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Abstract 

Antimony is widely used in industrial applications. In this study, we develop a method 

for total antimony analysis using a hydride generation-microwave plasma-atomic 

emission spectroscopy (HG-MP-AES) system equipped with a multimode sample 

introduction system (MSIS). Before analysis, antimony was reduced with potassium iodide 

and acidified with hydrochloric acid. The samples and a sodium tetrahydroborate/sodium 

hydroxide solution were infused into a spray chamber for hydride generation, MSIS. The 

limits of detection and quantification were 0.05 μg/L and 0.15 μg/L, respectively. 

Furthermore, semiconductor materials and blood samples have been analyzed in order to 

demonstrate the possible applications of this method. The total antimony content eluted 

from GaSb thin films in a pH 5 buffer agreed with the thin film structure. The spiked 

blood sample analysis showed that the recovery rate of antimony from the whole blood 

samples was 92.2 ± 1.67 %. Relative standard deviations for inter-day and intra-day 

assays of whole blood were 1.99 % and 5.31 %, respectively. The developed method was 

determined to have good accuracy and precision with the obtained values, and can be 

utilized for antimony analysis in the engineering and toxicological fields. 

 

Keywords: Antimony; MP-AES; Hydride generation; GaSb thin film; Blood   
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1. Introduction 

 Antimony compounds naturally exist in the Earth’s crust, predominately as Sb2S3 [1]. 

Compounds of antimony have been used as fire retardants, polymerization catalysts, and 

pigments [2]. Moreover, antimony sodium tartrate is used as an antiparasitic agent [3]. In 

the engineering field, Sb-based compound materials (e.g., GaSb, InSb, and CoSb) are 

predominantly applied in electrical and optical devices [4–6]. While antimony is widely 

used, its toxicity is well known; chronic exposure causes pneumoconiosis, abdominal 

pain, diarrhea, vomiting, lung tumors, and skin lesions called “antimony spots” [2]. 

Similar to arsenic, the toxicity of inorganic antimony is higher than that of organic 

antimony, and the trivalent form is ten times more toxic than the pentavalent form [7]. 

The drinking water quality guidelines laid down by the World Health Organization 

stipulate that the antimony content should not exceed 20 µg/L [8]. Therefore, the 

determination of antimony content in natural water sources and biological samples is 

imperative. 

 Total antimony analysis has been previously performed by graphite furnace atomic 

absorption spectrometry (GF-AAS) [9,10], hydride generation frame atomic absorption 

spectrometry (HG-FAAS) [11], and inductively coupled plasma (ICP) mass spectrometry 

[12–15]. Microwave plasma-atomic emission spectrometry (MP-AES) is a recently 
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introduced elemental analytical technique, which allows for multi-element analysis by 

recording the signals for different wavelengths in a sequential mode. Recently, MP-AES has 

been developed for the elemental analysis of foods, wines, fuel, geochemical samples, 

and bio-sludge samples [16-21]. MP-AES uses nitrogen plasma, which has a lower flame 

temperature (5000 K) compared to argon plasma (8000-10000 K), which is used in other 

elemental analysis techniques [20]. Due to the lower temperature, spectral interferences 

are less consequential, and atomic spectral lines have greater clarity [21]. Moreover, the 

operating cost is reduced, as nitrogen gas is more economical for generating plasma [22]. 

MP-AES offers better detection limits over a broader range of elements than HG-FAAS and 

has comparable limits to ICP-AES [23]. 

 In this study, our approach was to develop a method for total antimony analysis by 

using hydride generation-microwave plasma-atomic emission spectroscopy (HG-MP-

AES). HG has previously been used to measure metalloids, such as arsenic, selenium, 

antimony, and bismuth [24–36]. Conventional HG is performed using a hydride vapor 

generator. However, in this study, HG was conducted using a multimode sample 

introduction system (MSIS) as a spray chamber for HG, which was connected to an MP-

AES instrument (Fig.1). The utilization of MSIS allows for a limit of detection (LOD) of 

the target hydride-forming element that is 100 times lower than seen for conventional 
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nebulization [37, 38], and the sample solution and hydride generation reagent can react 

at a rough-surfaced cone, which enables good mixing and fast gas-liquid separation [39]. 

To our knowledge, studies on total antimony analysis by HG-MP-AES with an MSIS are 

limited [39], and not enough research has been carried out in this area. This paper aims 

to develop a method for total antimony analysis by HG-MP-AES with an MSIS, and to 

apply this technique to semiconductor materials and blood samples analysis. 

 

2. Materials and methods 

2.1. Reagents 

 All reagents used in this study were of analytical grade. Concentrated nitric acid, 30 % 

hydrogen peroxide, concentrated hydrochloric acid (HCl) (60 %), potassium iodide (KI) 

(99.5 %), sodium tetrahydroborate (NaBH4) (99.5 %), sodium acetate (98.5 %), sodium 

hydroxide (NaOH) (97.0 %), and antimony standard solutions (Sb 1000 mg/L) were 

purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). The mixed 

standard for water quality analysis (DWS-3) was purchased from GL Sciences Inc. 

(Tokyo, Japan). Milli-Q water (> 18 mΩ,Merck Millipore, Burlington, USA) was used 

for the dilution of the standard solutions and other reagents. 

 

2.2. Total antimony analysis by HG-MP-AES 
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 The total antimony concentration was determined by HG-MP-AES using an Agilent 

4200 MP-AES (Agilent Technologies, Santa Clara, USA) system coupled to an MSIS 

(Agilent Technologies, Santa Clara, USA). Parameters for antimony determination are 

shown in Table 1. Before analysis, antimony species in the calibration standards and samples 

(2.5 mL) were reduced with 20 % KI (500 μL), and acidified with 1 N HCl (2 mL) for at least 

30 min. The reduced samples and the freshly prepared NaBH4/NaOH solution (3 % w/v; 0.2 % 

w/v, respectively) were infused into the spray chamber for hydride generation (MSIS) using a 

peristaltic pump. The unused sample line to the spray chamber was blocked (Fig.1). The 

instrument detected antimony as gaseous antimony trihydride (stibine, SbH3). 

 

2.3. Determination of antimony content released from GaSb thin films 

 GaSb thin films (n = 4) were prepared by RF magnetron sputtering (HSR-351L, 

Shimadzu Industrial Systems Co., Ltd., Otsu, Japan) at 600 °C for 30 min on a quartz 

substrate (10 mm × 10 mm × 0.5 mm thick) under an Ar atmosphere at 0.5 Pa. The Ga 

content x in the GaxSb1-x thin films was 0.6, and the film thickness was 393 nm. Detailed 

properties of the film have been reported in our previous studies [40, 41]. To assess the 

release of Sb from GaSb thin films, each film was immersed in 0.1 M of pH 5 sodium 

acetate buffer (1.5 mL) and incubated at 30 °C for 42 days. On day 1, 500 μL of the 
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immersion solution was removed and diluted with 1 N HNO3 (4.5 mL), and the same 

volume of 0.1 M pH 5 sodium acetate buffer was added to the test tubes. On days 3, 5, 7, 

14, 21, and 42, an aliquot (500 μL) was removed and acidified as on day 1. The GaSb 

thin film soaking procedure was performed in quadruplicate to ensure repeatability and 

allow standard deviations to be calculated. 

 

2.4. Blood sample preparation 

 A whole blood sample from the author (0.5 mL) was digested in 2.5 mL of concentrated 

HNO3 by heating at 65 °C for 1 h using the heating block acid digestion system DigiPREP 

Jr (GL Sciences, Tokyo, Japan). After adding 1.0 mL of 30 % H2O2 to the digested sample, 

the mixture was heated at 95 °C for 1.5 h. To calculate the recovery percentage, 20 μL of 

antimony standard solution (1000 mg/L) was added to the digested sample and then 

diluted to 20 mL with Milli-Q water.  

 

3. Results and Discussion 

3.1. Optimization of the total antimony analysis by HG-MP-AES using an MSIS  

 The emission intensity depends on gas flow, sample flow rate, and microwave power. 

The optimum operational parameters and instrumental details are shown in Table 1. 
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 As for sample pretreatment, acid concentrations of the calibration standards and samples are 

unified. To analyze total antimony, antimony species in the calibration standards and samples 

have to be pre-reduced to the trivalent form: 20 % KI was used for this purpose, and 1 N HCl 

was simultaneously added to the sample solution. The optimized ratio of sample solution:20 % 

KI:1 N HCl was 5:1:4, and the optimized reaction time was 30 min. The reduced samples and 

the 3 % NaBH4/0.2 % w/v NaOH solution were infused into the MSIS using a peristaltic 

pump: samples were continuously reduced to create antimony trihydride (stibine, SbH3) 

(Fig.1).  

  

3.2. Method evaluation 

 Under the optimized condition, calibration standards were analyzed by HG-MP-AES 

equipment in conjunction with an MSIS. Spectra of antimony standard solutions over the 

range of 0–1000 µg/L are shown in Fig.2. A linear calibration curve was obtained (y = 

53.658x, r = 0.99996) (Fig.3). The LOD and the limit of quantification (LOQ) were 

calculated according to the formula LOD = 3σ/S (in μg/L) and the formula LOQ = 10σ/S, 

respectively, where σ is the standard deviation from a blank after 10 measurements and S 

is the slope of the calibration curve. LOD and LOQ were found to be 0.05 μg/L and 0.15 

μg/L, respectively.  
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 To assess the accuracy of this procedure, the method was applied to a mixed standard 

used in water quality analysis (DWS-3). The standard, DWS-3 (Sb concentration = 20 

mg/L) was diluted 30-fold. The obtained total antimony concentration was 93 %, which 

was in good agreement with the DWS-3 standard concentration. Precision was evaluated 

by parameters such as repeatability (intra-day) and intermediate precision (inter-day). The 

intra-day and inter-day assays were performed using the mixed standard solution. The 

relative standard deviations (RSDs) for the mixed standard solution of the inter-day and 

intra-day assays were 1.31 % and 1.91 %, respectively.  

 

3.3. Applications of the developed method 

3.3.1 Antimony analysis eluted from GaSb thin film 

 The developed method was applied to determine the total antimony eluted from GaSb 

thin film with excess Ga. The thin films were soaked in pH 5 buffer and incubated at 

30 °C for 42 days. Aliquots were removed at specified time points for antimony 

measurements. A pH 5 buffer was selected as the immersion solution because GaSb is 

slightly unstable in this environment, which allows for the slow elution of gallium from 

the thin film [40]. The RSDs of the antimony concentrations of the 4 samples at each time 

point ranged from 1.08 to 1.68 %. Figure 4 shows the amount of antimony eluted per day 
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from GaSb thin films over 42 days in pH 5 buffer, and it can be seen that antimony 

drastically eluted during the initial 14 days. Excess gallium contained in GaSb thin films 

forms gallium clusters in the surface region [41]. In this elution test, the crystalline quality 

in the surface region deteriorated due to the melting of the gallium clusters: gallium has 

a low melting point of 29.8 °C. This deterioration is speculated to cause the drastic elution 

of antimony during the initial 7 days. 

 

3.3.2. Analysis of blood spiked with antimony 

 The antimony analysis of human blood samples is significant in toxicological 

evaluations and medical research. Because blood contains high levels of organic matter 

and remarkable amounts of sodium, which may cause matrix interference, blood itself is 

a complex sample matrix [42]. Sodium is one of the most easily ionized elements, and it 

is well known as a common interferent in atomic spectrometry. It is reported that MP-

AES has relatively low interference, due to the inert nature of nitrogen plasma and the 

high temperature [43]. In the present study, the matrix effect of blood samples was 

investigated. Antimony spiked blood samples (0.5 mL and 1.0 mL) were digested with 

2.5 mL concentrated HNO3 and 1.0 mL of 30 % H2O2, and diluted to 20 mL, after which 

their antimony concentrations were determined. The antimony concentration of the 1.0 
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mL blood sample was found to be one-half of that seen for the 0.5 mL sample (data not 

shown), presumably due to matrix interference. This can be prevented by proper 

decomposition of organic matter and sample dilution. Thus, optimal digestion conditions 

were established, with a sample volume of 0.5 mL being digested in 2.5 mL HNO3 at 

65 °C for 1 h. After adding 1.0 mL of 30 % H2O2 to the digested sample, the mixture was 

heated at 95 °C for 1.5 h. The digested sample was then diluted to a volume of 20 mL. 

 The spectra of unspiked blood samples and those spiked with antimony are shown in 

Fig.5. The recovery of antimony-spiked whole blood was determined to be 92.2 ± 1.67 %. 

Intra-day and inter-day assays were performed with the antimony-spiked whole blood. 

The RSDs corresponding to the inter-day and intra-day assays for whole blood were 

1.99 % and 5.31 %, respectively (Table 2).  

 

3.4. Comparison of the analytical features of the present method with those of other 

published methods  

 The proposed method was compared with those in previously reported works using HG-

MP-AES and HG analytical atomic spectrometry for antimony determination, and the 

results are summarized in Table 3. The LOD of the present method is comparable to 

nanoparticle-assisted MSIS-MP-AES, and superior to HG-AAS without pre-
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concentration and HG-AFS. The RSD of the present method is lower than those of almost 

all of the previously reported methods. In the present study, a method of total antimony 

analysis with good analytical features, low running costs, and easy operation has been 

established. 

 

4. Conclusion 

 In this study, a method for total antimony analysis by HG-MP-AES with an MSIS was 

developed. A linear calibration curve was obtained from 0 to 1000 µg/L, and the LOD 

and LOQ were determined to be 0.05 μg/L and 0.15 μg/L, respectively. The accuracy and 

precision were determined to be good. To investigate the stability of Sb-based thin films, 

solutions eluted from GaSb thin films with excess gallium were analyzed using the 

developed method. As a result, a tendency for antimony elution was observed, which was 

in agreement with the structure of the thin films. Moreover, this method was applied to 

blood sample analysis. The recovery rate of antimony-spiked whole blood samples was 

92.2 ± 1.67 %. Hence, we believe that the developed method can be utilized for antimony 

analysis in the engineering and toxicological fields. 
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Fig.1. Illustration of the multimode sample introduction system (MSIS) used with the 

hydride generation-microwave plasma-atomic emission spectrometer. 
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Fig.2. Spectra of the antimony calibration standard measured at 231.147 nm, at 

concentrations ranging from 10 to 1000 μg/L. 
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Fig.3. Calibration curve for total antimony determination by hydride generation-

microwave plasma-atomic emission spectroscopy with a multimode sample introduction 

system. 
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Fig.4. Antimony eluted per day from GaSb thin films in a pH 5 buffer measured at 

intervals over 42 days. Data is expressed as the mean ± standard deviation of four 

independently replicated sets of results. 
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Fig.5. Spectra of a blood sample spiked with antimony and an un-spiked blood sample as 

measured at 231.147 nm. 
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Table 1. Parameters for antimony detection using an Agilent 4200 microwave plasma-atomic emission 

spectrometer (MP-AES) system coupled to a Multimode Sample Introduction System (MSIS)  

Parameter Setting 

Sb wavelength  231.147 nm 

Nitrogen gas supply Nitrogen gas cylinder 

RF Power  1.20 kW 

Plasma flow 12.00 L/min  

Auxiliary flow  0.70 L/min  

Torch I.D. 1.80 mm 

Nebulizer Sea spray 

Chamber  MSIS 

Sample tube Black/Black 

Reduction tube Black/Black 

Drain tube Black/White 

Pump speed  20 rpm 

Stabilization time 20 s 

Read time 20 s 

Repeat 3 times 

High-speed pump during sample uptake OFF 
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Table 2. Recovery and precision of antimony in a blood sample spiked with antimony   

Sample volume 
N 

Sb added  Sb found  Recovery RSD of assay 

 (μL) (μg/mL) (μg/mL)  (%) Intra-day (%)  Inter-day assay (%)  
       

500 3 20 18.4 ± 0.33 92.2 ± 1.67 1.99 5.32 

              

RSD: relative standard deviation    
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Table 3. Comparison of total Sb determination methods using HG-MP-AES and HG-analytical atomic spectrometry   

Sample Detection method 
Preconcentration/ 

extraction method 

LODa 

(μg/L) 

RSDb 

(%) 

Recovery 

(%) 
Reference 

GaSb thin films, whole blood MSIS-MP-AES1 - 0.05 1.99 92.2 This study 

Standard solution Nanoparticles-assisted MSIS-MP-AES - 0.05 1.50 - Kiryakova et al., (2019) [39] 

Water HG-AAS2 - 0.3 0.4 98.8-103.7 Neri et al., (2015) [1] 

Soil samples HG-AAS - 0.7 8.00 - Matusiewicz et al., (2008) [30] 

Water and food HG-AAS  UA-CPE6 0.04 1.8-5.3 98-99 Altunay et al., (2016) [44] 

Fish muscle tissue HG-AAS  - 0.8 4.32 - Silva Junior et al., (2017) [45] 

Water and food HG-AAS  DES-VAME7 0.02 2.7 96.2 Altunay et al., (2019) [46]  

Bovine liver, pig kidney FI-HG-AAS3 - 0.02 4.1-20 85-110  Krachler et al., (1999) [31] 

Water FI-HG-AAS SPE8 0.001 2.1-2.4 98.1-103 Londonio et al., (2016) [47] 

Environmental samples HR-CS-ET-AAS4 MSPE9 0.003 2.2-2.9 95-105 Cárdenas Valdivia et al.,(2018) [32] 

Hair samples HG-AFS5 - 0.28 2.8 92.2-110 Cardozo et al., (2016) [48] 

Soil samples HG-AFS - 0.9 3.2 90-116 Silva Junior et al., (2017) [49] 

Standard solution HG-AFS - 0.04 4.1 - Chen et al., (2018) [50] 

1Multimode sample introduction system-hydride generation-microwave plasma-atomic emission spectroscopy    

2Hydride generation-atomic absorption spectrometry      

3Flow injection-hydride generation-atomic absorption spectrometry      

4High resolution continuum source electrothermal atomic absorption spectrometry     

5Hydride generation-atomic fluorescence spectrometry      

6Ultrasonic-assisted cloud point extraction      

7Eutectic solvent based vortex assisted microextraction      

8Solid phase extraction       

9Magnetic solid phase extraction       

a Limit of detection       

b Relative standard deviation       

 


