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A theorem on the torsion and the curvature of the canonical connection of a homo-
geneous Lie loop at the unit element, given in our paper [8], is extended to the canonical
connection of a differentiable loop with the left inverse property.

§1. Introduction

In the preceding paper [8], we have described interrelation between the canonical
connections of homogeneous Lie loops and the Chern connections of the corresponding
3-webs of loops, and have given some explicit formulas connecting the tangent Lie
triple algebras of homogeneous Lie loops and the multiplication of the loops. In
general, the tangent algebra of analytic loops have been considered by M. Akivis [1]
which is called Akivis algebra, and a generalized theory of Campbell-Hausdorff series for
Lie groups are developed for analytic loops by M. Akivis—A. Shelekhov [2], [3], [4]
and others, where they used some fundamental formulas of the coefficients of torsion
and curvature of the Chern connection of 3-webs given by S. S. Chern [5]. According
to the letters of M. Akivis and V. Goldberg, the tangential equations for loops with the
left inverse property (abbrev. left I.P. loops) given in §§2-3 of [8] which are due to
S. S. Chern [5] have been published in [2]. To show the relation between these
formulas and the tangent Lie triple algebras of homogeneous Lie loops we have
introduced there the concept of the canonical connection for differentiable left I.P.
loops (cf. §4 of [8]). After the paper [8] appeared, we found the fact that the most of
the equations of the canonical connection of homogeneous Lie loops given there are
also valid for left I.P. loops, which is the main object to remark in this paper.

In what follows, we use the same notations as those used in [8] except for calcu-
lation of partial derivatives of the components of tangent vectors such as;

71(a be ’7(“ Ybs Z))_ ab,acj (a b 7’/(0 b C)) 6bm6 D ((1 b C)XbYI;anak

*n*

nwa, Xy, Z,- W)= Dbidcidem (a, b, C)X;;Zi: wuo,

and so on, where X, Y, are tangent vectors at b and Z_, W, are at ¢. It is assumed that



10 Michihiko KIKKAWA

an arbitrarily fixed local coordinate system is given around each point and that the
components of any tangent vector are determined with respect to the corresponding
local coordinates by X,=X}d(b) and Z,=Zid,(c) etc. Note that the dot product
appeared in such calculation (for instance, Z_ - W, in the second equation above) is
always symmetric.

Let (G, p) be a differentiable loop defined by the multiplication xy=u(x, y) on a
C*-class differentiable manifold G. In the rest of this paper, we assume that the loop
G has the left inverse property (left 1.P. loop), that is, each element x has a unique
inverse x~1, x"1x=xx"!=e, such that L,-,= L', where e is the unit element of G and
L, denotes the left translation by x. The loop G is called a homogeneous Lie loop if
all left inner mappings L, ,=L;1L L, are automorphisms of G.. Now, we consider the
ternary system 77: G x Gx G—G on G (cf. [8]) given by #(x, y, z)=x((x"1y}(x~1z)). It
satisfies the following equations for any x, y, z in G:

(Hy) n(x, x, p)=y

(Hy) n(x, y, x)=y

(H3) #n(x, e, nle, x, y))=nle, x, n(x, e, y))=y
and

(H%) nle, x, n(e, y, 2))=n(x, nle, x, y), nle, x, z)).

It is easy to show that G is a homogeneous loop if and only if the ternary system #
satisfies

(Hy) (e, w, n(x, y, 2))=n(n(e, w, x), ne, w, y), n(e, w, z)).
Indeed, (H,) is equivalent to the relation ((H,) of [8])
n(x, y, n(u, v, w)=n(m(x, y, u), n(x, y, v), nx, y, w))
and it implies
(Hj)  n(x, y, n(y, x, 2))=z,

that is, (G, 1) is a homogeneous system on G (cf. [7]) if (H,) is satisfied. For later use
we note that the equation

(H5) n(e, w, nie, x, nle, y, 2)))
=n(w, ne, w, x), n(w, n(e, w, y), n(e, w, z)))

is derived from (H}) on the left I.P. loop.
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§2. Tangential formulas

By partial differentiation of the preceding relations (H,)-(H5) we can show the
following formulas on tangent vectors of the differentiable left 1.P. loop (G, u).
In the first place, the following formulas are obtained from the equation (H,):

21.1) #5(x, x, Y,)=1Y,

(212) n(X,, x, p)+u(x, X, )=0

(2.1.3) (X, x, V) )+n(x, X,, ¥,)=0

(2.1.4) #u(x, x, Y,-Z)=0 or, in general, n(x, x, Y}-Y2...Y5)=0 (p=2)
Q1.5 n(Wy- Xy, x, P)+0(X s Weo ) +0(Ws, Xy p)+0(x, We- X, )=0
(2.1.6) n(W,-X,, x, Y)+n(X,, Wy, Y)+0(W,, X, X)+n(x, W,-X,, Y,)=0.

Further formulas corresponding partial derivatives of order more than three are also
obtained from (H,), which are omitted here. In the same way, we can show the follow-
ings by differentiating the equation (H,):

2.2.1) 5(x, Y, x)=%,
(22.2) n(Xy y, x)+n(x, y, X)=0
(223) 1(X, Y, )+1(x, ¥, X)=0
224) n(x,Y,-Z, x)=0, n(x, Y}-Y2.--YE, x)=0 (p=2), etc.
The equations (2.1.1) and (2.2.2) evaluated at x=y imply
2.2.5) n(X,, x, x)=—-X.,.
Also, by (2.1.3) and (2.2.3) evaluated at x=y, we get
(22.6) (X, x, Y)=n(Y,, X, x)=—n(x, X, Y}).
This equation with (2.1.5) and (2.2.4) implies
227 nlx, X, Y)+u(x, Yo, X)=n(X,- Y, x, x).
Each of two equalities in (H3) implies respectively the following formulas:
(2.3.1) nle, x, n(x, e, Y))=7Y,
(2.3.2) nle, X, n(x, e, y))+n(e, x, n(X,, e, y))=0

(2.33) nle, Xy, n(x, e, Y,))+nle, x, n(X, e, y)-n(x, e, Y,))
+1(e, x, n(X,, e, ¥,))=0;
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(2.3.1) n(x, e, yle, x, Y))=Y,
(23.2)" (X, e, nle, x, y)+n(x, e, nle, X, y))=0
(233 n(X,, e nle, x, ) +n(x, e, nle, X, y)-ne, x, Y,))
+1(x, e, n(e, X, ¥,))=0.

By differentiating (2.3.3) in the direction Z, and evaluating at x=y=e, we get
(2.3.4) nle, X.-Z,, Y)—nle, X, nle, Z,, Y.))—nle, X, Z,- Y,)

—n(e, Z, X, Y )—nle, Z,, ne, X,, Y ) +n(X,.-Z, e, Y,)=0,

where we used the formulas (2.2.5) and (2.2.6), and, by means of the equation (2.1.6)
at x=y=e, we get .

(2.3.5) n(X,, Yo, Z)+n(Y., X., Z)+n(e, X, nle, Y., Z,))
+1’](€, Ye’ 7](.39 Xc’ Ze))+’7(e’ Xe’ Ye 'Ze)+;7(e’ Ye’ Xe'Ze)=0~

Now, differentiating the equation (H}) at x, y, z in the directions X, Y, and Z,,
respectively, we have the followings:

(2.4.1) n(e, x, nle, Y,, 2))=n(x, nle, x, ), ne, x, z))
(2.42) nle, x, nle, y, Z.))=n(x, nle, x, y), ne, x, Z))
(2.4.3) nle, X, n(e, y, 2))=n(X,, nle, x, y), nle, x, z))
+n(x, n(e, X, y), nle, x, 2))+n(x, nle, x, y), nle, X, z))
(2.4.4) n(e, x, nle, Y,, Z,))+n(e, x, ne, Y,, z)-nle, y, Z,))
=n(x, nle, x, Y,), nle, x, Z,))
(2.4.5) nle, X, n(e, Y, Z,))+n(e, X,, ne, Y,, z)-n(e, y, Z,))
=n1(X, nle, x, Y,), ne, x, Z.))+n(x, nle, X,, Y,), nle, x, Z,))
+1(x, n(e, X, Y,), n(e, X, Z.)+n(x, ne, X, y)-n(e, x, Y,), ne, x, Z.))
+1(x, (e, x, V), n(e, X, z)-nle, x, Z.)).
From (2.4.4) and (2.4.5) evaluating at y=z=e and setting
Yi=nle, x, Y,), Zi=nle, x, Z,)
we can obtain
(2.4.6) n(x, Y¥, Z¥)=n(e, x, n(e, Y,, Z))+nle, x, Y,-Z,)

and



Remarks on Canonical Connections of Loops with the Left Inverse Property 13

247 n(X,, Y¥, ZH=nle, X,, n(e, Y., Z,))+nle, X, Y,-Z,)
—’T(X, 7’[(8, Xxs Ye)n Z;ck)_ﬂ(x, Xx' Y’:, Z;k)
—ﬂ(x> Yj:, 11(6, an Ze))—ﬂ(x, thka Xx'Z:ck)-

Here, we used (2.1.1) and (2.2.1).
Furthermore, if we put x=e in (2.4.7), we get

(24.8) n(X,, Y., Z)=n(le, X,, nle, Y., Z))+nle, X,, Y,-Z,)
-’1(9: ’1(6’, Xes Ye)’ Ze)"‘i’[(E, Xe' Ye? Ze)
—”(ea Yea ’1(6’, Xe:v Ze))_n(e’ Yes Xe' Ze)'

REMARK 1. Assume that the loop (G, u) is homogeneous, that is, the equation
(H,) is valid on G. Then, we can show the followings:

(2.4.9)  nle, w, (X, y, 2))=n(ne, w, X,), nle, w, y), nle, w, z))
(2.4.10) n(e, w, n(x, Y, Z_))+n(e, w, n(x, Y,, 2)-n(x, y, Z,))
=n(ne, w, x), n(e, w, Y,), nle, w, Z.))
(2.4.11)  n(n(e, w, X,), nle, w, Y,), nie, w, Z.))
=nle, w, n(X,, Y,, Z.))+nle, w, n(X,, Y,, 2)-(x, y, Z,))
+nle, w, n(x, Y,, 2)-n(X,, y, Z))
+nle, w, n(X,, y, 2)-n(x, Y,, Z.))
+ule, w, (X, y, 2)-n(x, Y, 2)-n(x, y, Z.))
(2.412) n(X%, YE ZD)=nle, x, n(X., Y, Z))+n(e, x, Z.-n(e, X,, Y.))
—n(e, x, Y,-n(e, X, Z,))—n(e, x, X, -n(e, Y., Z.))
—nle x, X, Y, Z,).
Here, we used (2.1.1), (2.2.1), (2.2.5) and (2.2.6).

Finally, in the same way as above, we can show the following formulas by differ-
entiating (H5): '

(2.5.1) nle, w, nle, X, nle, y, 2)))=n(w, nle, w, X,), n(w, nle, w, y), n(e, w, Z,)))

(2.5.2) nle, w, nle, X, nle, Yy, 2)))+nle, w, nle, X, ne, y, 2)-nle, x, nle, Y,, z))
=n(w, n(e, w, X,), n(w, ne, w, ), nle, w, z)))

(2.5.3) n(w, ne, w, X,), n(w, n(e, w, Y,), n(e, w, Z.)))
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+n(w, n(e, w, X,), n(w, n(e, w, Y,), n(e, w, z))-n(w, nle, w, y), nie, w, Z.)))
=n(e, w, n(e, X, nle, Y,, Z.)))+nle, w, n(e, X, ne, Y, z)-n(e, y, Z,)))
+n(e, w, ne, x, nle, y, Z,))-ne, X, nle, Y,, 2)))
+n(e, w, n(e, X, nle, y, 2))-ne, x, nle, Y,, Z.)))
+nle, w, nle, X,, ne, y, Z.))-n(e, x, nle, Y,, 2)))
+nle, w, nle, X, nle, y, z))-nle, x, (e, Y,, z))-nle, x, nle, y, Z.)))
(2.54) n(x, X%, n(x, YE, ZD)+n(x, X3, Y§-Z%)
=n(e, x, nle, X, nle, Y., Z,)))+n(e, x, nle, X,, Y.-Z,))
+n(e, x, X, -nle, Y, Z,))+nle, x, Y,-nle, X, Z,))
+nle, x, Z,-ne, X,, Y.))+n(e, x, X, Y- Z,).

§3. Canonical connections of left 1. P. loops

The canonical connection ¥ on a differentiable left I.P. loop (G, u) is defined in [8]
as follows: Let X, Y be any vector fields on G and x a point of G. In a fixed local
coordinate neighborhood of x, set E¥(y)=#(x, y, 0(x)) and Y,= Yi(y)E¥(y). Then
(PyY),=(X,.Y"d(x). By using the notation in the preceding section, we can describe
it as follows:

3.1 (PyY), =X Y—n(x, X,, Y,).
Hereafter, we use the notation
X, Y=(X,Y)0(x)

for the coefficients Y of Yin the fixed coordinate system, i.e., for ¥,=Y(y)d,(y) in the
coordinate neighborhood of x.

PROPOSITION 1.  The canonical connection V of a left 1.P. loop (G, ) satisfies the
following equation at the unit e;

(3.2) | ne, x, (Fy2))=(V32),, x€G,

for any vector fields Y and Z on a neighborhood of e, where ¥ ;=y(e, x, Y,), Z;=n(e,
x, Z,) for ii=n(e, x, u). '

PrROOF. Let x be a fixed point and (ii’) a fixed local coordinate system around x.
If we set Z,=Zi(i1)3ii), then Zi(ii)=ni(e, x, Z,) and

sz =( ~xZ i)gi(x) = ((dﬂ(e, x) Ye)ﬂi(e, X, Zu))éz(x) = ( Yerl i(ea X, Zu))gz(x)



Remarks on Canonical Connections of Loops with the Left Inverse Property 15
=nle, x, Yo-Z)+n(e, x, Y.Z).
On the other hand, the formula (2.4.6) implies
n(x, Y, Z)=ne, x, nle, Yo, Z))+1n(e, x, Y. Z,).
Hence, we have
(2, =Y.Z-nx, ¥, Z,)
=n(e, x, Y.Z)—1(e, x, nle, Y, Z,))
=n(e, x, (FyZ).). | g.e.d.

REMARK 2. Assume that (G, p) is a homogeneous Lie loop. For any vector fields
Y, Z and any point w, set Y.=#(e, w, Y,) and Z.=#(e, w, Z,), x € G, where % =1(e, w, x)
Then, by (2.4.10) in Remark 1, we can show the following equation;

’?(e, w, (VYZ)x)=(VYZ)x"'

This means that the displacement (e, w): G— G sending each x to y(e, w, x) is an’ affine
transformation of the canonical connection on the homogeneous Lie loop. -

Let T and R»denote the torsion tensor field and the curvature tensor field of the
canonical connection of the left I.P. loop G, which are given by

T(X, Y)=[X, Y]— Py Y+ I, X
RX, V)Z= Py yiZ— Py WyZ+ Py PyZ

for any vector fields X, Yand Z on G.
PROPOSITION 2.  The torsion tensor T satisfies
(3.3) Tnle, x, X,), nle, x, Y)=n(e, x, T(X,, Y.))
for any X,, Y,e T(G) and x€G.
PrOOF. By the definition (3.1) of the canonical connection, we get
(34 (X, Y)=1(%, Xy Y)=1(¥, Y X,)
for X,, Y, e T(G). If X.=n(e, x, X.) and Y, =1(e, x, Y,), then (2.4.6) implies
nx, Xy Yo=nle, x, nle, X,, Y))+n(e, x, X, Yo).

Since the dot product in the last term is symmetric, we have the required equation.
: q.e.d.

LemMMA. Let K be a (1, s)-tensor field on G. If K satisfies the following equation
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at each point x on G, then (FK),=0:
(3.5) K(n(e, x, X3),..., ne, x, X5)=n(e, x, K(XL,..., X))
Jor XL,..., X5 e T(G).

Proor. For any tangent vector X,, Y, at e, we construct the vector fields X* and
Y* on G by the equations X =n(e, w, X,), Y=n(e, w, ¥,), we G. Then, by using the
formula (2.4.6), we get

(P X*) = XEY*—n(x, X¥, Y¥)
=X:11(€, w, Ye)_n(e9 X, '1(69 Xe’ Ye))_”(e’ X, Xe' Ye)
=’1(e, X;k> Ye)_rl(e’ X, ﬂ(e, Xea Ye))_n(e: X, Xe' Ye)'

If we put x=e, then the equation ( /y.X*),=0 follows from (2.1.1) and (2.1.4), which
proves the lemma for s=0. We now show the lemma for s>1. For any tangent
vectors Y, X1,..., XS ate, let Y*and X*?, p=1,..., s, be the vector fields on G given by
Yi=n(e, w, Y,) and X¥?=n(e, w, X2) for we G. Then, we have

(P K) (XL, XE)=(Pyu(K(X*1,..., X*9))),
=25 K(XF, L, (P X*P),..., X55)
=YHEK(X*,..., X*))—n(x, Y¥ K(X*1,..., X*9))
— 25— KA(XE,.., (P X*P),..., X¥5),

By the assumption of the lemma, we can use (2.4.6) for n(x, Y¥, K(X*,..., X*5))
and we get

YRK(X™,..., X*)=n(e, Y¥ K(X1,..., X5))
and
nex, Y3, KUXE..., XE)=n(e, x, n(e, Y,, K(X1,..., X5)))
+n(e, x, Y,- K(XL,..., X3)).

If we put x=e, then we have (Fy K),(X1,..., X3)=0 since ( Py« X*P),=0 as shown
above. q.e.d.

From this lemma and Proposition 2, we obtain the following;

PrOPOSITION 3. The torsion tensor T of the canonical connection on a left 1.P.
loop satisfies the equation

(7T).=0

at the unit element e.
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In the following, we describe the curvature R of the canonical connection /' of the
left I.P. loop (G, u) by means of the tangential formulas given in §2. From (3.1) we
can show the following;

PROPOSITION 4.  The curvature tensor of the canonical connection of a left 1.P.
loop G is given by

(36) Rx(Xx’ Yx)szn(an Yx» Zx)_n(Ym an Zx)
_n(xa an n(x, Yx’ Zx))‘l"?(X, Yx5 ’1(x» Xx? Zx))
—W(X, Xx? Yx ’ Zx)+'1(X, Yxs Xx : Zt)

for any tangent vectors X, Y, and Z at any point x.
The expression above of the curvature tensor implies the following;

ProposITION 5. For any X,, Y,, Z,€ T(G), set XE=n(e, x, X.), Yi=nle, x, Y,)
and Z¥=n(e, x, Z,).
Then,

3.7 RAXE, YOZE—n(e, x, R(X,, Y)Z,)
=n(X%, Y§, Z9)—n(Y%, X3, ZF)
—n(e, x, (X, Yo, Zo)+1(e, x, n(Ye, X, Z,))
—n(e, x, TUX.. Y)-Z,).

ProOOF. Apply (3.6) for X#¥, Y* and Z¥. Then, by using (2.5.4) and (3.4), we can
easily show the equation. q.e.d.

REMARK 3. If (G, p)is homogeneous, then, by (2.4.12) in Remark 1, the right hand
side of the equality (3.7) vanishes and we have

(3.8) RU(X%, YY)ZE=n(e, x, R(X,, Y)Z,),
from which we can obtain

(3.9) , (PR),=0

by Lemma given in this section. We have known that the equations /' T=0 and FR=0
hold at every point of the homogeneous Lie loop (cf. [7]), which follows also from (3.9)
and Proposition 3, under the assumption of homogeneity.

We can describe the value at the unit element e for the curvature tensor R as
follows:

(3 10) Re(Xe’ Ye)Ze = éf{rl(Xea Ye? Ze) - 11( Ye» Xea Ze) - ’1(& Te(Xea Ye)’ Ze)} .



18 ‘ Michihiko KikkawaA
In fact, by the formula (2.4.8), we get
0K Yo Z)+n(e, Yo (¢, Xoo ZD)1(e, Y, X, Z,)
=7](€, Xe» n(es Yea Ze))+17(e, Xea Ye'Ze)
-'1(6’, 1’](6, Xes Ye)a Ze)—n(e, Xe : Ye’ Ze) .

This implies (3.10) by evaluating (3.6) at e. In [8], we have considered the endo-
morphisms dL(X,, Y,) of the tangent space E(G) at e, which is derived from the left
inner mappings L, ,=L;!L L, of the left L.P. loop (cf. (3.19) and (3.20) of [8]). By
using our notation in this paper, the equation (3.20) and (3.21) of [8] are rewritten as
follows:

(3'11) dL(Xea Ye)Ze=’7(e3 Xe' Ye’ Ze)_”(ea Ye’ Xe'Ze) o
‘+'7(ea ’1(9, Ye’ Xe)’ Ze)_r’(e3 Yea 1’](6, Xe: Ze))'

The following theorem, which has been given in [8] for homogeneous Lie loops, is
shown now for differentiable left I.P. loops:

THEOREM. Let (G, p) be a differentiable loop with the left inverse property. The
torsion tensor T and the curvature tensor R of the canonical connection of (G, p) are
given at the unit element e by the following equations;

(3.12) T(X,, Y)=du(X,, Y)—du(Y,, X,),
(3.13) R(X,, Y)Z,=2dL(X,, Y,)Z,

for any tangent vectors X, Y, and Z, at e, where the bilinear operations du: T(G) x
T(G)-T,G) and dL: T(G)x T(G)—End (T(G)) are those introduced in [8], which
are derived respectively from the multiplication u and left inner mappings of (G, p).

ProOF. Since u(x, y)=n(e, x, y), the equation (3.12) is same as (3.4) for x=e.
As for (3.13), we use the formula (2.4.8) for the equation

dL(X,, Y)Z,—dL(Y,, X)Z.=1(e, X, n(e, Y,, Z,))
—nle, Y, n(e, X., Z))—nle, nie, X,, Y,), Z,)
+le, ne, Y, X.), Z)+nle, X,, Y,-Z,)
~nle, Y, X,-Z,)
and get
(.14 dL(X,, Y)Z,—dL(Y,, X)Z,=n(X,, Y, Z,)+n(e, X,- Y., Z.)
+1nle, nie, Y, X,), Z,).

The following equation follows from (2.3.5) and (2.4.8) which is equal to a formula
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shown by S. S. Chern [5] (cf. Cor. 1 to Theorem 1 of [8]);

(3.15) dL(X,, Y,)+dL(Y,, X,)=0.

Therefore, the equation (3.13) is proved by (3.14), (3.15) and (3.10). qg.e.d.
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