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Abstract. A converse of Schwarz’s inequality was studied by Bellman [2]. He
gave an explicit bound for a continuous case. We aim to give a bound of Schwarz’s
inequality for the discrete case. Our method is to use the ratio of the value of
biharmonic Green’s functions.

1. Introduction

A converse of Schwarz’s inequality was studied by Bellman [2] and other types
of results are by many authors, for example, [5] and [4]. Actually, Bellman showed
the following.

Theorem 1.1 (Bellman). Let u and v be concave functions on the interval [0, 1]

with
∫ 1

0
u(x)2 dx =

∫ 1

0
v(x)2 dx = 1 and u(0) = u(1) = v(0) = v(1) = 0. Then∫ 1

0
u(x)v(x) dx ≥ 1/2.

Our aim is to obtain a discrete version of the above. Namely, we study some
properties of the discrete biharmonic Green’s functions and give a bound for the
inequality by an elementary calculus.

More precisely, let N = {X,Y,K, r} be a finite network which is connected and
has no self-loops. Denote by X the set of nodes, by Y the set of arcs, by r the
resistance, which is a strictly positive function on Y , and by K(x, y) the node-
arc incident matrix as in [3]; i.e., K is a function defined on X × Y such that
K(x, y) = −1 if x is the initial node of y; K(x, y) = 1 if x is the terminal node
of y; K(x, y) = 0 otherwise. Let L(X) (L(Y ) resp.) be the set of all real-valued
functions on X (Y resp.). As for the discrete potential theory, we refer to Anandam
[1].
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Let X0 ⊊ X and call a node in X \ X0 a boundary node. For u ∈ L(X), we
define the Laplacian ∆u by

∆u(x) = −
∑
y∈Y

K(x, y)r(y)−1
∑
z∈X

K(z, y)u(z).

Denote by U the set of u ∈ L(X) such that

∆u(x) ≤ 0 on X0, u(x) = 0 on X \X0,
∑
x∈X0

u(x)2 = 1.

Our problem is to find the minimum of
∑

x∈X0
u(x)v(x) for u, v ∈ U. This is a

discrete type of the converse to Schwarz’s inequality studied in [2].
The condition ∆u(x) ≤ 0 on X0 implies that u is superharmonic on X0 in the

discrete potential theory. Let ga(x) be the Green’s function of N with pole at
a ∈ X0, i.e., ga(x) = 0 on X \ X0 and ∆ga(x) = −ϵa(x) on X0, where ϵa(a) = 1
and ϵa(x) = 0 if x ̸= a. It is easily seen that every u ∈ U is uniquely represented
as Green’s potential of µ = −∆u:

u(x) =
∑
z∈X0

gz(x)µ(z);

see Lemma 2.5 for the proof. For u, v ∈ U, let µ = −∆u and ν = −∆v. We have∑
x∈X

u(x)v(x) =
∑
x∈X

∑
a∈X0

ga(x)µ(a)
∑
b∈X0

gb(x)ν(b)

=
∑
a∈X0

∑
b∈X0

µ(a)ν(b)
∑
x∈X

ga(x)gb(x).

Let us put

qa(b) =
∑
x∈X

ga(x)gb(x)

and call it the biharmonic Green’s function of N with pole at a. Then we see that∑
x∈X

u(x)v(x) =
∑
a∈X

∑
b∈X

qa(b)µ(a)ν(b) =: Q(µ, ν)

is the biharmonic Green’s mutual energy of µ and ν.
Our problem is reduced to find the minimum of Q(µ, ν) subject to µ, ν ≥ 0 and

Q(µ, µ) = Q(ν, ν) = 1. This setting is the same as in [2]. Following the method of
Bellman, we arrive at the following:

Theorem 1.2. For u, v ∈ U,∑
x∈X

u(x)v(x) ≥ min

{
qa(b)√

qa(a)
√
qb(b)

; a, b ∈ X0

}
.

Our aim is to estimate the value of the right-hand side. We show the above
theorem in Section 2. We shall estimate the ratio qa(b)

2/qa(a)qb(b) in Sections 3
and 4 for the finite linear network. As an application of the results, we give in
Section 5 an explicit bound of the converse of Schwartz’s inequality for discrete
concave sequences.
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2. Discrete Bellman’s Theorem

First, we remind some properties of harmonic functions and Green’s functions.
Let {X,Y,K, r} be a finite network and let X0 ⊊ X. We say that u ∈ L(X)
is harmonic at x ∈ X if ∆u(x) = 0. The following result is well-known as the
maximum principle.

Lemma 2.1. If u is harmonic on X0 and u = 0 on X \X0, then u = 0 on X.

For u, v ∈ L(X), we define the discrete derivative du, the Dirichlet mutual sum
D(u, v), and the Dirichlet sum D(u) by

du(y) = −r(y)−1
∑
x∈X

K(x, y)u(x),

D(u, v) =
∑
y∈Y

r(y)[du(y)][dv(y)],

D(u) = D(u, u) =
∑
y∈Y

r(y)[du(y)]2.

Since N is a finite network, we can easily see by the change of summation that

Lemma 2.2. For u, v ∈ L(X),

D(u, v) = −
∑
x∈X

[∆u(x)]v(x) = −
∑
x∈X

u(x)[∆v(x)].

Let ga be the Green’s function with pole at a ∈ X0; i.e.,

∆ga = −ϵa on X0 and ga = 0 on X \X0.

Lemma 2.3. For each a ∈ X0, there exists a unique Green’s function. Moreover,
ga(b) = gb(a) for a, b ∈ X0.

Proof. It is easy to see the contraction property, which means D(|u|) ≤ D(u)
and D(min(u, 1)) ≤ D(u) for u ∈ L(X). Let us put L0(X) = {u ∈
L(X);u = 0 on X \X0}. We know that L0(X) is a Hilbert space with respect
to the inner product D(·, ·) and that if un, u ∈ L0(X) and D(un − u) → 0 as
n → ∞, then un(x) → u(x) as n → ∞ for every x ∈ X0.

For a ∈ X0, we consider the following extremum problem:

d(a,B) = min{D(u);u ∈ L0(X), u(a) = 1}.
We can easily see that the minimizing sequence {un} is a Cauchy sequence. Thus
there exists u∗ ∈ L0(X) such that D(un − u∗) → 0 as n → ∞. By the standard
variational technique, D(u∗, f) = 0 for evey f ∈ L0(X) with f(a) = 0. We can
conclude that d(a,B) = D(u∗), ∆u∗(x) = 0 for x ̸= a, and ∆u∗(a) = −D(u∗).
Let us put

ga(x) =
u∗

D(u∗)
.

By the contraction property, 0 ≤ u∗ ≤ 1 on X. We have 0 ≤ ga(x) ≤ ga(a) on X
and ∆ga(x) = −εa(x) on X. Namely, ga satisfies the properties of Green’s function
with pole at a.
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Let g′a be another Green’s function of N with pole at a and let f = ga − g′a.
Then f is harmonic on X0 and f = 0 on X \X0. Lemma 2.1 shows f = 0 on X.
This means ga(x) = g′a(x) on X.

Now we shall prove that ga(b) = gb(a) for a, b ∈ X0. In the above discussion, we
see that for any v ∈ LB(X)

D(v, ga) = −
∑
x∈X

v(x)[−∆ga(x)] = v(a).

Taking v = gb, we have D(gb, ga) = gb(a). Since D(gb, ga) = D(ga, gb), we conclude
that ga(b) = gb(a). □

Let

U =

{
u ∈ L(X);∆u(x) ≤ 0 on X0, u(x) = 0 on X \X0,

∑
x∈X0

u(x)2 = 1

}
.

Let
qa(b) =

∑
x∈X0

ga(x)gb(x)

for a, b ∈ X0. We introduce an auxiliary lemma.

Lemma 2.4 ([2]). Let
∑N

i,j=1 aijxixj be a positive definite quadratic form and let

bi ≥ 0. Suppose
∑N

i,j=1 aijxixj = 1. Then

N∑
i=1

bixi ≥ min

{
bi√
aii

; 1 ≤ i ≤ N

}
for xj ≥ 0;

the minimum is attained at the point of the form (x1, . . . , xi, . . . , xN) =
(0, . . . , 1/

√
aii, . . . , 0) for some i.

Lemma 2.5. Let u ∈ U and let µ = −∆u. Then

u(a) =
∑
x∈X0

gx(a)µ(x)

for a ∈ X0.

Proof. Let a ∈ X0. Using Lemmas 2.2 and 2.3 we have∑
x∈X0

ga(x)µ(x) = −
∑
x∈X0

ga(x)∆u(x) = −
∑
x∈X

ga(x)∆u(x) = −
∑
x∈X

u(x)∆ga(x)

= −
∑
x∈X0

u(x)∆ga(x) =
∑
x∈X0

u(x)εa(x) = u(a). □

We show Theorem 1.2.

Proof of Theorem 1.2. Let µ = −∆u and ν = −∆v. Then u(a) =
∑

x ga(x)µ(x)
and v(a) =

∑
x ga(x)ν(x) by Lemma 2.5. We have

1 =
∑
a∈X0

u(a)2 =
∑
a∈X0

(∑
x∈X0

ga(x)µ(x)

)2

=
∑

a,b∈X0

qa(b)µ(a)µ(b).
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Under this condition, Lemma 2.4 shows∑
x∈X0

u(x)v(x) =
∑
x∈X0

v(x)
∑
a∈X0

gx(a)µ(a) =
∑
a∈X0

(∑
x∈X0

ga(x)v(x)

)
µ(a)

≥ min
a∈X0

∑
x∈X0

ga(x)v(x)√
qa(a)

.

Next, we have

1 =
∑
b∈X0

v(b)2 =
∑
b∈X0

(∑
x∈X0

gb(x)ν(x)

)2

=
∑

x,z∈X0

qx(z)ν(x)ν(z).

Under this condition, Lemma 2.4 shows∑
x∈X0

ga(x)v(x) =
∑
x∈X0

ga(x)
∑
b∈X0

gx(b)ν(b) =
∑
b∈X0

qa(b)ν(b) ≥ min
b∈X0

qa(b)√
qb(b)

for each a ∈ X0. Therefore∑
x∈X0

u(x)v(x) ≥ min
a,b∈X0

qa(b)√
qa(a)

√
qb(b)

as required. □

3. The Finite Linear Network with Two Boundary Nodes

Let n be an integer with n ≥ 2. Let N = {X,Y,K, r} be a finite network such
that X = {x0, x1, · · · , xn}, Y = {y1, · · · , yn}, and K(xi−1, yi) = −1, K(xi, yi) = 1
for 1 ≤ i ≤ n, and K(x, y) = 0 for any other pair (x, y). We take r(y) = 1 on Y .
Let X0 = {x1, . . . , xn−1}. In this case, the Laplacian ∆u is given by

∆u(xk) = u(xk−1) + u(xk+1)− 2u(xk) for 0 < k < n;

∆u(x0) = u(x1)− u(x0);

∆u(xn) = u(xn−1)− u(xn).

The Green’s function gxm(xk) of N with pole at xm (0 < m < n) is the function
defined by the conditions:

gxm(x0) = gxm(xn) = 0, ∆gxm(xk) = −ϵxm(xk) for 0 < k < n.

Proposition 3.1. The Green’s function gxm(xk) is given by gxm(x0) = gxm(xn) = 0,

gxm(xk) =
(
1− m

n

)
k for 0 < k ≤ m,

gxm(xk) =

(
1− k

n

)
m for m+ 1 ≤ k < n.
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Proof. By Lemma 2.3 it suffices to show that the function given here satisfies the
above equations. In case 0 < k < m or m < k < n, we see easily ∆gxm(xk) = 0. In
case k = m, we have

∆gxm(xm) = gxm(xm−1) + gxm(xm+1)− 2gxm(xm)

=
(
1− m

n

)
(m− 1) +

(
1− m+ 1

n

)
m− 2

(
1− m

n

)
m = −1. □

For 0 < l,m < n, let us determine the biharmonic Green’s function qxm(xl)
defined by

qxm(xl) =
n∑

k=1

gxm(xk)gxl
(xk).

Note that qxm(xl) = qxl
(xm).

Theorem 3.2. Let 0 < l ≤ m < n. Then

qxl
(xm) =

l(n−m)(2mn+ 1−m2 − l2)

6n
.

Proof. Let us put

Al =
l∑

k=1

k2, Bl =
l∑

k=1

k.

By definition, we have

qxl
(xm) =

l∑
k=1

gxl
(xk)gxm(xk) +

m∑
k=l+1

gxl
(xk)gxm(xk) +

n−1∑
k=m+1

gxl
(xk)gxm(xk).

Proposition 3.1 shows that

l∑
k=1

gxl
(xk)gxm(xk) =

l∑
k=1

(
1− l

n

)
k
(
1− m

n

)
k =

(n− l)(n−m)

n2
Al;

m∑
k=l+1

gxl
(xk)gxm(xk) =

m∑
k=l+1

(
1− k

n

)
l
(
1− m

n

)
k

= − l(n−m)

n2

m∑
k=l+1

k2 +
l(n−m)

n

m∑
k=l+1

k

= − l(n−m)

n2
(Am − Al) +

l(n−m)

n
(Bm −Bl);

n−1∑
k=m+1

gxl
(xk)gxm(xk) =

n−1∑
k=m+1

(
1− k

n

)
l

(
1− k

n

)
m =

lm

n2

n−1∑
k=m+1

(n− k)2

=
lm

n2

n−m−1∑
k=1

k2 =
lm

n2
An−m−1.
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Thus we have

qxl
(xm) =

n−m

n
Al −

l(n−m)

n2
Am +

lm

n2
An−m−1 +

l(n−m)

n
(Bm −Bl).

Using Ak = k(k + 1)(2k + 1)/6 and Bk = k(k + 1)/2, we have

n−m

n
Al =

l(n−m)

6n
(l + 1)(2l + 1);

− l(n−m)

n2
Am = − lm(n−m)

6n2
(m+ 1)(2m+ 1);

lm

n2
An−m−1 =

lm(n−m)

6n2
(n−m− 1)(2n− 2m− 1)

=
lm(n−m)

6n2

(
2n2 − 4mn− 3n+ (m+ 1)(2m+ 1)

)
;

l(n−m)

n
(Bm −Bl) =

l(n−m)

2n
(m(m+ 1)− l(l + 1))

=
l(n−m)(m− l)

2n
(m+ l + 1).

Therefore

qxl
(xm) =

l(n−m)

6n

(
(l + 1)(2l + 1) +m(2n− 4m− 3) + 3(m− l)(m+ l + 1)

)
=

l(n−m)

6n
(2mn+ 1−m2 − l2),

which is the desired formula. □

We shall find the minimum of

(3.3) A(l,m) =
qxl

(xm)
2

qxl
(xl)qxm(xm)

for 0 < l,m < n.

Lemma 3.4. For a fixed l, A(l,m) decreases as m increases in l ≤ m < n. In
particular, A(l,m) ≥ A(l, n− 1) holds for l ≤ m < n.

Proof. Theorem 3.2 shows that for 0 < l ≤ m < n

A(l,m) =
l2

6nqxl
(xl)

(n−m)(2nm+ 1−m2 − l2)2

m(2nm+ 1− 2m2)
.

Let

f(t) =
(n− t)(2nt+ 1− t2 − l2)2

t(2nt+ 1− 2t2)
.
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It suffices to show that f(t) is a decreasing function in l < t < n. We have

d

dt
log f(t) = − 1

n− t
+

2(2n− 2t)

2nt+ 1− t2 − l2
− 1

t
− 2n− 4t

2nt+ 1− 2t2

=

(
2n

2nt+ 1− 2t2
− 1

n− t
− 1

t

)
+

(
4(n− t)

2nt+ 1− t2 − l2
− 4(n− t)

2nt+ 1− 2t2

)
=

(
2n

2t(n− t) + 1
− n

t(n− t)

)
+

(
4(n− t)

2nt+ 1− t2 − l2
− 4(n− t)

2nt+ 1− 2t2

)
.

Since 2t(n− t)+1 > 2t(n− t) and 2nt+1− t2− l2 > 2nt+1−2t2, we know that the
right-hand side of the above is negative, which means that f(t) is decreasing. □

Lemma 3.5. A(l, n − 1) increases as l increases in 0 < l < n. In particular,
A(l, n− 1) ≥ A(1, n− 1) for 0 < l < n.

Proof. Theorem 3.2 shows that for 0 < l < n

qxl
(xn−1) =

l(n− (n− 1))(2n(n− 1) + 1− (n− 1)2 − l2)

6n
=

l(n2 − l2)

6n
,

so that

A(l, n− 1) =
1

6nqxn−1(xn−1)

l(n− l)(n+ l)2

2nl + 1− 2l2
.

Let

g(t) =
t(n− t)(n+ t)2

2nt+ 1− 2t2
.

It suffices to show that g(t) is an increasing function in 1 < t < n− 1. We have

d

dt
log g(t) =

1

t
− 1

n− t
+

2

n+ t
− 2n− 4t

2nt+ 1− 2t2

=

(
1

t
+

1

n− t
− 2n

2nt+ 1− 2t2

)
+

(
4t

2nt+ 1− 2t2
+

2

n+ t
− 2

n− t

)
=

(
n

t(n− t)
− 2n

2t(n− t) + 1

)
+

(
4t

2nt+ 1− 2t2
− 4t

n2 − t2

)
.

Since 2t(n− t) < 2t(n− t) + 1 and

(2nt+ 1− 2t2)− (n2 − t2) = −(n− t)2 + 1 ≤ 0,

we know that the right-hand side of the above is positive, which means that g(t)
is increasing. □

We have

Theorem 3.6. For 0 < l,m < n, the following inequality holds:

qxl
(xm)

2

qxl
(xl)gxm(xm)

≥ qx1(xn−1)
2

qx1(x1)qxn−1(xn−1)
=

(n+ 1)2

(2n− 1)2
.
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Proof. Since qxl
(xm) = qxm(xl), we may assume that 0 < l ≤ m < n. The first

inequality is shown by Lemmas 3.4 and 3.5. Theorem 3.2 shows that

qx1(xn−1) =
2n(n− 1) + 1− (n− 1)2 − 1

6n
=

n2 − 1

6n
;

qx1(x1) =
(n− 1)(2n− 1)

6n
;

qxn−1(xn−1) =
(n− 1)(2n− 1)

6n
,

which lead to the last equality. □

4. The Finite Linear Network with One Boundary Node

Let n be an integer with n ≥ 2. Let N = {X,Y,K, r} be a finite network such
that X = {x0, x1, · · · , xn}, Y = {y1, · · · , yn}, and K(xi−1, yi) = −1, K(xi, yi) = 1
for 1 ≤ i ≤ n, and K(x, y) = 0 for any other pair (x, y). We take r(y) = 1 on
Y . Let X0 = {x1, . . . , xn}. The Green’s function gxm(xk) of N with pole at xm

(0 < m ≤ n) is the function defined by the conditions:

gxm(x0) = 0, ∆gxm(xk) = −ϵxm(xk) for 0 < k ≤ n.

We can show the following similar to Proposition 3.1.

Proposition 4.1. The Green’s function gxm(xk) is given by gxm(x0) = 0,

gxm(xk) = k for 0 < k ≤ m,

gxm(xk) = m for m+ 1 ≤ k ≤ n.

Theorem 4.2. Let 0 < l ≤ m ≤ n. Then

qxl
(xm) =

l(6mn− 3m2 + 3m− l2 + 1)

6
.

Proof. By definition, we have

qxl
(xm) =

l∑
k=1

gxl
(xk)gxm(xk) +

m∑
k=l+1

gxl
(xk)gxm(xk) +

n∑
k=m+1

gxl
(xk)gxm(xk)

=
l∑

k=1

k2 +
m∑

k=l+1

lk +
n∑

k=m+1

lm

=
1

6
l(l + 1)(2l + 1) +

1

2
l
(
m(m+ 1)− l(l + 1)

)
+ lm(n−m)

=
l(6mn− 3m2 + 3m− l2 + 1)

6
as desired. □

Let A(l,m) be the value as defined in (3.3).

Lemma 4.3. For a fixed l, A(l,m) decreases as m increases in l ≤ m ≤ n. In
particular, A(l,m) ≥ A(l, n) holds for l ≤ m ≤ n.
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Proof. Theorem 4.2 shows that for 0 < l ≤ m ≤ n

A(l,m) =
l2

6qxl
(xl)

(6mn− 3m2 + 3m− l2 + 1)2

m(6mn− 4m2 + 3m+ 1)
.

Let

f(t) =
(6nt− 3t2 + 3t− l2 + 1)2

t(6nt− 4t2 + 3t+ 1)
.

It suffices to show that f(t) is a decreasing function in l < t < n. We have

d

dt
log f(t) =

2(6n− 6t+ 3)

6nt− 3t2 + 3t− l2 + 1
− 1

t
− 6n− 8t+ 3

6nt− 4t2 + 3t+ 1

=

(
6(2n− 2t+ 1)

6nt− 3t2 + 3t− l2 + 1
− 6(2n− 2t+ 1)

6nt− 4t2 + 3t+ 1

)
+

(
6n− 4t+ 3

6nt− 4t2 + 3t+ 1
− 6n− 4t+ 3

t(6n− 4t+ 3)

)
.

Since 6nt−3t2+3t− l2+1 > 6nt−4t2+3t+1 and 6nt−4t2+3t+1 > t(6n−4t+3),
we know that the right-hand side of the above is negative, which means that f(t)
is decreasing. □
Lemma 4.4. A(l, n) increases as l increases in 0 < l ≤ n. In particular, A(l, n) ≥
A(1, n) for 0 < l ≤ n.

Proof. Theorem 4.2 shows that for 0 < l ≤ n

A(l, n) =
1

6qxn(xn)

l(3n2 − l2 + 3n+ 1)2

6ln− 4l2 + 3l + 1
.

Let

g(t) =
t(3n2 − t2 + 3n+ 1)2

6nt− 4t2 + 3t+ 1
.

It suffices to show that g(t) is an increasing function in 1 < t < n. We have

d

dt
log g(t) =

1

t
− 4t

3n2 − t2 + 3n+ 1
− 6n− 8t+ 3

6nt− 4t2 + 3t+ 1

=

(
4t

6nt− 4t2 + 3t+ 1
− 4t

3n2 − t2 + 3n+ 1

)
+

(
6n− 4t+ 3

t(6n− 4t+ 3)
− 6n− 4t+ 3

6nt− 4t2 + 3t+ 1

)
.

Since

(6nt− 4t2 + 3t+ 1)− (3n2 − t2 + 3n+ 1) = −3n2 + 6nt− 3t2 − 3n+ 3t

= −3(n− t)(n− t+ 1) < 0

and t(6n− 4t+ 3)− (6nt− 4t2 + 3t+ 1) < 0, we know that the right-hand side of
the above is positive, which means that g(t) is increasing. □

We have
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Theorem 4.5. For 0 < l,m ≤ n, the following inequality holds:

qxl
(xm)

2

qxl
(xl)gxm(xm)

≥ qx1(xn)
2

qx1(x1)qxn(xn)
=

3(n+ 1)

2(2n+ 1)
.

Proof. Since qxl
(xm) = qxm(xl), we may assume that 0 < l ≤ m ≤ n. The first

inequality is shown by Lemmas 4.3 and 4.4. Theorem 4.2 shows that

qx1(xn) =
3n2 + 3n

6
=

n(n+ 1)

2
;

qx1(x1) = n;

qxn(xn) =
n(2n2 + 3n+ 1)

6
=

n(2n+ 1)(n+ 1)

6
,

which lead to the last equality. □

5. An Application

As stated in the introduction, we study the converse of Schwarz’s inequality.
A sequence {uk; 0 ≤ k ≤ n} is called concave if 2uk ≥ uk−1 + uk+1 for every
k ∈ {1, . . . , n− 1}

Theorem 5.1. Let αn =
√
6/
(
n(n+ 1)(2n+ 1)

)
.

(i) Let {uk; 0 ≤ k ≤ n} and {vn; 0 ≤ k ≤ n} be concave sequences of real-
numbers such that u0 = v0 = un = vn = 0 and

n−1∑
k=1

u2
k =

n−1∑
k=1

v2k = 1.

Then

(5.2)
n−1∑
k=1

ukvk ≥
n+ 1

2n− 1
.

Let uk = αn−1(n−k) for k ≥ 1 and u0 = 0. Let vk = αn−1k for k ≤ n−1
and vn = 0. Then {uk} and {vk} satisfy the above conditions and hold the
equality in (5.2).

(ii) Let {uk; 0 ≤ k ≤ n} and {vn; 0 ≤ k ≤ n} be concave sequences of real-
numbers such that u0 = v0 = 0 and

n∑
k=1

u2
k =

n∑
k=1

v2k = 1.

Then

(5.3)
n∑

k=1

ukvk ≥

√
3(n+ 1)

2(2n+ 1)
.

Let uk = 1/
√
n for k ≥ 1 and u0 = 0. Let vk = αn k for k ≤ n. Then

{uk} and {vk} satisfy the above conditions and hold the equality in (5.3).
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Proof. To prove (i) we define two functions u and v by u(xk) = uk and v(xk) = vk.
Also we define N = {X,Y,K, r} and X0 = {x1, . . . , xn−1} as those in Section 3.
Then u, v ∈ U. By Theorems 1.2 and 3.6, we have

n∑
k=1

ukvk ≥
qx1(xn−1)√

qx1(x1)
√

qxn−1(xn−1)
=

n+ 1

2n− 1
.

It is easy to see the latter part.
Similarly Theorems 1.2 and 4.5 show (ii). □
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