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ABSTRACT. A converse of Schwarz’s inequality was studied by Bellman [2]. He
gave an explicit bound for a continuous case. We aim to give a bound of Schwarz’s
inequality for the discrete case. Our method is to use the ratio of the value of
biharmonic Green’s functions.

1. INTRODUCTION

A converse of Schwarz’s inequality was studied by Bellman [2] and other types
of results are by many authors, for example, [5] and [4]. Actually, Bellman showed
the following.

Theorem 1.1 (Bellman). Let u and v be concave functions on the interval [0, 1]
with [} u(z)?de = fol v(z)?dz = 1 and u(0) = u(1) = v(0) = v(1) = 0. Then
fol u(x)v(z)de > 1/2.

Our aim is to obtain a discrete version of the above. Namely, we study some
properties of the discrete biharmonic Green’s functions and give a bound for the
inequality by an elementary calculus.

More precisely, let N' = {X,Y, K,r} be a finite network which is connected and
has no self-loops. Denote by X the set of nodes, by Y the set of arcs, by r the
resistance, which is a strictly positive function on Y, and by K(z,y) the node-
arc incident matrix as in [3]; i.e., K is a function defined on X x Y such that
K(z,y) = —1 if z is the initial node of y; K(z,y) = 1 if x is the terminal node
of y; K(x,y) = 0 otherwise. Let L(X) (L(Y) resp.) be the set of all real-valued
functions on X (Y resp.). As for the discrete potential theory, we refer to Anandam

[1].
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2 H. KURATA AND M. YAMASAKI

Let Xo € X and call a node in X \ Xy a boundary node. For v € L(X), we
define the Laplacian Au by

yey zeX
Denote by U the set of u € L(X) such that

Au(z) <0on Xy, u(z)=0o0n X \ X, Z u(z)? = 1.
z€Xo
Our problem is to find the minimum of »_ . u(z)v(x) for u,v € U. This is a
discrete type of the converse to Schwarz’s inequality studied in [2].

The condition Au(z) < 0 on X, implies that u is superharmonic on X in the
discrete potential theory. Let g,(x) be the Green’s function of A/ with pole at
a € Xy, ie., go(r) = 0 on X \ Xy and Ag,(r) = —€,(z) on Xo, where ¢,(a) = 1
and €,(x) = 0 if x # a. It is easily seen that every u € U is uniquely represented
as Green’s potential of y = —Au:

u(e) =Y g(z)p(2);
z€Xg
see Lemma 2.5 for the proof. For u,v € U, let u = —Awu and v = —Av. We have

Y ou@o(a) =YY galx)ula) Y golx)v(b)

zeX rzeX a€ Xy beXo
=3 waw(d)Y ] gulw)gs().
a€Xg beXy reX

Let us put

Ga(b) =D gal®) ()
rzeX
and call it the biharmonic Green’s function of N with pole at a. Then we see that

S ulau@) = 3 3 aubyulayw(b) = Q(u.v)

is the biharmonic Green’s mutual energy of y and v.

Our problem is reduced to find the minimum of Q(u, ) subject to u,v > 0 and
Q(u, 1) = Q(v,v) = 1. This setting is the same as in [2]. Following the method of
Bellman, we arrive at the following:

Theorem 1.2. For u,v € U,

w(x)v(z min 9a(0) ca,b 0/ -
;E;( (#)olz) 2 {\/Qa(a>\/%<b)’ ’ EX}

Our aim is to estimate the value of the right-hand side. We show the above
theorem in Section 2. We shall estimate the ratio ¢,(b)?/q.(a)g(b) in Sections 3
and 4 for the finite linear network. As an application of the results, we give in
Section 5 an explicit bound of the converse of Schwartz’s inequality for discrete
concave sequences.



A CONVERSE OF SCHWARZ’S INEQUALITY 3

2. DISCRETE BELLMAN’S THEOREM

First, we remind some properties of harmonic functions and Green’s functions.
Let {X,Y,K,r} be a finite network and let Xy € X. We say that u € L(X)
is harmonic at x € X if Au(xz) = 0. The following result is well-known as the
maximum principle.

Lemma 2.1. If u is harmonic on Xy and u =0 on X \ Xg, then u=0 on X.

For u,v € L(X), we define the discrete derivative du, the Dirichlet mutual sum
D(u,v), and the Dirichlet sum D(u) by

du(y) = —r(y) ™" Y K(z,y)u(z),

D(u,v) =Y r(y)[du(y)][do(y)],
D(u) = D(u,u) =Y r(y)[du(y)]*.

Since N is a finite network, we can easily see by the change of summation that

Lemma 2.2. Foru,v € L(X),

D(u,v) = = Y [Au(@)o(z) = = Y ulz)[Av(x)].

zeX reX

Let g, be the Green’s function with pole at a € Xg; i.e.,
Ag, = —€, on X and go =0on X \ Xo.

Lemma 2.3. For each a € Xy, there exists a unique Green’s function. Moreover,
9a(b) = gp(a) for a,b € Xy.

Proof. 1t is easy to see the contraction property, which means D(|u|) < D(u)
and D(min(u,1)) < D(u) for uw € L(X). Let us put Loy(X) = {u €
L(X);u=0o0n X\ Xo}. We know that Lo(X) is a Hilbert space with respect
to the inner product D(-,-) and that if u,,u € Lo(X) and D(u, —u) — 0 as
n — 0o, then u,(z) — u(x) as n — oo for every x € X.

For a € X, we consider the following extremum problem:

d(a,B) = min{D(u);u € Lo(X),u(a) = 1}.
We can easily see that the minimizing sequence {u,} is a Cauchy sequence. Thus
there exists u* € Lo(X) such that D(u, — u*) — 0 as n — co. By the standard
variational technique, D(u*, f) = 0 for evey f € Lo(X) with f(a) = 0. We can
conclude that d(a, B) = D(u*), Au*(z) = 0 for x # a, and Au*(a) = —D(u").
Let us put

0 = Dy

By the contraction property, 0 < u* < 1 on X. We have 0 < g,(x) < ga(a) on X
and Ag,(z) = —e,(x) on X. Namely, g, satisfies the properties of Green’s function
with pole at a.
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Let ¢/ be another Green’s function of N with pole at a and let f = g, — ¢..
Then f is harmonic on Xy and f = 0 on X \ Xy. Lemma 2.1 shows f = 0 on X.
This means g,(z) = g, (x) on X.

Now we shall prove that g,(b) = gs(a) for a,b € Xy. In the above discussion, we
see that for any v € Lg(X)

D(v,g) = = Y v(z)[~Aga(2)] = v(a).

rzeX
Taking v = g3, we have D(gy, 9.) = gp(a). Since D(gy, 94) = D(ga, g»), we conclude
that g, (b) = gp(a). O
Let

U= {u € L(X); Au(z) <0 on Xo, u(z) =0 on X \ Xo, Z u(z)? = 1} .
z€Xo
Let
=Y @)
z€Xo
for a,b € Xy. We introduce an auxiliary lemma.

Lemma 2.4 ([2]). Let Zﬁvjzl a;;T;ix; be a positive definite quadratic form and let

b; > 0. Suppose S a;;xix; = 1. Then

i,7=1

: b; .
;bixizmm{\/;_“;lSZSN} for ;= 0;
the minimum is attained at the point of the form (xy,...,x;...,xN) =

0,...,1/\/ai,...,0) for some i.
Lemma 2.5. Let u € U and let p = —Au. Then

= gul@)ul@)

z€Xo
for a € X,.

Proof. Let a € Xy. Using Lemmas 2.2 and 2.3 we have

Y al@)p(@) = = Y ga(2)Au(z) = =Y gu(2)Au(z) = = Y u(x)Aga(z)

z€Xo rx€Xo rzeX rzeX
= — Z 2)Ag.(x) = Z u(z)eqa(x) = ula). O
rx€Xo zeXo

We show Theorem 1.2.

Proof of Theorem 1.2. Let n = —Au and v = —Av. Then u(a) = ) go(z)p(z)
and v(a) = Y go(z)v(z) by Lemma 2.5. We have

L= u(@?=) (Z ga(ﬂﬂ)u(ﬂﬂ)) = Y du®)u(@)u(b).

aeXo acXo z€Xp a,be Xy
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Under this condition, Lemma 2.4 shows

S ule(@) = 3 (@) 3 glaula) = 3 (Z ga<x>v<x>) (a)

xeXg reXp a€ Xy acXp z€Xo
i Seex Ge()(w)
acXo qa<a>

Next, we have

1= Y o= (Zgb<m>u<x>> = Y a2

beXy be Xy z€Xp x,2€ X0

Under this condition, Lemma 2.4 shows

 qa(b)
a = o (b)v(b) = w(D)v(b) >

D ga(@(@) = Y gal®) Y gu(b)(b) = > qu(b)r(b) D)

z€Xo z€Xo beXy beXg
for each a € Xy. Therefore

: qa(b)
w(z)v(r) > min
2 X0 \/ga(a)y/ao(D)

as required. O

3. THE FINITE LINEAR NETWORK WITH TwO BOUNDARY NODES

Let n be an integer with n > 2. Let N' = {X,Y, K,r} be a finite network such
that X = {zo,z1, -+, 2.}, Y ={vy1, - ,un}, and K(z;_1,vy;) = —1, K(z;,y;) = 1
for 1 <i <n, and K(x,y) = 0 for any other pair (x,y). We take r(y) =1 on Y.
Let Xo = {x1,...,2Z,_1}. In this case, the Laplacian Au is given by

Au(xg) = u(xp_1) + u(rps1) — 2u(xy) for 0 < k < m;
Au(zg) = u(zr) — u(zo);
Au(zy) = w(Tn_1) — u(zy,)

(

defined by the conditions:
9z, (o) = gu,, () =0, Ag,, (xr) = —€,, (x) for 0 < k < n.
Proposition 3.1. The Green’s function g.,, (xr) is given by ¢.,, (o) = Gz, (xn) =0,

G (T1) = <1 — %) k for 0 <k <m,

G (T1) = (1—%)771 form+1<k<n.
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Proof. By Lemma 2.3 it suffices to show that the function given here satisfies the
above equations. In case 0 < k < m or m < k < n, we see easily Ag, (ry) =0. In
case k = m, we have

:(1—%)(7’”—1)4—(1—m;1)m—2<1—%>m:—1. 0

For 0 < I,m < n, let us determine the biharmonic Green’s function g¢,, (z;)
defined by

qa:m ZL‘l E gacm Tk ga:l xk

Note that ¢, (7)) = ¢z, (Tm)-

Theorem 3.2. Let 0 <l <m < n. Then
I(n—m)(2mn+1—m?—[?)
6n '

dz (xm) =

Proof. Let us put

k=1 k=1
By definition, we have
n—1
Gy (Tim) ngl k) Y (Th) Z o (@) G () + D Gy (0) G (1)
k=141 k=m+1

Proposition 3.1 shows that

igxl(xk)gzm(xk) - i (1 - %) b(1- )= 2 mm,,
k=1

k=1
m i .
D G (@) g (18) = Y <1 - ﬁ> l (1 - E) k
k=Il+1 k=I+1
In—m) <~ ., I(n—m) <&
I Z B+ Z k
k l+1 k-:l+1
l(n —m) I(n —m)
“ A, - a s g gy
n—1 B n—1 ' k) l ) k) B lm n—1 k ,
Z ng(xk)gxm('rk)— Z _E _E 771_F Z (n_ )
k=m+1 k=m+1 k=m-+1
Im n—m—1 X lmA
= F k* = T n—-m—1
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Thus we have

n—m l(n—m) Im [(n—m)

4z, (xm) - Al - FAn—m—l + (Bm - Bl)

Using Ay = k(k+1)(2k +1)/6 and By, = k(k + 1)/2, we have

n ;mAz = l(n6—nm) (I+1)(20 4 1);
—l(nn_zm)Am - —W(m +1)(2m + 1);
gAn me1 = ( m) —m—1)(2n—-2m—1)

————(
_ tm{n—m <2n2—4mn—3n+(m+1)(2m+1));

(B - B) = W(m(m +1) =1 +1))
_ l(n—n;?l(m—l)<m+l+1).

Therefore

l(n—m)

Qo () = ((+ 1)@+ 1)+ m(2n = dm = 3) + 3(m — D(m +1+1))

I(n —
= (n6—nm)(2mn+ 1 —m? —1%),

which is the desired formula. O

We shall find the minimum of

4z, (m)?
e (xl)qscm (Im)

(3.3) A(l,m) =

for 0 <l,m < n.

Lemma 3.4. For a fized I, A(l,m) decreases as m increases in | < m < n. In
particular, A(l,m) > A(l,n — 1) holds for | < m < n.

Proof. Theorem 3.2 shows that for 0 <l <m <n

P (n—m)2nm+1-—m?—1?)?3

Allym) = 614z, (1) m(2nm + 1 — 2m2)

Let
(n—t)(2nt +1—t* — [?)?
t(2nt + 1 — 2t2)

ft) =
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It suffices to show that f(t) is a decreasing function in [ < ¢ < n. We have
1 2(2n — 2t) 1 2n — 4t

Liog £(2) 4
— lo — -
a8 n—t omt+1——12 t ont+1_op

B 2n 1 1 4(n —1t) 4(n —1t)

- (2m&+1—2t2_n—t_¥>+(2m+1—t2—12_2nt+1—2t2)
B 2n n 4(n —t) 4(n —1t)

B (Qt(n—t)+1_t(n—t)>+<2nt+1—t2—l2_2nt+1—2t2)'

Since 2t(n—t)+1 > 2t(n—t) and 2nt +1—1*—1* > 2nt+1—2¢*, we know that the
right-hand side of the above is negative, which means that f(t) is decreasing. [

Lemma 3.5. A(l,n — 1) increases as | increases in 0 < | < n. In particular,
A(l,n—1) > A(l,n—1) for0 <l < n.

Proof. Theorem 3.2 shows that for 0 <l <n
(n—m—-1)2n(n—1)4+1—(n—-1)*=101) I(n*-1?)

QJPZ (:L‘n—1> - 6n - 6’n, b
so that
1 I(n—1 1)?
Allyn—1) = (n=On+1"
6nqs, ,(Tn_1) 2nl+1— 202
Let
t(n —t)(n+1)?
o s
2nt+1 -2t
It suffices to show that g(t) is an increasing function in 1 <t < n — 1. We have
d | ) 1 1 " 2 2n — 4t
— 1o — — .
at B T T T Tt 12

B 1+ 1 om N 4t N 2 2
O\t n—t 2nt+1-— 22 nt+1—2t2 n+t n—t

B n 2n n 4t 4t
C\t(n—t) 2(n—t)+1 2nt+1—2t2 n2—12)°

Since 2t(n —t) < 2t(n —t) + 1 and

2nt+1 -2t — (0> —t*) = —(n— 1) +1 <0,

we know that the right-hand side of the above is positive, which means that g(t)
is increasing. I

We have

Theorem 3.6. For 0 < [l,m < n, the following inequality holds:

qxz(xm)Q S 4z, (xn—1)2 _ (n+ 1)2
Qe (T1) G (Trm) Gy (T1) G, (Tn1) (2n —1)*
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Proof. Since ¢, (Tm) = qa,, (), we may assume that 0 < I < m < n. The first
inequality is shown by Lemmas 3.4 and 3.5. Theorem 3.2 shows that

2nin—1)+1—(n—-12%*-1 n*—-1

Gz (xn—l) = 6n - 6n
_(n-)@n-1)
(:Z$1 (xl) - 6n )
(n—1)(2n —1)
an,1<xn—1) = 6n >
which lead to the last equality. O

4. THE FINITE LINEAR NETWORK WITH ONE BOUNDARY NODE

Let n be an integer with n > 2. Let N = {X,Y, K,r} be a finite network such
that X = {550,901, T 7%}, Y = {yb T ,yn}, and K(iﬂi—byz‘) = -1, K(%‘,yi) =1
for 1 < i < n, and K(x,y) = 0 for any other pair (z,y). We take r(y) = 1 on
Y. Let Xog = {z1,...,2,}. The Green’s function g, (xy) of N with pole at z,,
(0 < m < n) is the function defined by the conditions:

9a,, (z0) =0, Ag,, (zr) = —€,, () for 0 < k <n.
We can show the following similar to Proposition 3.1.
Proposition 4.1. The Green’s function g, (zx) is given by g.,, (zo) = 0,
Gun (k) =k for 0 <k <m,
Go, (xp) =m  form+1<k<n.
Theorem 4.2. Let 0 <l <m <n. Then
[(6mn —3m?* +3m — > + 1)
6

qml(xm) =

Proof. By definition, we have

G, (Tm) ngl Tk) Yo (Th) + Z 92, (Tk) Gz, () Z 9o, (T1) 9z, (T1)

= k=Il+1 k=m+1
:Zk2+ Z Ik + Z Im
k=1 k=141 k=m-+1

_ éz(z 1)L+ 1) + %l(m(m F0) U+ D) + Il —m)

[(6mn —3m* +3m —1* + 1)
6
as desired. 0

Let A(l,m) be the value as defined in (3.3).

Lemma 4.3. For a fived I, A(l,m) decreases as m increases in | < m < n. In
particular, A(l,m) > A(l,n) holds forl <m < n.
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Proof. Theorem 4.2 shows that for 0 <l <m <mn
> (6mn—3m?+3m—1*+1)?

A pu—
(L,m) 6qz, (x1) m(6mn —4m? 4+ 3m + 1)

Let
£(t) = (6nt — 3t* + 3t — [> 4+ 1)?
~ t(6nt — 42+ 3t + 1)
It suffices to show that f(t) is a decreasing function in [ < ¢ < n. We have

ilogf(t): 2(6n — 6t + 3) 1 6n—8t+3
dt 6nt —3t2+3t—12+1 t 6nt—4t2+3t+1
B 6(2n — 2t + 1) 6(2n — 2t + 1)
B <6nt—3t2+3t—l2+1_6nt—4t2+3t+1>
6n — 4t + 3 6n —4t+ 3
(6me—4t2+3t+1_t(ﬁn—4t+3))'

Since 6nt —3t*+ 3t —12+1 > 6nt — 4t +3t+1 and 6nt — 4>+ 3t +1 > t(6n—4t+3),
we know that the right-hand side of the above is negative, which means that f(t)
is decreasing. 0

>

Lemma 4.4. A(l,n) increases as | increases in 0 < I < n. In particular, A(l,n)
A(L,n) for0 <l <n.
Proof. Theorem 4.2 shows that for 0 <[ <n
1 I(Bn*—1*+3n+1)>
6qy, (x,) 6ln —412 431+ 1

A(l,n) =

Let
(t) = t(3n* —t* + 3n + 1)?
T = Tt — a2y 3t +1
It suffices to show that g(t) is an increasing function in 1 <t < n. We have

1 4t 6n — &t + 3

d
Loz g(t) = = — _
T A i e S Rl v VST

B At At
B (6nt—4t2+3t+1 _3n2—t2+3n+1>
6n —4t + 3 6n — 4t + 3
(t(6n—4t+3) _6nt—4t2+3t+1)'

Since
(6nt —4t* +3t+1) — (3n* —t* +3n+1) = —3n® + 6nt — 3t> — 3n + 3t
=-3n—t)(n—t+1)<0

and t(6n — 4t + 3) — (6nt — 4t> + 3t + 1) < 0, we know that the right-hand side of
the above is positive, which means that g(¢) is increasing. O

We have
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Theorem 4.5. For 0 < [l,m < n, the following inequality holds:
4z (mm)Q > 4z, (-rn)Q . 3(” + 1)

Qe (T0) Gy (Tm) — Gy (¥1)q, (20) 220+ 1)
Proof. Since ¢, () = qu,,(71), we may assume that 0 < [ < m < n. The first
inequality is shown by Lemmas 4.3 and 4.4. Theorem 4.2 shows that
3 +3n _ n(n+1)
6 2 ’

Gy (T0) =

le(xl):n;
n(2n® +3n +1 n2n+ 1(n+1
o) = P2EHIEY _ non o+ D)

which lead to the last equality. 0

5. AN APPLICATION

As stated in the introduction, we study the converse of Schwarz’s inequality.
A sequence {ug;0 < k < n} is called concave if 2uy > wugp_1 + ugyy for every
ke{l,...,n—1}

Theorem 5.1. Let o, = \/6/(n(n +1)(2n +1)).

(i) Let {ur;0 < k < n} and {v,;0 < k < n} be concave sequences of real-
numbers such that ug = v = u, = v, = 0 and

n—1 n—1
E uj = g vi =1.
k=1 k=1

Then
n—1
n—+1
5.2 >
(5-2) ;“’“U’“—zn—1

Let up = ap_1(n—k) fork > 1 andug = 0. Let vy = apy_1k fork <n-—1
and v, = 0. Then {ux} and {vy} satisfy the above conditions and hold the
equality in (5.2).

(i1) Let {ug;0 < k < n} and {v,;0 < k < n} be concave sequences of real-
numbers such that ug = vg = 0 and

i ui = i vg =1.
k=1 k=1
Then

= [3(n+1)

Let u, = 1/y/n for k > 1 and ug = 0. Let vy = ap k for k < n. Then
{ug} and {v} satisfy the above conditions and hold the equality in (5.3).
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Proof. To prove (i) we define two functions u and v by u(zy) = ug and v(zg) = vy.
Also we define N = {X,Y, K,r} and Xog = {z1,...,2,_1} as those in Section 3.
Then u,v € U. By Theorems 1.2 and 3.6, we have

qx1 (xn 1) o n + 1

171 \/q:tnlxn 1 2TL—]_

Z et = Ve (

It is easy to see the latter part.
Similarly Theorems 1.2 and 4.5 show (ii). O
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