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In simplicial complexes, the Whitehead topology and the metric topology are well known.
In the class of full simplicial complexes, the metric topology is locally convex, while the
Whitehead topology is not necessarily locally convex. In this paper, we consider the strongest
topology in the class of full simplicial complexes which is locally convex and is contained
in the Whitehead topology, and study some interesting topological properties; for example,
M ,-ness and ANR (M ,).

§1. Introduction

Since all complexes studied in this paper are simplicial, we shall usually drop the
word simplicial. By obvious reasons, we shall require the topology of a complex K
to satisfy the following two conditions:

(C1) Every subcomplex of K is a closed subset of K.

(C2) Every finite subcomplex of K, considered as a subspace of K, has the
Euclidean topology.

As the topologies on a complex K satisfying (C1) and (C2), the Whitehead topology
and the metric topology are well known. We denote the space K equipped with these
topologies by |K|, and |K|,, respectively. If the complex K is not locally finite,
then |K|y does not coincide with |K|,,.

As easily seen, for a full complex K, |K|,, is locally convex, but |K|, is not neces-
sarily locally convex (cf. [5] pp. 416, 4.3). Therefore, in this paper, we consider the
strongest topology of a full complex K which is locally convex and satisfies the con-
ditions (C1) and (C2), and which is contained in the Whitehead topology — we call
it the locally convex topology and denote the space K equipped with that topology by
|Klc. In section 2, we define the locally convex topology and consider some
topological properties of [K|c.. In section 3, we shall prove that, for a full complex
K, |K|cis M and AR (M,).- In section 4, we consider the subcomplexes of |K]|.

Throughout this paper, N denotes the set of all natural numbers and M = {1/n:
neN}. For M -spaces, see [3]. For AR and ANR, see [6]. Every terminology is
referred to [5] or [6], unless otherwise stated.
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§2. Definitions and some properties

Let K be a full complex with the triangulation »#°. Then we embed K in a suitable
vector space with finite topology ([5] pp. 416) so that its vertices are at the unit points
of the vector space. For Pe ", dp denotes the metric function of P inherited from
the above embedding. For x, ye K, let

I(x, p)={tx+(1—-1y: 05t=1}.
Then U <K is said to be convex if I(x, y)c U for any x, ye U.

DeriNITION 2.1. Let K be a full complex. By the locally convex topology of
K we mean the strongest topology 7 satlsfylng the following:

(1) IfUes, Uis open in |K|y.

(2) For each Ue 7 and each x e U, there is a convex set Ve 7 with xe V< U.

We denote the space K equipped with. the locally convex topology by |K|c. Let
H be a subcomplex of K. Then if H is the subspace of |K|., we say that the space H
has the locally convex topology (we denote it by |H|c).

It is easily verified that the locally convex topology satisfies the conditions (C1)
and (C2). Furthermore among the topologies satisfying (1) and (2) above there is
the strongest topology. Indeed the family of all convex open subsets of |K|y is the
base of the strongest topology.

The following proposition is obvious by [4] Lemma 4.4.

PROPOSITION 2.2.  Let K be a full simplicial complex with countable vertices.
Then |K|¢ coincides with |K]y.
For k-leader, see [1]. For a space X, k(X) denotes the k-leader of X.

"ProposiTION 2.3. Let K be a full simplicial complex with uncountable vertices.
Then k(|K|¢) coincides with |K|y.

Proofr. To prove this proposition, it suffices to show that, for each compact set
A of |K]|¢, A is contained in some simplex. Suppose that 4 is not contained in any
simplex.of K. Then there are countable simplexes {P,: n € N} satisfying the following:

P,SP,5SP,S, An(P,—P,_)%0, neN.

Now choose a point x,eAn(P,—P,_,) and let B={x,: ne N}. Since the locally
convex topology and the Whitehead topology coincide in a countable full complex by
Proposition 2.2, B is closed in |K|.. Furthermore, it is easily seen (cf. the proof of
Theorem 3.2 in this paper) that there are neighborhoods N(x,) of x, for ne N such
that N(x,) N N(x,)=@ if nxm. Since the open cover {N(x,): ne N} U {|K|c—B} of
A does not have a finite subcover of A, this contradicts the compactness of A4.
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§3. M,-ness and AR(M,) of | K|,

In thié,section, K denot_és a full complex with the triangulation 2#°. Then we use
the following notations. '

NoTATION 3:1. For Sext’, let A(S)={Tex": T<S, T~S}. Define #y={Sex:
A(S)=0} (the set of all vertices) and, assuming ¢}, has been defined for 0<m <n,
we define

n—1 n—1
A ,={SeA: AS)c U A} — U A,
i=0 i=0

Then U{X;:ieNU{0}}=x". For Sex, let 0S= U(4A(S)). S°=S-3S, and ;=
{Tex':ScT, SxT}. For neN and Sex,_,, f=5NH, Then obviously
U{S°: Sex"}=K.

For Sex,, TeX',., such that ScT, let for each keN,

SHk)y={xeT: di(x, S)=1/k}.
For x € T and a positive real number r, let
B(x, r; dp)={yeT: di(x, y)<r}.
Since Sp(k) is compact, there exists a finite subset S T(k-ﬁnite) of Sp(k) such that
U{Sg(k)nB(x, 1/k; dy): x e ST(k-ﬁ‘nite)} =S4(k).

Let Sp= U {Sy(k-finite): ke N} and S(n+1)= U {Sy: Te &8*1} for Se ¥,
Now we shall prove the following main theorems. :

THEOREM 3.2. For each full simplicial complex K, |K|c is an M -space.

Proor. We shall construct a o-closure preserving base consisting of convex open
subsets.

First, fix Peot. Let g: &/p—>M. Then we define a candidate P, for our local
base at P as follows: For any S e | N o7 (=7}), we define

PS={xeS: dsP, x)<g(S)}.

Now assume that we have defined P5 for all Se 0 </ with 1<m<n. Then for
any Te X, N o/p We put ‘

OPT= U {PS: Se A(T)n ofp}
and
P7=u{I(x, y): x, ye 0PT}.

Finally we put
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P,= U{PT: Teop}.

Next, we observe that for each ne N, Pe 4, there exists a countable family
B(Py={P,: me N} of open convex subsets of P° forming a base for points in P° so
that P, P° for all me N. Fix neN, Pex, and Be #(P). Then for each map
g: L1 —>P(n+1), we define a candidate B, for our base as follows: Now for any
Te 31, we define 0BT =B. Let

Wr= U {B(x, r,; dy): xe 0BT}
where r,=dp(x, P—0BY). If g satisfies g(T)e Wrn Py for any Te &/}*!, g is said
to be definable for Be #(P). 1If g is definable for B € #(P), then we define
By =U{I(x, g(T)): xe dB7} —{g(T)}.

Now assume that BS has been defined for all Se o7, N o/ with I<k<m. Then for
any Te A, N &Zp We put

OBT= U {BS: Se A(T)N p},
and

BT = u {I(x, y): x, ye 0BI}.
Finally we put

B,= U{BT: Te xp}.

For m, ne N, Pe #,, and Re %4, we put

m={(P,),: g € Map (3!, P(n+1)) is definable for P, € Z(P)},
w=U{rB: Pex,},
7zr={R,: g € Map ('}, M)}
and
Uy= U {¥r: ReA,}.
Then we shall prove the followings:

(a) (P,), and R, are convex and open in |K|c.

(b) U{7%: me N} is a base for points in P°.

(c) 7% is a local base at the vertex R.

(d) 7% and ¥% are closure preserving.

(e) %™ and %, are closure preserving.
If these are proved, then %, U (U {#™: m, ne N}) is the desired o-closure preserving
base of |K|.. Since it is obvious that |K|¢ is regular, the proof will be completed.

Proof of (a): For any x, y € (P,),, by the construction of (P,,), there is a Te «/p
such that x, ye(P,)I. Since (P,)} is convex, I(x, y)=(P,),. Therefore (P,), is
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convex. The convexity of R, is much the same. Furthermore it is clear that (P,,),
and R, are open in |K].

Proof of (b): Let U be an open set of |K|c such that xe U n P°. Since U is
open in |K]|¢, there is a convex open set V of |K|c with xe V< U. Since xe U n P°,
there is an me N such that xe P,,cUn P°. Then it is easily seen that there is a
definable map g for P,, € #(P) such that xe(P,),cU. Then (P,), is just an element
of 1.

Proof of (¢): Let U be a neighborhood of the vertex R. Then there is a convex
neighborhood V of R such that Re V< U. For each Se 7}, there is an nge N such
that

{xeS:dyR, x)<1/ng}=SnV.

Then we can define a map g: & —M by g(S)=1/ng. Since V is convex, it is clear
that ReR,cVcU.

Proof of (d): Let x& m for each (P,), e 7. Then there is a simplex S with
xeS. Incase SnP,=0, there is a neighborhood W of x such that W=(S,), e v & if
x€§,=8% or W=R,e 73 if x=Re Xy, and Wn(P,),=@ foreach (P,), € v In
the other case SN P, %%, then Ses. Since {(P,),NS: (P,),€ 7?3} is closure pre-
serving in S, there is a neighborhood (S,), € "% of x such that (S,), n (P,,),=® for each
(P,),€73. Thus ¥ is closure preserving. The closure preservingness of %% is
much the same.

Proof of (¢): Let x& U for each Ue#™. Then there is a simplex Se 2, with
x e S for some k. Incase k<n, it is easily verified that there is a neighborhood W of x
such that W=(S)),e v {if x& o, or W=R,e ¥} if x=R e X, and Wn U=0 for each
Ueay. In the other case k>n and x € S°, since {U n S: U e %™} is closure preserving
in S, there is a neighborhood (S;), € ¥*{ of x such that (S ), NU=0 for each Ueam.
Thus %7 is closure preserving. The closure preservingness of %, is much the same.

Thus the proof of Theorem 3.2 is completed.

THEOREM 3.3.  For each full simplicial complex K, |K|c is AR (M,).

Proor. Since |K|¢ is locally convex, by the same method of [2] Theorem 4.3,
|K|c is AE (stratifiable). Since |K|c is M, by Theorem 3.2, [K|c is AR (stratifiable)
therefore AR (M,).

§4. Subcomplexes

For subcomplexes with the locally convex topology, we shall prove the following
theorems.

THEOREM 4.1.  Every subcomplex H of a simplicial complex K with the locally
convex topology is a neighborhood retract of |K|c.
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ProOOF. * The proof of this theorem is analogous to the case:of | K], (for example,
see Hu [6] pp. 101, Lemma 10.1) except the following: As |K|. is not a k-space in
general, note the proof of the fact that ¢: K'—1 is continuous on K’ ([6] pp. 102).

Any simpli.cial complex K can be embeded in a full Simpliciél complex F(K )
with the same vertices. Therefore the following is a direct consequence of Theorem
4.1 and Corollary 3.3.

‘COROLLARY 4.2. Every simiplicial complex with the locally convex topology
is ANR (M,).

Note that |K|c is M. Indeed, this fact is obvious if we consider the following
facts: K is a subcomplex of F(K), the topology of F(K) (cf. the proof of Theorem 3.2)
and the definition of subcomplex with the locally convex topology.
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