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Abstract. It is known that all parallel immersions of space forms into space
forms are isotropic in the sense of O’Neill. We characterize these parallel im-
mersions with low codimension in terms of isotropic immersions. This is an
improvement of S. Maeda’s result [M].

1. Introduction

Let f : Mn −→ M̃n+p be an isometric immersion of an n-dimensional Riemann-

ian manifold Mn into an (n+p)-dimensional Riemannian manifold M̃n+p. We recall
the notion of isotropic immersion [O]: Let σ be the second fundamental form of f .
The immersion f is said to be isotropic at x ∈ Mn if ||σ(X,X)||/||X||2 is constant
for all vectors X(6= 0) tangent to Mn at x. If the immersion is isotropic at every
point, then we find a function λ on Mn defined by x(∈ Mn) 7→ ||σ(X,X)||/||X||2
and the immersion f is said to be λ-isotropic or simply, isotropic. Note that to-
tally umbilic immersions are isotropic, but not vice versa. We here remark that in
the case that the codimension p = 1, isotropic immersions are nothing but totally
umbilic immersions.

It is known that all parallel immersions of space forms into space forms are
isotropic. On the other hand, there exist many isotropic immersions of space forms
into space forms,which are not parallel [T].

A space form Mn(c) is a Riemannian manifold of constant sectional curvature c
which is locally isometric to one of the standard sphere Sn(c), Euclidean space Rn

and hyperbolic space Hn(c).
In this paper, we characterize all parallel immersions of space forms Mn(c) into

space forms M̃n+p(c̃) with low codimension by using the notion of isotropic. The
purpose of this paper is to prove the following:

Theorem . Let f be a λ-isotropic immersion of an n(≥ 2)-dimensional space
form Mn(c) of constant sectional curvature c into an (n + p)-dimensional space
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form M̃n+p(c̃) of constant sectional curvature c̃. Suppose that

p ≤ 1

2
n(n + 1)− 1.

Then f is a parallel immersion. Moreover f is locally equivalent to one of the
following:

(I) f is a totally umbilic immersion of Mn(c) into M̃n+p(c̃), where c ≥ c̃ and
p ≤ (n(n + 1)/2)− 1.

(II) f is the second standard minimal immersion of Mn(c) = Sn(c) into M̃n+p(c̃) =
Sn+p(c̃), where c̃ = 2(n + 1)c/n and p = (n(n + 1)/2)− 1.

2. Basic terminology

We recall terminology in this paper. Let f : Mn −→ M̃n+p be an isometric im-
mersion of an n-dimensional Riemannian manifold Mn into an (n+ p)-dimensional

Riemannian manifold M̃n+p with metric 〈, 〉. We denote by ∇ (resp. ∇̃) the Levi-

Civita connection of the tangent bundle TMn (resp. TM̃n+p). The second funda-

mental form σ of f is defined by σ(X,Y ) = ∇̃XY −∇XY for ∀X,Y ∈ X(Mn), where
X(Mn) denotes the Lie algebra of all vector fields on Mn. The curvature tensor R of
Mn is defined by R(X,Y )Z = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z for ∀X,Y, Z ∈ X(Mn).

For a vector field ξ normal to Mn, we write ∇̃Xξ = −AξX +DXξ for ∀X ∈ X(Mn),
where −AξX (resp. DXξ) denotes the tangential (resp. the normal) component of

∇̃Xξ. We define the covariant differentiation ∇′ of the second fundamental form σ
with respect to the connection in (tangent bundle)⊕ (normal bundle) as follows:

(∇′
Xσ)(Y, Z) = DX

(
σ(Y, Z)

)− σ(∇XY, Z)− σ(Y,∇XZ),

where X,Y, Z ∈ X(Mn). The immersion f is said to be parallel if ∇′σ = 0. Now,
we choose a local field of orthonormal frames {e1, · · · , en} on Mn and define the
mean curvature vector field h as h =

∑n
i=1(1/n)σ(ei, ei). The immersion f is said

to be totally umbilic if σ(X,Y ) = 〈X,Y 〉h for ∀X,Y ∈ X(Mn). The immersion f
is said to be minimal if h = 0.

In case that Mn = Mn(c) and M̃n+p = M̃n+p(c̃), Gauss and Codazzi equations
are reduced to the following:

〈σ(X,Y ), σ(Z, W )〉 − 〈σ(Z, Y ), σ(X,W )〉
= (c− c̃){〈X,Y 〉〈Z, W 〉 − 〈Z, Y 〉〈X,W 〉},(2.1)

(2.2) (∇′
Xσ)(Y, Z) = (∇′

Y σ)(X,Z),

where X,Y, Z, W ∈ X(Mn(c)).

3. Proof of Theorem

First of all, we prepare the following lemma.
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Lemma ([O]). Let f be a λ(> 0)-isotropic immersion of a Riemannian manifold

M into a Riemannian manifold M̃ . The discriminant ∆x at x ∈ M is defined by

∆x = K(X,Y )−K̃(X,Y ), where K(X,Y ) (resp. K̃(X,Y )) represents the sectional

curvature of the plane spanned by X,Y ∈ TxM for M (resp. M̃). Suppose that the
discriminant ∆x at x ∈ M is constant. Then the following inequalities hold at x:

− n + 2

2(n− 1)
λ(x)2 ≤ ∆x ≤ λ(x)2.

Moreover,

(i) ∆x = λ(x)2 ⇐⇒ f is umbilic at x ⇐⇒ dim N1
x = 1,

(ii) ∆x = −{(n + 2)/2(n − 1)}λ(x)2 ⇐⇒ f is minimal at x ⇐⇒ dim N1
x =

(n(n + 1)/2)− 1,
(iii) −{(n + 2)/2(n− 1)}λ(x)2 < ∆x < λ(x)2 ⇐⇒ dim N1

x = n(n + 1)/2.

Here, we denote by N1
x the first normal space at x, that is N1

x = SpanR{σ(X,Y ) :
X,Y ∈ TxM}.

Now, we shall prove our theorem.

Proof of Theorem. By the hypothesis, for ∀X ∈ X(Mn(c)) we have 〈σ(X,X), σ(X,X)〉 =
λ2〈X,X〉〈X,X〉, which is equivalent to

〈σ(X,Y ), σ(Z, W )〉+ 〈σ(X,Z), σ(W,Y )〉+ 〈σ(X,W ), σ(Y, Z)〉
= λ2{〈X,Y 〉〈Z, W 〉+ 〈X,Z〉〈W,Y 〉+ 〈X,W 〉〈Y, Z〉}(3.1)

for ∀X,Y, Z and W ∈ X(Mn(c)).
It follows from (2.1) and (3.1) that

〈σ(X,Y ), σ(Z,W )〉 =
λ2

3
{〈X,Y 〉〈Z, W 〉+ 〈X,Z〉〈W,Y 〉+ 〈X,W 〉〈Y, Z〉}

+
c− c̃

3
{2〈X,Y 〉〈Z, W 〉 − 〈X,Z〉〈W,Y 〉 − 〈X,W 〉〈Y, Z〉},

(3.2)

where ∀X,Y, Z, W ∈ X(Mn(c)).
First, we consider the case that f is a totally geodesic immersion. Then this case

is included in (I) of our theorem.
Next, we consider the case that f is not a totally geodesic immersion. Then

there exists some point x0 ∈ Mn(c) such that λ(x0) 6= 0. Since λ is a continuous
function on Mn(c), there exists a neighborhood U of x0 such that λ > 0 on U .
We shall study on the open subset U from now on. From the above lemma, the
assumption of our theorem and the continuity of λ, we see that the function λ is
constant on U , so that λ2 = c− c̃ or λ2 = 2(n− 1)(c̃− c)/(n + 2).

In case of λ2 = c− c̃, this case is included in (I) of our theorem.
In case of λ2 = 2(n − 1)(c̃ − c)/(n + 2), from the above lemma we know that

dim N1
x = (n(n + 1)/2)− 1 for all x ∈ U . Since λ is constant, differentiating (3.2)

with respect to each T ∈ X(Mn(c)), we have the following:

(3.3) 〈(∇′
T σ)(X,Y ), σ(Z, W )〉 = −〈σ(X,Y ), (∇′

T σ)(Z, W )〉.



4 N. BOUMUKI

By using (2.2) and (3.3) repeatedly, we get the following:

〈(∇′
T σ)(X,Y ), σ(Z, W )〉 = −〈σ(X,Y ), (∇′

T σ)(Z, W )〉 = −〈σ(X,Y ), (∇′
Zσ)(T, W )〉

= 〈(∇′
Zσ)(X,Y ), σ(T, W )〉 = 〈(∇′

Y σ)(X,Z), σ(T, W )〉
= −〈σ(X,Z), (∇′

Y σ)(T, W )〉 = −〈σ(X,Z), (∇′
W σ)(T, Y )〉

= 〈(∇′
W σ)(X,Z), σ(T, Y )〉 = 〈(∇′

Xσ)(W,Z), σ(T, Y )〉
= −〈σ(W,Z), (∇′

Xσ)(T, Y )〉 = −〈σ(W,Z), (∇′
T σ)(X,Y )〉.

Thus we find that 〈(∇′
T σ)(X,Y ), σ(Z, W )〉 = 0. This, together with dim N1 =

codimMn(c), implies that f is parallel on U , so that there occurs the case (II) of
our theorem (cf. [F, S]). Therefore we can get the conclusion. ¤

Finally we note that our theorem in this paper is a partial answer to the open
problem in [B].
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