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In simplicial complexes, the Whitehead topology and the metric topology are well known 

In the class of full simplicial complexes, the metric topology is locally convex, while the 

Whitehead topology is not necessarily locally convex. In this paper, we consider the strongest 

topology in the class of full simplicial complexes which is locally convex and is contained 

in the Whitehead topology, and study some interesting topological properties ; for example, 

hll~ness and ANR (M*). 

S I . Introductiom 

Since all complexes studied in this paper are simplicial, we shall usually drop the 

word simplicial. By obvious reasons, we shall require the topology of a complex K 

to satisfy the following two conditions : 

(C1) Every subcomplex of K is a closed subset of K. 

(C2) Every finite subcomplex of K, considered as a subspace of K, has the 

Euclidean topology. 

As the topologies on a complex K satisfying (C1) and (C2), the Whitehead topology 

and the metric topology are well known. We denote the space K equipped with these 

topologies by IKlw and IKIM, respectively. If the complex K is not locally finite, 

then IKlw does not coincide with IKIM-

As easily seen, for a full complex K, IKIM is locally convex, but IKlw is not neces-

sarily locally convex (cf. [5] pp. 416, 4.3). Therefore, in this paper, we consider the 

strongest topology of a full complex K which is locally convex and satisfies the con-

ditions (C1) and (C2), and which is contained in the Whitehead topology we call 

it the locally convex topology and denote the space K equipped with that topology by 

IKlc' In section 2, we define the locally convex topology and consider some 
topological properties of IKlc' In section 3, we shall prove that, for a full complex 

K, IKlc is M1 and AR (M1)' ' In section 4, we consider the subcomplexes of IKlc' 

Throughout this paper, N denotes the set of all natural numbers and M = {1/n: 

n e N}. For M1~spaces, see [3]･ For AR and ANR, see [6]. Every terminology is 
referred to [5] or [6], unless otherwise stated 
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S 2. Definitioms and soEne properties 

Let K be a full ,complex with the triangul~tion ~ . Then we embed K in a suitable 

vector space with finite topology ([5] pp. 416) so that its vertices are at the unit points 

of the vector space. For P e ~, dp denotes the metric,function of P inherited from 

the above embedding. For x, y e K, Iet 

I(x, y). = {tx+(1 - t)y: O~ t~ 1} . 

Then U c K is said to be convex if I(x, y) c U for any x, y e U. 

DEFINITION 2.1. Let K be a f'ull complex. By the locally convex topology of 

K we mean the strongest topology jcr satisfying the following ' 

(1) If U e jar, U is opeh in IKlw' 

(2) For each U e jar and each x e U there rs a convex set Ve jcr with x e V c U. 
We ' denote the space K equipped with, the locally convex topology by IKlc' Let 

H be a subcomplex of K. Then if H is the subspace of IKlc_, we say that the space H 

has the locally convex topology (we denote it by IHlc)' ' ~ 
It is easily verified that the locally convex topology satisfies the conditions (C1) 

and (C2). Furthermore among the topologies satisfying (1) and (2) abQve there is 

the strongest topology. Indeed the family of all convex open subsets of IKIW is the 

base of the strongest topology. 

The following proposition is obvio'us by [4] Lemma 4.4 

PRoposmoN 2.2. Let K be a full simplicial complex with, counta,ble vertices. 

T/ren IKlc coincides with IKlw' 

For k-leader, see [1]. For a space X, k(X) denotes the k-leader of X. 

' P'ROPOSITION 2.3. Let K be a full~simplicial ~omplex with uncountable vertices. 

Then k(IKjc) coincides with IKlw' ~ ' 
PRooF. To prove this proposition, it suffices to show that, for each compact set 

A of IKlc, A is contained in_ some simplex. Suppose that A is not contained in any 

simplex- of.K. Then there are countabl-e simplexes {P~ : n e N} satisfying the following 

pl~p2~･･･~~.~~..., An(p.-p~_1)~~~)' neN. 

Now choose a point x~ e A n (.p~ - p~_1) and let B={x~ : n e N}. Since the locally 

convex topology and the Whitehead topology coincide in a countable full complex by 

Proposition 2-.2, B is closed in IKlc' Furthermore, it is easily seen (cf. the proof 'of 

Theorem 3.2 in this paper) that there are neighborhoods N(x~) of x~ for n e N such 

that N(x.) n N(x~) = ~I if n ~ m. Since the 6pen cover {N(.x~) : n e N} V {lKIC~B} of 

A does not have a finite subcover of A, this contradicts the compactness of A 
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S 3･ M1~mess and AR(Ml) of I Klc 

. In this_section, K denotes a full qomplex with the triangulation ;f. Then we use 

the following notations. ' 
NOTATION 3,1. For Se~, Iet A(S)={TeJf: TcS, T~S}. Define ~~0={Se~: 

A(S) = ~} (.the set of all vertices) and, assu.ming ~l~ has been defined for O~m

we define 

*-1 ~-1 J~:~={Se~l A(S)c ~/ ~1} ~/ J~~ 
i=0 ' i=0 

Then U {~li: ieNU {O}}=~tf. For Se~f, Iet aS= U(A(.S)). S'=S-aS, and ~:s= 

{TeJf: ScT, S~T}. For neN and Se~:~_1, ~::'s"=~~:'sn~l~. Then obviously 

U {S~ : .S e ~f} =K. . For SeJ~l~, Te~*+1 such that ScT, Iet for each keN, 

ST(k)= {x e T: dT(x, S)=,1lk}. 

For x e T and a positive real number r, Iet 

B(x, r; dT)={ye T dT(x y)

Since ST(k) is compact, there exists a finite subset ST(k-finite) of ST(k) such that 

U {ST(k) n B(x, 1/k; dT) : x e ST(k-finite)} = ST(k) . 

Let ST= U {ST(k-finite): k e N} and S(n + 1)= U {S1': Te~~+1} for S e ~l~. 

Now we shall prove the following main theorems ' 

THEOREM 3.2. For eachfull si,mplicial complex K, IKlc is an M1~space. 

PRooF. We shall construct a a-closure preserving base consisting of convex open 

subsets. 

First, fix P e ~lo' Let g : ~~->M. Then we define a candidate Pg for our local 

base at P as follows : For any S e ~:1 n ~;p ( = J~~), we define 

P~ = {x e S : ds(P, x) 

Now assume that we have defined P"'g for all S e J~l~ n d:p With I ~ m 

any Te ~~* n J~;p We put 

ap~ = U {P~: S e A(T) n ~;p} 

and 

P~= U {1(x, y) : x, y e ap~} . 

Finally we put 
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Pg= U {P~: Te~;p} . 

Next we observe that for each n e N P e ~~~, there exists a countable family 

~~(p) = {P~ : m e N} of open convex subsets of P' formmg a base for pomts m P' so 

that P~cP for all rn eN Flx n eN Pe~ and Be~(.p). Then for each map 
g : ~f"p+1_>P(n+ 1), we define a candidate Bg for our base as follows : Now for any 

Te ~f"p+1,we define eB~=B. L~t 

WT= U {B(x r*, d ) xeaBT} 

where r*=dp(x, P-aB~)･ If g satisfies g(T) e WT n pT for any Te ~f"p+1, g is said 

to be definable for B e ~~(p). If g is definable for B e ~(p), then we define 

B~ = U {1(x, g(T)): x e eB~} - {9(T)} . 

Now assume that B~ has been defined for all S e ~l~+k n ~:p Wrth I 

any Te ~l~+~ n ~;p We put 

eB~= U {B~: S eA(T) n ~; } 

and 

B~= U {1(x, y): x, y e aB~} -

Finally we put 

Bg= U {B~: Te~;p} . 

For m n e N, P e ~:~ and R e ~~o' we put 

r~= {(_P~)g g e Map (~f"p+1 p(n + 1)) rs definable for P~ e ~(p)} 

~f~= U {r~: Pe ~~} , 

'V;R = {Rg: g e Map (~fk, M)} 

and 

(~/:0=U{y;R Re~:} 

Then we shall prove the followings 

(a) (P~)g and Rg are convex and open in IKlc' 

(b) U {r~: m e N} is a base for points in P'. 

(.c) y;R is a local base at the vertex R. 

(d) r~ and V;R are closure preserving. 

(e) c~f~ and ~~!o are closure preserving. 

If these are proved, then (~/:o U ( U {(~f~ : m, n e N}) is the desired a-closure preserving 

base of IKlc' Since it is obvious that IKlc is regular, the proof will be completed 

Proof of (.a) : For any x, y e (P~)g, by the construction of (P~)g there is a Te~;p 

such that x, y e (P~)~･ Since (P~)~ is convex, I(x, y) c (P~)g' Therefore (P~)g is 
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convex. The convexity of Rg is much the same. Furthermore it is clear that (P~)g 

and Rg ar6 open in IKlc' 

Proof of (:b) : Let U be an open set of IKlc such that x e U n p'. Since U is 

open in IKlc, there is a convex open set V of IKlc With x e V c U. Since x e U n p', 

there is an m e N such that x e P~ c U n p'. Then it is easily seen that there is a 

definable map g for P~ e ~(p) such that x e (P~)g C U. Then (~P~,)g is just an element 

of r~-

Proof of (c) : Let U be a neighborhood of the vertex R. Then there is a convex 

neighborhood V of R such that R e V c U. For each S e Jifk, there is an ns e N such 

that 

{xeS d (R x)

Then we can define a map g : ~tfk~･M by g(S)=1lns' Since V rs convex rt rs clear 

that R e Rg C Vc U. 

Proof of (d) : Let x ~ (P~)g for each (.P~)g e r~･ Then there is a simplex S with 

x e S. In case S n p,~ = ~, there is a neighborhood W of x such that W= (.S~)h e f~ if 

x e S,,cS or W Rh e r;R if x=Re~lo, and W n (p~)g=~f for each (P~)g e r~ In 
the other case S n p~ ~ ~f, then S e ~;p. Since {(P~)g n S : (P~)g e f~} is closure pre-

servmg m S, there is a neighborhood (S~)h e lr~ of x such that (S,,)h n (p~)g = ~ for each 

(P~)g e ,r~･ Thus lr~ rs closure preservmg The closure preservmgness of /1R rs 

much the same 

Proof of (e) : Let x ~ U for each U e (~f~･ Then there is a simplex S e ~lk With 

x e S for some k. In case k ~ n, it is easily verified that there is a neighborhood W of x 

such that W=(Sj)g e r~ if x ~ ~:o Or W=Rg e ~/;R if x =R e ~lo, and Wn U =~ for each 

U e c~f~･ In the other case k > n and x e S', since { U n S : U e (~/~} is closure preserving 

m S, there is a neighborhood (Sj)g e f~ of x such that (Sj)g n U = ~i for each U e ~~/~ 

Thus (~fT is closure preserving. The closure preservingness of c~fo is much the same 

Thus the proof of Theorem 3.2 is completed 

THEOREM 3.3. For eachfull simplicial complex K, IKlc is AR (M1) 

PROOF. Since !Klc rs locally convex, by the same method of [2] Theorem 4.3, 

IKlc is AE (stratifiable). Since IKlc is M1 by Theorem 3.2, IKIC is AR (stratifiable) 

therefore AR (M1)' 

S 4. Subcomplexes 

For subcomplexes with the locally convex topology, we shall prove the following 

theorems 

THEOREM 4.1. Every subcomplex H of a simplicial complex K with the locally 

convex topology is a neighborhood retract of IKlc' 
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PRooF. The proof of this theorem is analogous to the case'of IKIW (for example, 

see Hu [6] pp. 101, Lemma 10.1) except the following: As IKlc is not a k-space in 

general, note the proof of the fact that ip : K'->1 is continuous on K' ([6] pp. 10'_) 

Any simplicial complex K can be embeded in a full simplicial complex F(K) 
with th~ same vertices. Therefore the following is a direct consequence of Theorem 

4.1 and Corollary ~.3. ' 

-COROLLARY 4.2. Every~ simiplicial complex with the locallJ' conL7ex topologJ' 

is ANR (M1)' ' 

Note that IKlc is M1. Indeed, this fact is obvious if we consider the following 

facts : K is a subcomplex of F(K), the topology of F(.K) (cf. the prcof of Theorem 3.2) 

and the definition of subcomplex with the locally convex topology 
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