

氏 名	ACHARYA ASHIS										
学位の種類	博士（理学）										
学位記番号	自博甲第15号										
学位授与年月日	令和7年9月19日										
学位授与の要件	学位規則第4条第1項										
文部科学省報告番号	甲第853号										
専 攻 名	創成理工学専攻										
学位論文題目	<p>Detecting High Saturation- and Groundwater Flow Zones Using Active Heating-Based Distributed Temperature Sensing (アクティブヒーティング法に基づく分布型温度計測による高含水・地下水流动帶の検出)</p>										
論文審査委員	<table> <tr> <td>主査 島根大学教授</td> <td>酒井 哲弥</td> </tr> <tr> <td>島根大学教授</td> <td>伊藤 文彦</td> </tr> <tr> <td>島根大学教授</td> <td>林 広樹</td> </tr> <tr> <td>島根大学准教授</td> <td>向吉 秀樹</td> </tr> <tr> <td>京都大学教授</td> <td>小暮 哲也</td> </tr> </table>	主査 島根大学教授	酒井 哲弥	島根大学教授	伊藤 文彦	島根大学教授	林 広樹	島根大学准教授	向吉 秀樹	京都大学教授	小暮 哲也
主査 島根大学教授	酒井 哲弥										
島根大学教授	伊藤 文彦										
島根大学教授	林 広樹										
島根大学准教授	向吉 秀樹										
京都大学教授	小暮 哲也										

論文内容の要旨

Active heating-based distributed fibre-optic sensing (AH-DFOS) has emerged as a promising technique for subsurface groundwater flow characterisation, yet its application in complex geological settings remains limited. This study evaluates the applicability of a novel phase noise-compensated optical frequency-domain reflectometry (PNC-OFDR) sensing method for resolving subsurface hydrologic features in turbiditic fractured aquifers. First, two feasibility studies were conducted in a controlled laboratory setting.

In feasibility study-I, a heating cable (H-cable) was embedded within a 2 m-long cylindrical cement grout specimen and subjected to various heating powers. A sensing optical cable (T-cable) was placed adjacent to the heating cable to monitor the temperature distribution continuously. Two water-holding boxes were installed along the specimen at two positions to retain water that mimics high-saturation zones around a grouted borehole in practical applications. The study's results indicated that the PNC-OFDR technique demonstrated a high sensitivity to even small ΔT , enabling it to pinpoint water locations at two distinct points accurately with a spatial resolution of 2 cm and a temperature resolution of 0.1 °C. The research determined the minimal heating power required to successfully locate the water positions. The magnitude of the heating power exerted a significant impact on the ΔT . Three distinct phases of temperature increment were observed for a given heating period: rapid, fast, and gentle increase.

In feasibility study-II, a novel method was introduced to monitor the location of high-saturation zones using the AH-DFOS method with an optical fibre-embedded fully grouted rock bolt (FGRB). A 1 m-long cement grout specimen with a fibre-optic cable instrumented FGRB was prepared, and water was introduced at various positions along the axial position to simulate high-saturation zones/groundwater flow along rock

fractures. The results demonstrated a strong potential of the AH-OFDR method for water monitoring in grouted bolt installations. When sufficient heating power was applied, the sensing cable's distance from the heating cable had minimal impact. Due to its high spatial resolution, even fine, closely spaced hydraulically active fractures can be detected. Centrally grouted instrumented bolts required slightly higher heating power for effective water detection, and sensing cables closer to the heating cable provided more uniform temperature responses. The results indicate that using a separate sensing cable provides clearer detection of water-saturated zones and closely spaced fractures. A concept of thermal halo formation on either side of the high saturation zones was presented. The rate of ΔT decreased as the width of the high-saturation zones increased. This method has significant practical implications for geotechnical applications, including slope stability assessment, tunnelling, foundation monitoring, and dam reinforcement, where rock bolts are commonly employed as stabilising structures.

The results obtained from feasibility experiments were validated by employing the method inside a 50 m-deep borehole within a highly fractured turbiditic deposit. Heating and temperature-sensing fibre-optic cables were installed into the cementitious grouted borehole, enabling high-resolution temperature monitoring under controlled heating. By applying electrical power of 7.6 W/m through an embedded metallic wire and analysing the resulting thermal response, several zones of saturation and active groundwater flow were identified under ambient conditions. The heating thermal response curves exhibited noticeable noise that increases with time, while the recovery response exhibited a much smoother trend, decreasing noise with time. The results indicate that approximately 25% of observed fractures were hydraulically active. Moreover, lithological variability induced depth-dependent thermal responses, highlighting the influence of geological heterogeneity on heat transport. Recovery (cooling) data following cessation of heating proved essential for accurate localisation of water-bearing zones and estimation of thermal properties. Field-based AH-DFOS results showed strong agreement with laboratory-derived λ values. The rainfall events showed evidence of alteration of the subsurface water flow, resulting in enhanced advective cooling or thermal dispersion. This study demonstrated the effectiveness of AH-DFOS in providing high spatial and temperature resolution, rapid data acquisition, and robust detection of hydraulically active fractures, which are key information for advancing subsurface hydrogeological investigations.

論文審査結果の要旨

地下水は、地すべりや斜面崩壊などの土砂災害発生に大きな影響を与える。そのため土砂災害の防災上、地下水の挙動を理解することが重要になる。しかし、複雑な地質環境下における地下水の挙動をモニタリングすることは容易ではない。申請者は、地下水の挙動を理解するためのツールとして、光ファイバーのパワースペクトラムが温度によって変化することに着目し、博士研究として、光ファイバーケーブルを用いた地下水挙動把握手法の開発およびそれらを用いた地下水挙動解明に関する研究を行ってきた。

申請者の博士論文では、測定方式として位相雜音補償光周波数領域反射計（Phase Noise Compensated-Optical Frequency Domain Reflectometry, PNC-OFDR）を採用し、測定中に強制加熱（アクティブヒーティング）させる分布型光ファイバーセンシング（Active-Heating Distributed Fiber Optic Sensing, AH-DFOS）に基づき、温度変化量および変化速度の違いから地下水挙動把握に取り組んだ。手法の開発段階では実現可能性に関する2種類の検証実験を行い、

確立した手法により野外観測を行い、斜面における地下水挙動の解釈をまとめている。

1つ目の検証実験では、2 m 長の円筒モルタル供試体内に加熱ケーブルと光ファイバーケーブルを設置し、円筒上の2カ所に帶水層を模した水槽を設置し、加熱電力を数段階変化させた状態での温度変化を観測している。観測の結果、PNC-OFDR は小さな ΔT に対しても高い感度を示し、2 cm の空間分解能と 0.1° C の温度分解能で、2つの異なる地点における水の位置を正確に特定できることを示している。また、水の位置を正確に特定するために必要な最小の加熱電力についても示している。

2つ目の検証実験では、アンカー工で使用されるロックボルトを模したアルミフレームに光ファイバーを埋め込み、AH-DFOS 法による観測を試みている。1 m 長の模擬ロックボルトに光ファイバーを埋め込み、4 カ所に層厚の異なる帶水層を設け、帶水層による温度変化の検出を行っている。検証の結果、水みちとなる層および水流はないものの、水に飽和している層の検出が可能であることを報告している。

上記の2つの検証を踏まえ、2024 年の1年間に、野外の 50 m 深の掘削坑における9回の観測と掘削坑から採取されたコア試料の記載を行っている。観測の結果、降雨後の観測において、複数箇所において水みちおよび水に飽和している層と判断される箇所があることを明らかにしている。検出された箇所の多くはコア試料において多くの亀裂が観察された箇所と一致するが、一部は亀裂が目立たない箇所に水に飽和している層があることを示している。

以上のように、申請者の博士論文では、PNC-OFDR を用いた AH-DFOS 法が数 cm 程度の空間分解能と 0.1° C の温度分解能で観測可能なことを示し、また迅速なデータ取得が可能であることが示されている。さらにロックボルトに光ファイバーを埋め込む方法は、斜面安定化、トンネル工事、ダム補強など広く使用されている安定化構造物において観測が可能なことを示しており、地下水挙動調査を大きく進展させる研究成果と言える。

これらの研究成果は、Q1 および Q2 論文を含む4編の国際誌に掲載されており、国際的にも彼の研究が認められていることを示している。

以上より、申請者の博士論文は博士（理学）の学位論文として合格と判断した。