}o2ol- Let I be an open interval of length £ such that 2\, <
¢ < 2X\,1 for q > 1. Denote the number of I;, .. ;. by N,(I) which are completely
contained in I, where Ij, ... ;. is a remained closed interval in the g-th step of the
construction of K. Assume that the center of I is contained in K. Then following
two estimates of N,(I) are obtained:

(1) If ¢ < A\j—1, then
{N,(I) = 13Ny +64) < £ <20, 4+ 2{N,(I) + 1}( N, + J,).

(2) If £ > A\j—1, then
N,(I) > max{(k, —4)/2,1}.

Proof. Since x € K, there exists a closed interval, denoted by I; .. ; , in its g-th
step which contains z. Tt follows from the condition 2), < ¢ that N,(I) > 1.

At first we prove the case (). Let y be one of the end points of I, ... ;,_, which
has a longer (or equal) distance from the point z. Then |y — z| > A_1/2 > /2
and so J = (z,x+(/2) (or J = (x —¢/2,2)) is included in [}, ... ;,_,. Thus we have

No(J)(Ag +6) <£/2 < Mg+ (Ng(J) + 1)(Ag + dy)
and 3 3 3
No(J) < No(I) < 2N,4(J) + 1.
These imply the conclusion of ().
Next, for (2]) considering the special case of ([Il) with £ = \,_;, we obtain

Q(Nq(]) + 1)0‘(1 + 5(1) > A1 =22 2 (kq - Q)O‘q + 511)
S0 )
R,(1) = (ky — 1)/2.
Thus the desired result is obtained, because N, (1) > 1. O

Using above two lemmas we prove Theorem [2

Proof of Theorem[2. Since the left bottom corner of each closed cube Q% is in K¢,
it is easily seen that (kiks---k,)? open cubes centered at these points with the
side )\, are disjoint. Hence by the definition of packing premeasure we obtain the
left-hand side inequality of the theorem.

Therefore in the following we assume that lim, . (k1 ks - - - ky)%p(),) is finite, and
we prove the right-hand side inequality. Because otherwise the desired inequality
is evident.
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Let B be a number such that B > lim, ..o(kiky---k,)%(\,). Then as in
the case of the Hausdorff measure there is a positive integer gy such that A\, <
to, B/ (ky -+ kgy)® < d(Xo) and (kika---kg)?d(Ng) < B for ¢ > qo. We take X,
such that (k; - --kq)‘%()\;) = B for ¢ > qo. Then for ¢ > qo Ay < A, < Ao and
k§+1¢()\§+1) = (b(A;)

For an open set w we denote by M,(w) the number of closed cubes Q@ which
are completely included in w. Then the sequence M,(w)¢(),) is increasing, because
Mg (w) > k& My(w) and k2 ¢(N, 1) = ¢(N,). Thus we define a nonnegative set
function W(w) = limg_.c My(w)@(X;). It is easy to see that this set function satisfies
the conditions () and (2] of Lemma [2 with the above number B. It remains to
prove that condition (3)) of the lemma is fulfilled.

Set ro = Ay. Let I(x,7) be an open cube centered at x € K¢ with the side
2r < rg. Then there exists an integer ¢(> ¢o) such that A, < r < \,_;. Since x €
KicCF,= UQ@ and Ag <1, then z € Q9 for some Q@ and thus Q@ C I(x,r).
So M,(I(z,r)) > 1.

In the following we divide two cases and estimate W ([ (z,7)) from below.

Case 1: ¢ € N;. Since k;, < L and M,(I(x,r)) > 1, we have by the doubling
condition

$(2r) < (2Xg-1) < 2'9(A\g—1) < 2B/ (ky -+ - k)"
< 2L)'B/(k1 -+ ko) = (2L)"6(X,) < MM, (I(z,7))d(N,)
< MY (I(x,r)).
Next the case 2: ¢ € Ny, projecting K and I on each z;—axis, we denote them

by K; and I;, respectively. We note that each K; is the one-dimensional generalized
Cantor set constructed by the system [{kq}o2, {\¢}o20]. Thus we write N,(I) in

Lemma, [3] with respect to K; as qui([i). In case ¢ € Ny and 2r < \,_;, then by
(1) of Lemma B with ¢ = 2r, we obtain

2 < 2\, +2(~ AL+ 1D (N 46,
< 6(1 + C)N (1) A,

since ¢, < C'\, and ]\qu,i(li) > 1, and hence

6(2r) = (2r)* S Y(6(1 + C)Nga(1)Aq) -+ (6(1 + C)Nyalla)Ag)
< {6(1+ )} Noa (1) (Ag) - NoalLa)w(Ag)
< {6(1+ O} M ()b (N,) < {6(1 + C)}0(),

where 1) = ¢!/, In case ¢ € Ny and 27 > \,_1, then similarly by using (2 of Lemma
B, we have

kS < 67M,(I), 2r < 2Xg—1 < 2(1+ O)kgA,
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and
$(2r) < $(20g-1) < {201+ Ok} d(N,)
<621+ OV M (D p(N,) < MU(I).

Therefore we have proved that W satisfies the three conditions of Lemma 2l Hence
it follows from Lemma 2 that ¢ — P(K?) < MB. Since B is an arbitrary number
such that B > lim, o (k1ks - - - k,)2p(N,), the proof is complete. O

Remark 2. Suppose that ¢ satisfies only the doubling condition: ¢(2t) < C'¢(t) for
t > 0. If the sequence {k,} is bounded, by using the case 1 of the above proof of
Theorem 2] we can obtain a similar estimation to the result of Theorem [2

The next example shows that the condition of Theorem 2 6, < C\, for all
q € N3 is necessary for its conclusion.

Example 1. Let o be a number with 0 < o < d. Let {k,} be an increasing sequence
of integers such that ky > 2, lim,_,o kg = 00 and

(8 k) _ (K~ k)

(kg — Dk = (kg1 —1) 7
and let two sequences {\;} and {J,} be determined by
Ao =1, (kiks - ko)A =1

and

kgAg + (kg — 1)0, = A\j—1 for ¢ > 1.
Let K% be the d-dimensional symmetric generalized Cantor set constructed by the
system [{kqto1, {N}o2o]- Then we obtain

lim 6,/\, = 00, 0y < 01, lim (kiky- - k,)%0,* = 0o
q—0o0 q—0o0
and so a — P(K?) = oo, because there are (ky ---k,)¢ disjoint open cubes with the

side 8, centered at the left bottom corner of each remaining closed cube Q9 in the
q-th step which is in K%,

Example 2. For given ¢1,p2 € M such that lim;_q 2?8 =0, ¢u(t)/t? is strictly

decreasing as t increases and lim;_ . ¢5(t) /t? = co. Then there exists a compact set
K such that 0 < Ay, (K) < 00 and 0 < ¢ — P(K) < o0.

In the following we inductively determine two sequences {k,}72; and {\;}22,
which satisfy the following conditions:

M >0, ki =ks=-=kog1="-=2, kgg >2

(krks - - - kog1)"d1(Aag—1) = ¢1(Xo),

D1(No) < (kika - kag) da(Aag) < 2901 (No), d2q < 2Aay,
where koA, + (kg — 1)0, = Ag—1.
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In fact set ¢, = gf)}/ ¢ and Yy = qbé/ 4 Then by the assumptions we obtain that
Po(t) < y(t) for 0 < t < tg, 1(t)/t is strictly decreasing as ¢ increases and
P(st) < sy(t) for s > 1, st <ty and ¢t > 0.

At first we take Ay such that 0 < Ag < ty and next, k; = 2 and \; with
ki (A1) = 11(Xo). Since 11(t)/t is strictly decreasing, we have 2A\; < A\g and so
(51 :)\0—2)\1 >O.

In the third step, we divide two cases:

Case 1: 1 (Ng) < 2k11pa(A1/4) and Case 2: 2k11p2(A1/4) < 1(No). In case 1 we
let ko =2, A2 = \;/4 and 2 = A1 /2. Then we have

1 (Xo) < krkatho(No) = 221?1()\1)% < 21 (No) and o/ Ay < 2,
because k111 (A1) = ¥1(Ao) and 1o(A1/4) < o(A1) < ¥1(N1). In case 2 let p be
an integer (> 2) which is determined later, and put ks = p, A2 = A;/(2p) and
52 = )\1/(2]? — 2) Since 2k1¢2(A1/4) < ¢1()\0>,

kikatha(A2) = 2pia(A1/(2p)) = Aivb2(A/(2p))/(A1/(2p))

is increasing as p increases and limy o (t)/t = 0o, we take the smallest integer
p(> 2) which satisfies 2pys(A1/(2p)) > ¥1(No). Then we obtain

P1(Ao) < kikatha(A2)
= (2p — 2)¥2(M1/(2p — 2))

b 1%01()\0) < 2¢1(No)

p
p—1

YoM/ (2p))/2(M1/(2p — 2))

<

and 09/Ag < 2. Therefore in both cases we have determined ko, Ay and s satisfying
the given conditions:

ko > 2, 1 (o) < kikatha(A2) < 2001(Ng), 2/A2 < 2.

In the fourth step, since ¥1(Ag) < kikotha(Ao) < kikatd1(A2), we take A as
k1kotp1(N) = 11(Ao). Then

0< )\/2 < Ay and so ]{Zg = 2, 2"(#1()\3) = "Lpl(/\é) and (53 =Xy — 2)\3 > 0.
Hence we have obtained

ks = 2, kikoksi(A3) = ¥1(Ao).

Considering two cases similar to the above third step we can take k4, Ay, and 4,4
which satisfy

ky > 2, 04 < 2Xg, 91 (Xo) < k1o - katho(Aa) < 2901( o).

Repeating these processes we can obtain desired two sequences {k,;} and {\,},
because ¢, = ¢}/d and ¥y = é/d.

Let K be the d-dimensional symmetric generalized Cantor set constructed by the
system [{ky}22;, {\g}oo]- Then by Theorems Tand it is seen that 0 < Ay, (K) <
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00,0 < ¢y — P(K) < 00, because
lim (Kyks - - kg) 61(Ag) = d1(No)

g—00

and .
d1(R0) < Tim (kiks - ky)"da(Ag) < 2961 (h0).

Remark 3. This construction may be considered as a mutual embedding of Cantor
sets of two different types.

Remark 4. Let ¢s(t) = t,¢; € M such that lim; o 2 = 0. Since ¢y(t) = 14

and so ¢o — P(FE) is comparable to Ag(E) = Ay, (E) for every bounded set E and
¢2Et§
P1(t
of zero ¢9 — P premeasure. Thus there does not exist a compact set K such that

Ay (K) < 00 and ¢ — P(K) > 0.

lim;_, = 0, if a bounded set £ is a set of finite Ay, measure, then it is a set

Example 3. For given ¢ € M such that ¢(t)/t? is strictly decreasing as t increases,
there exists a compact set K such that 0 < Ay(K) < oo and 0 < ¢ — P(K) < 0.

To see this let Ay be a positive number such that A\g < ty. Then for any bounded
sequence of integers with k, > 2 we determine the sequence of positive number A,
such that (kiks - - k,)2d(N,) = ¢(X\o). Hence we have

@b(kqu) < kleﬁb()‘q) - (/5(>‘q—1)
which implies
kqhg < Ag—1.
Therefore we can construct the d-dimensional symmetric generalized Cantor set K

constructed by the system [{k,}22,,{A\}72]. By Theorems [l and [ this K is the
desired one.
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