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A genome-wide association study
identifies a locus associated with knee
extension strength in older Japanese
individuals
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Sarcopenia is a common skeletal muscle disease in older people. Lower limb muscle strength is a
good predictive value for sarcopenia; however, little is known about its genetic components. Here, we
conducted a genome-wide association study (GWAS) for knee extension strength in a total of 3452
Japanese aged 60 years or older from two independent cohorts. We identified a significant locus,
rs10749438 which is an intronic variant in TACC2 (transforming acidic coiled-coil-containing 2)
(P = 4.2 × 10−8). TACC2, encoding a cytoskeleton-related protein, is highly expressed in skeletal
muscle, and is reported as a target of myotonic dystrophy 1-associated splicing alterations. These
suggest that changes in TACC2 expression are associated with variations in muscle strength in older
people. The association was consistently observed in young and middle-aged subjects. Our findings
would shed light on genetic components of lower limb muscle strength and indicate TACC2 as a
potential therapeutic target for sarcopenia.

Sarcopenia is a common skeletalmuscle disease in older people, which leads
to unfavorable outcomes such as falls, fractures anddeath1–3. Sarcopenia can
be defined by using muscle mass, muscle strength and physical
performance4–6. The loss of muscle mass has mainly been used as an indi-
cator of sarcopenia; however, recent studies suggest thatmuscle strength is a
better indicator that reflects adverse health outcomes of sarcopenia2,7–9. For
example, Schaap et al. described that low handgrip strength was associated
with incidence of falling, independent of a muscle mass2. Therefore, muscle
strength, rather than a muscle mass, is adopted as the primary indicator for
sarcopenia in the revised EuropeanWorkingGroup on Sarcopenia inOlder
People (EWGSOP) algorithm5.

As an indicator for muscle strength, handgrip strength is commonly
used; however, it only reflects the strength of the upper extremities, not that
of lower extremities. A recent study reported that knee extension strength, a
proxy of lower limb strength, ismore strongly associatedwith performance-

based sarcopenia compared to handgrip strength9,10. Correspondingly,
Yeung et al. reported stronger association of knee extension strength with
health characteristics than handgrip strength11. Thus, knee extension
strengthwouldbe amore appropriate indicator of sarcopenia thanhandgrip
strength.

Muscle strength has been known to be heritable12–14. Family studies
showed the heritability of handgrip strength was 56%12 and genome-wide
association studies (GWASes) of handgrip strength suggested the herit-
ability was 13–24%15,16. Previous GWASes have discovered 170 variants
associated with muscle strength15–19. One GWAS on maximum handgrip
strength divided by weight in UK Biobank participants identified 101 loci
and showed a shared genetic etiology of handgrip with cardiometabolic and
cognitive health15. Another GWAS of muscle weakness based on handgrip
strength in Europeans aged 60 years or older identified 15 loci17. However,
there is only one GWAS of lower limb muscle strength, which did not
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identify any significant loci18 due to a lack of statistical power.
GWASes of lower limb muscle strength with adequate sample size would
add good information for understanding of the genetic architecture of
sarcopenia.

In thepresent study,weperformed aGWASof knee extension strength
using 3452 participants aged 60 years or older from two independent
cohorts.We identifieda locuswith genome-wide significance,whichhasnot
been identified in previous GWASes of muscle strength. In the locus, we
identified a candidate susceptibility gene, TACC2 (transforming acidic
coiled-coil-containing 2) which is highly expressed in skeletal muscle. We
also identified several suggestive loci, which include promising candidate
susceptibility genes. The variants associated with handgrip strength in a
previous GWAS15 showed an association in our dataset.

Results
Sample source, genotyping and imputation
The study design was illustrated in Supplementary Fig. 1. Three sets of
samples from two independent cohorts were enrolled in this study,
which consisted of a total of 3478 participants aged 60 years or older
(Table 1). Set 1 and Set 2 consisted of 1014 and 841 participants. Both
were from Shimane CoHRE Study20,21, but different arrays were used for
genotyping. Set 3 consisted of 1623 participants from Bunkyo Health
Study22. While the methods to measure knee extension strength were
slightly different between the two study cohorts, the patterns of dis-
tributions of knee extension strength were very consistent (Supple-
mentary Figs. 2, 3).

We used Illumina HumanOmniExpressExome BeadChip for geno-
typing 1014 participants in Set 1. After quality controls of samples and
variants, data on a total of 1007 samples remained for the further analysis
(Supplementary Fig. 1). We conducted a whole-genome imputation using
an in-house reference panel containing a total of 3256 Japanese whole-
genome sequence data and 2504 individuals in the 1000 Genomes Project
(1KG phase 3v5).We set a threshold of Rsqmore than 0.3 for variants to be
included in the followinganalyses.Anassociationanalysiswas conductedby
the linear mixed model using fastGWA23. The top three principal compo-
nents (PCs) were used as covariates. Association results in this data set are
shown in Supplementary Fig. 4.

We used IlluminaAsian Screening Array for genotyping 841 and 1623
participants in Set 2 and 3, respectively. After quality controls, 838 and
1607 samples remained in Set 2 and 3, respectively (Supplementary Fig. 1).
We conducted thewhole-genome imputation as described above. Results in
each data set were shown in Supplementary Figs. 5 and 6.

Genome-wide association studies and a meta-analysis
Then, we conducted a meta-analysis of three GWASes using the fixed-effect
inverse-variance weighted method with the use of the METAL software24.
We took an intersection of imputed variants across the three data sets,
resulting in 9,146,474 autosomal variants and 197,639 chromosome X var-
iants. The Manhattan plot and Q-Q plot of the meta-analysis are shown in
Fig. 1.We did not find an inflation of statistics (inflation factor (λGC) of 1.02)
and linkage disequilibrium score regression (LDSC) revealed an intercept of
1.00 (SE, 0.0071), indicating that the current results were not confounded by

Table 1 | Characteristics of the subjects aged 60 years or older

Set 1 Set 2 Set 3

Source of samples Shimane CoHRE Study (1st cohort) Shimane CoHRE Study (2nd cohort) Bunkyo Health Study

Number of samples 1007 838 1607

Sex (male/female) 312/695 296/542 678/929

Mean age (s.d.) 72.8 (6.7) 72.0 (6.4) 73.1 (5.4)

Mode of knee extension strength isometric isometric isokinetic

Device QTM-05F QTM-05F BIODEX

Mean muscle strength/ Body weight (s.d.) 0.644 (0.212) kg/kg 0.563 (0.186) kg/kg 1.332 (0.375) Nm/kg

Genotyping platform Ilumina, OmniExpressExome Ilumina, Asian Screening Array Ilumina, Asian Screening Array

“Number of samples” is after quality control. s.d., standard deviation.

Fig. 1 | A genome-wide association analysis of knee extension strength in 3452
participants aged 60 years or older. aManhattan plot. X-axis: chromosomal
location. Y-axis: −log10 p-value for each genetic variant. Horizontal red line:
genome-wide significance (P < 5 × 10−8). Horizontal blue line: suggestive

genome-wide significance (P < 1 × 10−5). A locus with genome-wide
significance and a locus with suggestive genome-wide significance were identified on
chromosomes 10 and 11, respectively. b Q-Q plot for the analysis. The genomic
inflation factor (λGC) was 1.02.
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any bias and no apparent strong polygenic effects on the muscle strength in
lower limbs presumably due to the limited sample size in the current study.
A heritability calculated by LDSC was 8.9%, indicating a substantial con-
tribution of genetic components on the lower limb muscle strength.

A novel locus associated with knee extension strength
We identified a novel locus significantly associated with knee extension
strength (Fig. 1 and Table 2). The lead variant is rs10749438, an intronic
variant in TACC2 (transforming acidic coiled-coil-containing 2) located at
10q26 (Beta =−0.15,P = 4.2 × 10−8) (Fig. 2a andTable 2). The risk allele for
muscle weakness is allele A. We observed consistent associations of this
variant across the three data sets and no heterogeneity of association results
was observed (I2 = 0, Fig. 3). rs10749438 was positioned at enhancer-like
histone marks, H3K27ac in skeletal muscle according to the ENCODE
database25 and HaploReg (v4.1)26. A statistical fine-mapping analysis
revealed rs10749438 with the highest posterior probability (Supplementary
Table 1). TACC2 encodes a cytoskeleton-related protein27 that concentrates
at centrosomes throughout the cell cycle and is reported as a target of
myotonic dystrophy 1-associated splicing alterations28. Skeletal muscle
showed high TACC2 expression according to Genotype-Tissue Expression
project version 8 (GTEx v8)29 (Supplementary Fig. 7).

Since TACC2 was reported to be susceptible to transcriptional reg-
ulation effect of androgen receptor30 and our three data sets were female-
dominant, we conducted sex-specific analysis and observed the effect size
and direction of rs10749438 are consistent regardless of sex (Table 3 and
Supplementary Tables 2, 3). The age-stratified analysis also showed that
effect directions were consistent (Table 3 and Supplementary Table 4). We
further conducted analyses using a total of 173 subjects aged under 60 years
to evaluate whether this association was specific to older people or not
(Supplementary Fig. 8 and Supplementary Table 5). The analysis of the
participants aged under 60 years also showed a consistent trend of the
association (Table 3 and Supplementary Table 6). While the effect size
tended to be strong in the participants aged 75 years or older in comparison
with that aged 60 years or older, the trend was not held in subjects under 60
years. The meta-analysis revealed a further increased association of this
variant (P = 1.2 × 10−8, I2 = 0; Table 4 and Supplementary Fig. 9), suggesting
that the association might be observed in a general population.

Suggestive loci associated with knee extension strength
We also identified 17 suggestive loci (P < 1.0 × 10−5, Table 2). Among these
loci, rs1718074 in an intron of the dystrophin gene (DMD) located at
Xp21.2-p21.1 is themost noteworthy (Beta = 0.14,P = 2.9 × 10−6) (Table 2).
DMD is the disease gene for Duchenne muscular dystrophy and Becker
muscular dystrophy, both of which show progressive deterioration of
muscle tissue and resultant weakness31. The effect size and the effect
direction of rs1718074 were consistent between males and females (Sup-
plementary Tables 2 and 3).

rs6483495, an intronic variant ofMAML2 located at 11q21, showed the
borderline significant p-value (Beta =−0.14, P = 5.4 × 10−8) (Fig. 2b and
Table 2). The locus has not been reported in muscle-related GWASes.
Skeletal muscle does not highly expressMAML2. While we observed con-
sistent associations of this locus across the three data sets (I2 = 0, Table 2),
when we expanded the participants to those aged under 60 years, we
observed the opposite direction compared to the result of older participants
(Supplementary Table 6). These findings suggest that further studies are
necessary to confirm the association betweenMAML2 and knee extension
strength.

Evaluation of the variants identified in a GWAS of handgrip
strength
We further tested whether the variants associated with handgrip
strength15–17 showed associations in our dataset. Out of 170 variants asso-
ciated with three GWASes of handgrip strength, 132 were included in our
dataset, and 18 proxy variants were selected for the test based on the linkage
disequilibrium (LD) of Europeans. Among the 150 variants, 87 showed the

same direction of effect and a binomial test p-value was 0.03. Among the 87
variants, five showed an association of nominal statistical significance
(expected number: 4.35). These findings suggest that muscle strength of
upper and lower limbs may share a small part of genetic architecture.

Discussion
We conducted the GWAS of knee extension strength. There are a few
limitations to our study. First, the sample size is not large enough to detect
many genome-wide significant loci. Future studies with large sample sizes
would be necessary. Second, we used different devices to measure the knee
extension strength in the two cohorts; that is, one used isometric testing and
the other isokinetic testing. We believe that the impact of the difference of
the testings on the association is expected to be small since these testings are
reported to be highly correlated32. Their distributions were very consistent
(Supplementary Figs. 2, 3).

Between knee extension strength and handgrip strength, a poor to
moderate correlation has been reported9,33–35, which could explain their
substantial but relatively weak shared directions of effects. Accordingly, our
results suggest that only small fraction of genetic architecture is shared
betweenmuscle strengthofupperand lower limbs.While lower limbmuscle
strength is reported to be more strongly associated with sarcopenia than
handgrip strength9–11, most GWASes for muscle strength were based on
handgrip strength15,16. Thus, our identification of the genetic variants
associated with lower limb strength would shed light on the etiology of
sarcopenia.

We successfully identified the locuswith the genome-wide significance,
which contained a candidate gene,TACC2. The association was the same as
a meta-analysis with the random effect model (Beta =−0.148,
P = 4.2 × 10−8). We additionally investigated if there is a possible con-
founding effect of knee osteoarthritis on knee extensionmuscle strength by
using knee osteoarthritis as an additional covariate, but we found no con-
founding effect of knee osteoarthritis (Beta =−0.15, P = 3.7 × 10−8). To the
best of our knowledge, the present study is the first GWAS for lower limb
muscle strength that identified a significant locus. In line with our results, a
previous GWAS of muscle weakness based on handgrip strength in Eur-
opean elderly showed the consistent association between rs10749438 and
muscle weakness with nominal statistical significance (P = 0.037)17.We also
investigated if rs10749438 is associated with other sarcopenia-related traits
such as lean body mass36, frailty37, walking pace38, fatigue39, testosterone40

and IGF141 in theUKBiobank, which did not show any nominal significant
association. rs10749438 is located at enhancer-like histonemarks,H3K27ac
in skeletal muscle and TACC2 is highly expressed in skeletal muscle. While
the top posterior probability and overlapping with the enhancer region
suggest rs10749438 as a promising candidate of a causal variant, functional
follow-up is necessary to conclude this point. Regarding a responsible gene
in this association, using cell cultures from human embryonic muscle,
myotonic dystrophy 1-associated splicing alterations were significantly
enriched in TACC2which is one of cytoskeleton-related gene27,28. Although
the variants arenot an expression quantitative trait locus (eQTL) forTACC2
according to GTEx v829, there is a possibility that the variant’s functional
effect ismore context-dependent. In fact, sampling site ofmuscle inGTEx is
not quadriceps femoris muscle but gastrocnemius muscle. These findings
suggest thatTACC2 is a good candidate gene formuscle strengthand further
experimental validation using animal models will be needed. Another
possibility is that the variant regulates other distant genes,ATE1,NSMCE4A
and BTBD16. These genes are also candidate of causal genes for knee
extension strength. Additionally, there is a possibility that the variant’s
functional effect onTACC2 or another gene ismore context-dependent and
existing eQTL studies may not have detected such effects yet.

TACC2 belongs to the TACC protein family which involves in the
complex process of regulating microtubule dynamics during cell division42.
TACC genes lie within a chromosomal region associated with tumorigen-
esis. Mammalian TACC proteins, namely TACC1, TACC2 and TACC3
interact with microtubules, and control cell growth and differentiation
during cell division43. Several studies indicated high expression of TACC2
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was involved in tumorigenesis of a variety of cancers30,44–46. These findings
suggest TACC2 may function in muscle via modulating cell division. Fur-
ther studies would be necessary to clarify the role of TACC2 in muscle
strength and sarcopenia.

We also identified 17 suggestive loci including candidate causal var-
iants. While these variants are good candidates for further replication
analyses, we should be cautious of variantswith lowminor allele frequencies
due to possible inaccurate imputation compared with common variants.
That is another limitation of the study and future studies with larger dataset
will be needed to confirm the associations. We investigated if those sug-
gestive variants are associated with sarcopenia-related traits such as lean
body mass, frailty, walking pace fatigue, testosterone and IGF1 in the UK
Biobank. We did not find very consistent patterns of associations (Sup-
plementaryNote), suggesting that ancestrymatching forGWASand further
expansion of sample size for muscle strength is necessary.

In summary, we identified a novel locus associatedwith knee extension
strength. This finding provides insights into the genetic architectures
underlying muscle strength in lower limbs. It would be interesting to inte-
grate the current results with studies of sarcopenia in the future.

Methods
Shimane CoHRE study
This cross-sectional study is a part of the cohort study conducted by the
Center for Community-based Healthcare Research and Education in Shi-
maneUniversity (ShimaneCoHRE Study)19,20. ShimaneCoHRE Study is an

ongoing health examination for the community-dwelling people in Shi-
maneprefecture, Japan. It compliedwith all relevant ethical regulations. The
study protocol was approved by the Ethics Committee of Shimane Uni-
versity School ofMedicine.Written informedconsentwas obtained fromall
participants. Based ondifferent recruitment and genotyping terms, twodata
sets, Shimane 1st cohort (Set 1) and Shimane 2nd cohort (Set 2) were
obtained. The participants of Set 1 and Set 2 were analyzed separately for
those aged 60 years or older and those aged under 60 years. The char-
acteristics of the participants were shown in Table 1 and Supplementary
Table 5. The participants were all Japanese. We did not exclude any parti-
cipants with knee osteoarthritis in the study.

Bunkyo Health Study
BunkyoHealth Study is a prospective cohort study of over 10 years21, which
recruited older subjects aged 65–84 years living in Bunkyo-Ku, an urban
area in Tokyo, Japan. Among the 68 communities in Bunkyo-Ku, we
selected 13 communities based on probability proportionate to size sam-
pling.Weobtained thename and address of all residents aged 65–84 years in
the selected communities from residential registries. The exclusion criteria
were to have a pacemaker or defibrillator placement and diabetes mellitus
requiring insulin therapy. All participants provided written informed con-
sent. The details of the characteristics were shown in Table 1. The partici-
pants were all Japanese. We did not exclude any participants with knee
osteoarthritis in the study.

Phenotype
In Shimane CoHRE Study, knee extension strength was measured by using
the Quadriceps Training Machine (QTM) (QTM-05F, Alcare, Tokyo,
Japan). The device has a knee holding part corresponding to the knee joint
with approximately 30° flexion. Participants were asked to put somemuscle
as hard as possible for three seconds, and the maximum value that was
reached during that time period was recorded. Both legs were measured in
turn. We calculated relative knee extension strength as an average of mea-
surements of the right and left legs divided by weight. The average of
measurements was regressed and residualized by age and sex, and the
residuals were inverse-rank normalized and used as quantitative
phenotypes.

In Bunkyo Health Study (Set 3), knee extension muscle strength was
measured by using the BIODEX system 4 (BiodexMedical Systems, Upton,
New York, USA), which measures isokinetic knee muscle strength. To
measure a value close to the maximum extension muscle force, we adopted
the maximum torque at an angular velocity of 60°. As in Set 1 and Set 2, we

Fig. 2 | Regional plot. aThe significant locus with the lead variant (rs10749438) and (b) the suggestive locus with the lead variant (rs6483495) associated with knee extension
strength.

Fig. 3 | Forest plot of the lead variant (rs10749438). Consistent associations were
observed across the three datasets. META, the effect size of meta-analysis. Error bar,
95% confidence interval. Beta are shown in Table 2.
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calculated relative knee extension strength as an average ofmeasurements of
the right and left legs divided by weight. The average of measurements was
regressed and residualized by age and sex, and the residuals were inverse-
rank normalized and used as quantitative phenotypes.

Genotyping and quality control
We genotyped samples of Set 1 with the Illumina HumanOmniEx-
pressExome BeadChip and those of Set 2 and Set 3 with the Illumina Asian
Screening Array.

For quality control of samples, we excluded those with: (1) sex
inconsistency betweengenotype and clinical data, (2) genetically identical to
others (PI_HAT > 0.9, PI_HATwas based on identity by decent (IBD), i.e.,
P(IBD = 2)+ 0.5*(IBD = 1)), (3) sample call rate < 0.98, and (4) outliers
from East Asian clusters identified by PC analysis using genotypes in the
HAPMAP project. For quality control of genotypes, we excluded variants
meeting any of the following criteria: (1) call rate < 0. 99, (2)
Hardy–Weinberg equilibrium p < 1.0 × 10−6, (3) the allele frequency show
difference between the reference > = 6% comparedwith the reference panel.

Imputation
We utilized the 1000 Genomes Project Phase 3 [1KGP3v5; (May 2013,
n = 2504)] and 3256 in-house Japanese whole-genome sequence data
obtained from the Biobank Japan47 (JEWEL_3K) for imputation to achieve
better imputation accuracy for the Japanese population as previously
described48. In brief, samples were sequenced at high depth (15x, 30x) on
various platforms. The whole-genome sequencing data was processed,
following the standardized best practice method in Genome Analysis
Toolkit (GATK). In addition to the process of the best practice, we put
additional filters of approximate read depth and genotype quality before
variant quality score recalibration (VQSR). The variants atmulti-allelic sites
were removed from the combined reference panel by vcftools (version
0.1.14). We estimated the haplotypes by SHAPE IT (version 2.778) and
combined the data of the 1KG phase 3v5 and the BBJ by using
IMPUTE249,50. Quality control was performed with bcftools (version 1.3.1)
and vcftools (version 0.1.14). Variants at multi-allelic sites, monomorphic
sites and singletons were excluded. We performed pre-phasing using
EAGLE2.4.1 (https://alkesgroup.broadinstitute.org/Eagle/) to determine
the haplotypes.We imputed the genotype dosageswithminimac4 (v1.0.0)51.
After imputation, we excluded variants with an imputation quality of
Rsq < 0.3 andminor allele frequency<0.005. Imputationquality ofRsq is the
estimated value of the squared correlation between imputed genotypes and
true, unobserved genotypes.

GWAS and meta-analysis
We conducted GWAS using the fastGWA23 linear mixed model package
and used the top three PCs as covariates. We excluded variants with minor
allele frequencies <0.005. We conducted GWASes separately for three sets
and performed an inverse variance fixed-effects meta-analysis by using
METAL24. For the X chromosome, we performed GWAS in males and
females separately and meta-analyzed using METAL24. METAL also cal-
culates I2 which describes the percentage of variation across studies that is
due to heterogeneity rather than chance. We annotated the variants which
exceeded the significant threshold (P < 5 × 10−8) and the suggestive

threshold (P < 1 × 10−5) in the GWAS by using ANNOVAR52, HaploReg26

and ENCODE database25.

LDSC
We estimated the heritability of the knee extension strength GWAS result
using LDSC (version 1.0.0). We excluded variants in the human leukocyte
antigen region (chromosome 6: 26–34Mb). We further calculated herit-
ability z-scores and standarderrors (SEs) to assess the reliability ofheritability
estimation. The heritability is based on the variants in additive model53.

Age- and sex-stratified analyses
To investigate the effect of age in the associationof significant and suggestive
variants in the participants aged 60 years or older, we conducted age-
stratified analyses, including participants aged under 60 years and those
aged 75 years or older. Since the linearmixedmodel did not converge due to
the small sample size in these analyses, we performed a linear regression by
using PLINK 2.0 after excluding related individuals (PI_HAT > 0.25, Sup-
plementary Fig. 8). We also conducted sex-stratified analyses by using
PLINK 2.0 in the same manner. We showed the results of statistical power
analyses in Supplementary Fig. 10.

Bayesian statistical fine-mapping analysis
We performed statistical fine-mapping analysis using FINEMAP software
(version 1.3.1)54 to prioritize causal variants in susceptible loci. The FINE-
MAP computes a posterior probability of causality for each variant. We
ranked candidate putative causal variants in a descending order of their
posterior probabilities and created a 95% credible set of causal variants by
adding the posterior probabilities of the ordered variants until their
cumulative posterior probabilities reached 0.95. We used the default priors
and parameters in FINEMAP.

Evaluation of the variants identified in a GWAS of handgrip
strength
We investigated if 140 variants identified in the GWAS of handgrip
strength15 had the same direction of effect in our GWAS. Since our dataset
includes only 108 variants out of those variants, we used 12 highLDvariants
(r2 > 0.8) with other variants. We calculated LD based on 1KG European
ancestry data. We conducted a binomial test; 120 variants were tested and
0.5was the expected proportion of variantswith the samedirection of effect.

Statistics and reproducibility
We did not perform any statistical method to predetermine sample size
because we used all available samples we have tomaximize statistical power.
GWAS were performed by using fastGWA23 linear mixed model package
and used the top three PCs as covariates. Ameta-analysis was performed by
using METAL24. Significant threshold of the GWAS meta-analysis is
p ≤ 5 × 10−8 accounting for multiple testing. For the evaluation of the var-
iants identified in a GWAS of handgrip strength, we conducted binomial
test by using R (version 4.0.2).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Table 3 | Age and sex-stratified analyses of rs10749438

rsID Chr Position Gene Location Ref Alt Subjects N Freq Beta SE P-value

rs10749438 10 123810832 TACC2 intronic G A ≥60 y.o. 3452 0.706 −0.148 0.027 4.24E-08

male 1224 0.707 −0.131 0.045 3.67E-03

female 2017 0.705 −0.164 0.035 3.14E-06

<60 y.o. 173 0.687 −0.200 0.123 1.05E-01

≥75 y.o. 1296 0.700 −0.170 0.043 7.34E-05

male: male participants aged 60 year or older, female: female participants aged 60 years or older.
Chr chromosome, Ref reference allele, Alt alternative allele, N number of samples, Freq allele frequency for an alternative allele, Beta beta of an alternative allele, SE standard error, y.o. years old.
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Data availability
The GWAS summary statistics generated in this study is available in the
JENGER database and GWAS catalog (http://ftp.ebi.ac.uk/pub/databases/
gwas/summary_statistics/GCST90319001-GCST90320000/
GCST90319502). The remaining data are available with in the article,
Supplementary Information and Source Data file. The source data behind
the graphs in the paper can be found in Supplementary Data 1.

Code availability
The code of statistical analyses is available on GitHub (URL: https://github.
com/Shuji2022/Code) and is also archived inZenodo (URL: https://doi.org/
10.5281/zenodo.10675274)55.
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