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SUMMARY

DNA metabarcoding on single organism is a promising approach to clarify the biological
interactions (e.g., predator-prey relationships and symbiosis, including parasitism) of difficult-to-
culture protists. To evaluate the effectiveness of this method, Radiolaria and Phaeodaria, which are
ecologically important protistan groups, were chosen as target taxa. DNA metabarcoding on single
organism focused on the V9 region of the 18S rRNA gene revealed potential symbionts, parasites,
and food sources of Radiolaria and Phaeodaria. Previously reported hosts and symbionts
(parasites) were detected, and newly recognized combinations were also identified. The contained
organisms largely differed among Radiolaria and Phaeodaria. In Radiolaria, members of the same
order tended to contain similar organisms, and the taxonomic composition of possible symbionts,
parasites, and food sources were fixed at the species level. Members of the same phaeodarian
family, however, did not contain similar organisms, and body part (i.e., the central capsule or the
phaeodium) was the most important factor that divided the taxonomic composition of detected
organisms, implying that the selection of appropriate body part is important when trying to ascertain
contained organisms, even for unicellular zooplankton. Our results show that DNA metabarcoding

on single organism is effective in revealing the biological interactions of difficult-to-culture protists.
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ORIGINALITY-SIGNIFICANCE STATEMENT

DNA metabarcoding on single organism is an effective approach to clarify the biological interactions
of difficult-to-culture protists. To evaluate the potential of this approach, Radiolaria and Phaeodaria,
unicellular zooplankton groups important in marine food web and material cycles, were chosen as
target organisms. DNA metabarcoding on single organism successfully revealed potential
symbionts, parasites, and food sources in Radiolaria and Phaeodaria, indicating that this approach
is effective to reveal the ecological relationships of difficult-to-culture protists. The composition of
these detected organisms largely differed among Radiolaria and Phaeodaria, even though they
generally have a similar cell size, body structure, and ecological niche. The body part was
suggested as the most important factor to divide the taxonomic composition of detected organisms,
implying that the selection of an appropriate body part is important when studying contained

organisms, even for unicellular zooplankton.

INTRODUCTION

The biological interactions (e.g., competition, predator-prey relationships, and symbiosis,
including parasitism) of protists have been widely studied, mainly focusing on “culturable” species
in the domain of microbiology or protistology. However, many protists in natural environments
cannot be successfully cultured under artificial conditions, and these “difficult-to-culture” protists are
reported to play important roles in natural environments (Biard et al., 2016; Ikenoue et al., 2019;

Sogawa et al., 2022).

DNA metabarcoding is an effective approach to clarify biological interactions of aquatic

organisms, and the taxonomic composition (species diversity) of environmental samples can be
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thoroughly clarified by using this technique. For example, DNA metabarcoding has been used to
clarify the food sources of crustaceans (Cleary et al., 2012, 2015). However, because multicellular
organisms contain numerous cells, a blocking polymerase chain reaction (PCR) with Peptide
Nucleic Acid (PNA) must also be performed to reduce the detection of host's DNA (Nakamura et
al., 2020a), which creates a bottleneck when trying to analyze numerous species at the same time.
Symbionts, parasites, and food sources, however, are more easily detected by DNA
metabarcoding focused on unicellular eukaryotes (i.e., protists) because they have a relatively
small amount of DNA. In fact, the DNA sequence of difficult-to-culture protists has generally been
difficult to clarify because of their small amount of DNA and the high risk of contamination. However,
a single-cell DNA analysis method for protists was established, and the DNA sequences of
numerous protistan groups have been revealed during the last decade (Decelle et al., 20123;
Pawlowski et al., 2013; Sandin et al., 2019; 2021; Nakamura et al., 2020b; 2021). For these
reasons, the combination of single-cell DNA analysis and DNA metabarcoding should be an
effective means to clarify the biological interactions of difficult-to-culture protists and other
organisms.

Radiolaria and Phaeodaria are difficult-to-culture but ecologically important protists. Radiolaria
contain 6 orders and more than 1,100 species (Suzuki & Aita, 2011; Nakamura et al., 2021), while
Phaeodaria currently include 18 families and about 300 species (Nakamura & Suzuki, 2015;
Nakamura et al., 2015). These two groups are heterotrophic or mixotrophic unicellular zooplankton,
most of which have siliceous skeletons. They are thought to be key groups in ecosystems and
material cycles in the world ocean because their high abundance and large contribution to material
cycles have often been reported in the past decade (Nakamura et al., 2013; Biard & Ohman, 2020;

Sogawa et al., 2022). The symbiosis between these two groups and other eukaryotic organisms
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has also attracted attention recently. Radiolaria and Phaeodaria are reported to have a symbiotic
relationship with crustaceans, which is called the “Rhizarian rider” phenomenon (Nakamura et al.,
2019; Saito et al., 2022). Radiolaria are also known for their symbiosis with algae, and their
symbiotic algae have been analyzed with different approaches, such as microscopic observation
(Anderson, 1983), DNA barcoding (Decelle et al., 2012b), and fluorescence pattern (Zhang et al.,
2018). Their symbiosis is thought to be complicated because some Radiolaria can have more than
two symbiotic algae (Decelle et al., 2012b). Closely related species have also been reported to
have symbiotic algae of totally different origins. For example, Dictyocoryne profunda (Radiolaria)
has a cyanobacterium (symbiotic alga) (Yuasa et al., 2012), whereas D. fruncata (Radiolaria)
possesses a haptophyte (symbiotic alga) (Yuasa et al., 2019). Although a great deal of knowledge
has been accumulated during the past 150 years (Table S1), the taxonomic composition of
radiolarian symbiotic algae has never been thoroughly clarified. Compared with the case of
Radiolaria, knowledge about the symbiosis of Phaeodaria is limited, with less than 10 reports
currently available (Table S1).

Radiolaria and Phaeodaria have a similar cell size, body structure, and ecological niche. This
study therefore focused on these two groups as the target organisms and to show the first big
picture, attempted to explore the interactions between Radiolaria/Phaeodaria and other eukaryotic
organisms. DNA metabarcoding on single organism was applied to detect potential symbionts,
parasites, and food sources, with the aim of showing a comprehensive big picture of biological

interactions of these difficult-to-culture protists.

MATERIALS AND METHODS
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Field sampling, microscopy, and treatment

Plankton sampling was conducted in 2012—2019 at 22 stations located in seven marine areas
of the Northern Hemisphere (Fig. 1). Radiolaria and Phaeodaria were manually isolated from the
bulk plankton samples under a stereomicroscope or inverted microscope (e.g., TMS, Nikon,
Japan). The isolated individuals were then photographed with a digital camera (e.g., Nikon 1 V3,
Nikon, Japan) attached to the microscopes, and individuals were identified based on their
morphological characteristics. The identified specimens were then carefully observed to confirm
that no other organisms were attached on their surface. After the observation, the specimens were
individually preserved in tubes filled with approximately 2.0 mL of 99.9% ethanol and stored at 4°C.
Among these ethanol-preserved specimens, Orodaria and solitary Collodaria were dissected with
a sterilized scalpel under a stereomicroscope, and the central area containing nuclei were isolated.
Large Phaeodaria (larger than ca. 400 um in diameter) were also dissected, and their “central
capsule” (the protoplasmic body, including the nuclei) and “phaeodium” (mass of aggregated brown
or yellowish particles) were isolated to separately perform further analyses.

After the DNA extraction (described later), some of the specimens, which have solid siliceous
skeletons, were observed with a scanning electron microscope (SEM, JSM-6390LV with LaB6 gun,
JEOL, Japan). The conditions and parameters were the same as those described in Nakamura et

al. (2016).

DNA metabarcoding and cluster analysis
Each isolated specimen (whole cell, central capsule, or phaeodium) was individually put into
100 pL of guanidine-containing extraction buffer (GITC buffer) (Decelle et al., 2012a), and the DNA

was extracted according to the method described in Nakamura et al. (2015). Three tubes filled with
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ethanol were also analyzed as negative controls in the subsequent experiment. The DNA
extraction was conducted in a specialized and sterilized laboratory.

Hitherto reported symbionts, parasites and prey organisms of Radiolaria and Phaeodaria were
mainly eukaryotes (Table S1), and to compare with these previous studies, the eukaryote-specific
primers were chosen in this study. The V9 hypervariable region of approximately 315 base pairs in
the 18S rRNA gene was amplified by PCR following the procedure in Toju (2016). The first fusion
primers were designed by combining P5 or P7 adapters, a series of “N” and V9-specific sequences
for eukaryotes: 1389F (5-TTGTACACACCGCCC-3) and 1510R (5-
CCTTCYGCAGGTTCACCTAC-3’) (Amaral-Zettler et al., 2009). The structure of primers (for the
first and second PCR), The contents of the reaction mixture, and the thermal cycling conditions
were the same as in Nakamura et al. (2020a). Three negative controls were also contained in the
PCR to check that there was no contamination of eukaryotes. After the second PCR, all of the PCR
products were mixed and purified with AMPure XP (Beckman Coulter, U.S.A.). The purified mixture
was adjusted to 4 pM before amplicon sequencing using MiSeq (lllumina, U.S.A.). One run of
sequencing was performed with MiSeq Reagent kit v3 (600 cycles) (lllumina, U.S.A.), following the
recommended protocol and default settings.

The obtained data were analyzed with Claident ver. 0.2.2019.05.10 software (Tanabe & Toju,
2013) according to the Claident manual (Tanabe, 2018). Low-quality sequences, with average
quality scores less than 30, were removed, and chimera sequences were also excluded. The
sequences were then clustered into OTUs using a minimum identification score of 0.97. The OTU
compositions of each specimen are summarized in a matrix, which lists sequences longer than
200 mer with at least 200 reads. After the treatment mentioned above, 0.01-10.31% of the original

sequence reads were removed in each sample. The OTUs were taxonomically identified until the
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genus or species level by the Basic Local Alignment Search Tool (BLASTN) from the U.S. National
Center of Biotechnology Information (https://www.ncbi.nim.nih.gov/) using the nr database,
excluding environmental sample sequences. The taxonomic name of the registered sequence with
at least 98% match was assigned to each OTU in most cases. However, some sequences difficult
to be identified by BLASTN were (1) further identified by SILVA (Quast et al., 2013) and/or (2)
assigned taxonomic names by creating phylogenetic trees containing sequences of related
organisms. The classification of phylum- or class-level taxa referred to Adl et al. (2019) and
Nakamura et al. (2019). The relative abundance (%) was derived from the ratio of total sequence
read and the sequence read of each higher taxon. The raw sequence data were deposited in the
DNA Data Bank of Japan database with the accession number DRA010024.

Cluster analyses were based on the taxonomic composition of the detected organisms in each
specimen. The read numbers of detected OTUs were collapsed into binary data (0 or 1), and the
Euclidean distances within the resulting dataset were calculated by the statistical software College
Analysis ver. 6.6 (Fukui & Hosokawa, 2004). We constructed dendrograms based on the higher

taxon and habitat by Ward’s method (Ward, 1963) to visualize the differences among the layers.

RESULTS

A total of 22 plankton samples were collected over an 8-year period (Fig. 1). From these
samples, 28 Radiolaria and 56 Phaeodaria, belonging to almost all orders, were analyzed by the
DNA metabarcoding (Figs. 2 and S1, Table S2). In the DNA metabarcoding analyses, the
sequences of the hosts (Radiolaria and Phaeodaria) were often detected in most of the specimens

(Fig. 3, Table S3). Multiple eukaryotic organisms were detected in most of the radiolarian
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specimens, except for specimens Tax4, Kn10b, St2, othSb, GS14, and Or9, in which only
radiolarian sequences were detected. The same taxa tended to be detected in the same Radiolaria,
such as Kinetoplastea, Pelagomonas, and Scrippsiella in Acanthoplegma krohni (specimens Ae6
and Ae7), and Prymnesium in Acanthometron pellucidum (specimens Ae9 and Ae10).
Photosynthetic organisms (e.g., Haptophyta, Pelagophyceae, and Dinoflagellata) were frequently
detected in the radiolarian orders Acantharia, Taxopodia, Spumellaria, and Collodaria, whereas
they were never found in the order Orodaria, in which non-photosynthetic Dinoflagellata and
animals (Cnidaria and Chaetognatha) were detected.

Host sequences were also mainly detected in Phaeodaria, followed by other eukaryotic
organisms (Fig. 4). However, no or very few hosts of Phaeodaria were detected in the family
Astracantha and in the specimens from the phaeodium (specimens with “phd” in their names).
Similar to Radiolaria, the same taxa tended to be found in the same Phaeodaria, for example,
Cephaloidophoral Thiriotia in the family Castanellidae and Dermocystidium in the family
Astracantha. Other eukaryotic organisms were more frequently detected in specimens from the
phaeodium than in specimens from the central capsules.

The cluster analysis based on the detected organisms revealed that all specimens could be
categorized into two large groups: cluster A including only Phaeodaria and cluster B containing
Radiolaria and Phaeodaria (Fig. S2). In cluster B, Phaeodaria appeared in several limited
subclusters.

Further analysis on Radiolaria clarified that they could be clustered into three large groups, and
this categorization corresponded to radiolarian order-level taxonomy (Fig. S3): cluster C, which
contained the orders Acantharia and Taxopodia; cluster D, which included only the order

Spumellaria; and cluster E, which is mainly composed of the order Collodaria, although three
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specimens belonging to other orders were also present.

Unlike Radiolaria, phaeodarian clusters did not correspond to the order- or family-level
taxonomy (Fig. S4). Rather, the difference between body parts (central capsule vs. phaeodium)
was highlighted. As a result, Phaeodaria were categorized into two large clusters: cluster F, which
chiefly contained the specimens from the phaeodium; and cluster G, which mainly included

specimens isolated from the central capsule.

DISCUSSION
1. Radiolaria

The cluster analysis based on the taxonomic composition of organisms detected in the
Radiolaria and Phaeodaria specimens suggests that the organisms contained in them largely differ
among these two groups (Fig. S2). The high detection of algae (phytoplankton) presumably reflects
their symbiosis judging from previous reports conceming the symbiosis of protists (Nowack &
Melkonian, 2010; Bjorbaekmo et al., 2019). The taxonomic composition of potential symbionts,
parasites, and food sources seems to be fixed at the species level, considering that the same
species of Radiolaria contained similar organisms (Fig. 3). The cluster analysis focused on
Radiolaria also shows that members of the same radiolarian order tend to contain similar other
organisms (Fig. S3), suggesting that their biological interactions largely differ among the orders.

The following algae detected in this study have some kind of biological interaction with
Radiolaria: Haptophyta, Pelagophyceae, and Dinoflagellata (Fig. 3). The following combinations
were recognized for the first time by this study: Gyrodinium in Litholophus sp. (Acantharia);

Pelagomonas, Scrippsiella, and Karlodinium in Acanthoplegma krohni (Acantharia); Pelagomonas,
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Scrippsiella, and Zooxanthella in Sticholonche zanclea (Taxopodia); and Haptophyta in
Myelastrum trinibrachium (Spumellaria). The detected organisms may possibly be symbiotic algae
judging from the data of previous studies (Table S1), but other analyses, such as observations of
substance transportation, are necessary to further clarify details on their symbiosis. The following
combinations may be symbiosis with more than two algae, as suggested by (Decelle et al., 2012b):
Pelagomonas and Scrippsiella in Acanthoplegma krohni (Acantharia) and Sticholonche zanclea
(Taxopodia) (Fig. 3). Future studies applying DNA metabarcoding on single organism would further
reveal the symbiosis with multiple algae.

Kinetoplastea (Euglenozoa), Apicomplexa, and Massisteria (Cercozoa), which were detected
in the Radiolaria specimens (Fig. 3), are known to be parasitic to some marine organisms (Gull,
2001; Mylnikov et al., 2015; Seeber & Steinfelder, 2015), and these taxa could be parasites of
Radiolaria. This is the first report of parasitism of these three taxa to Radiolaria.

The detection of multicellular organisms (Cnidaria, Chaetognatha, Crustacea, and Chordata,
including fishes) should be interpreted carefully because these animals have a large number of
cells, and they can be detected more easily than unicellular hosts. It is possible that is that some
Radiolaria feed on the carcasses of multicellular animals contained in detritus or marine snow
(Nakamura et al., 2017; Ikenoue et al., 2019). Another possibility is that some part of the body of
these multicellular animals were contained inside the specimens. Certain large Radiolaria have
been reported to be eaten by gelatinous zooplankton, such as Cnidaria and salps (Nakamura et
al., 2021), but their fragile bodies are easily damaged during the process of field sampling. They
thereby become unrecognizable, but a small amount of their bodies remain inside the radiolarian
specimens. This is especially the case in the order Orodaria (Or1 and Or3), which are often fed on

by gelatinous zooplankton.

11



254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

2. Phaeodaria

The cluster analysis focused on Phaeodaria suggested that, unlike the case with Radiolaria,
members of the same phaeodarian family do not tend to contain similar organisms (Fig. S4). The
body part (i.e., the central capsule or the phaeodium) could be the most important factor dividing
the taxonomic composition of detected organisms (Fig. S4), implying that the selection of an
appropriate body part is important when determining contained organisms, even for unicellular
zooplankton. Previous researchers have suggested that the phaeodium contains undigested prey
(Gowing, 1986; 1989), and this idea is partly supported by the results of this study, which revealed
that the phaeodium contains numerous small organisms (i.e., possible food sources).

There was a paucity of information about the biological interactions of Phaeodaria (Table S1).
Some previous studies thoroughly reviewed the symbiosis of protists, and the biological
interactions were well documented for the other culturable cercozoans (e.g., Nowack & Melkonian,
2010; Bjorbaekmo et al., 2019). Very little information was, however, available for Phaeodaria,
which also belong to Cercozoa. This study succeeded in adding to and updating knowledge on
these biological interactions. Previous studies reported that Dinoflagellata are parasitic on
Phaeodaria (Cachon-Enjumet, 1961), and this was confirmed by our results. In addition, we found
that Apicomplexa, Massisteria (Cercozoa), and Dermocystidium (Mesomycetozoea) may also be
parasites of some Phaeodaria, since these taxa are known as parasites of diverse marine
organisms (Gull, 2001; Mylnikov et al., 2015; Seeber & Steinfelder, 2015).

Symbiotic algae have not previously been reported in Phaeodaria, and therefore, the detection

of photosymbiotic organisms should be interpreted carefully. Most of these algae may be food
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sources, but it is also possible that some of them function as symbiotic algae because some host
Phaeodaria were collected in euphotic zones (e.g., Aulosphaera sp.1, Coelanthemum
auloceroides, and Aulacantha scolymantha). In addition, the algae detected in these Phaeodaria
(e.g., Haptophyta and some autotrophic species of Dinoflagellata) are symbionts of other marine
organisms (Bjorbeekmo et al., 2019, Takagi et al., 2019; Lee et al., 2022). Considering the
Radiolarian results (Fig. 3), Pelagophyceae may also be symbiotic algae of Phaeodaria.
Similar to the case of Radiolaria, multicellular organisms (Chaetognatha, Mollusca, Crustacea,
and Chordata, including fishes) were detected in Phaeodaria. These taxa are food sources or
possibly contaminants in the plankton sampling process. It is noteworthy that Copepoda were more
frequently detected in Phaeodaria than in Radiolaria. This crustacean taxon is one of the most
abundant zooplanktons in the world ocean, and consequently, contamination with their body parts
during the sampling process is possible. However, some specimens of Phaeodaria and Radiolaria
were collected in the same stations (Stas. 101, 102, 103, 104, KJ1 and Ses1) (Table S2), and
Copepoda were rarely detected in Radiolaria (Fig. 3). The high detection of Copepoda, therefore,
presumably reflects an ecological characteristic of Phaeodaria. It has been suggested that
Phaeodaria feed on detritus or marine snow (Gowing, 1989), and the carcasses of Copepoda and
other multicellular organisms are often contained in these substances. Copepoda may thus be

eaten indirectly by Phaeodaria and presumably be an important food source.

3. DNA metabarcoding of difficult-to-culture protists
The presence of multiple symbionts and parasites is generally difficult to detect, and

simultaneous analysis of numerous specimens requires a great deal of time and effort with ordinary
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methods. However, by using a combination of single-cell DNA analysis and DNA metabarcoding,
we were able to overcome these obstacles. This study succeeded in shedding light on the
biological interactions of two groups of difficult-to-culture protists, Radiolaria and Phaeodaria.
Moreover, the approach was shown to be effective enough to reveal the ecological relationships of
these difficult-to-culture protists.

Future studies should focus on other difficult-to-culture but ecologically important protists such
as Ciliophora, Choanoflagellata, and especially Foraminifera. The last group is known as an
environmental proxy because of their wide distribution, importance as microfossils, and function as
primary producers with symbiotic algae (Takagi et al., 2019). The symbionts of Foraminifera could
be clarified more easily than those of Radiolaria and Phaeodaria because the 18S ribosomal RNA
sequence of this group is largely different from other eukaryotes, and therefore, the host would not
be detected. Indeed, Foraminifera are rarely detected by DNA metabarcoding using eukaryote-
specific primers (Sogawa et al., 2022). In addition, more specimens of Radiolaria and Phaeodaria
should be examined to further confirm the pattern and specificity of their symbionts, parasites, and

food sources.
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FIGURE LEGENDS
Fig. 1. Location of the plankton sampling stations in 2012—2019. Pink dots indicate the sampling

stations. The detailed information on each station is shown in Table S2.

Fig. 2. Some specimens of Radiolaria and Phaeodaria collected in this study. a: Dictyocoryne
truncata, b: Diplosphaera hexagonalis, c. Myelastrum trinibrachium, d: Sticholonche zanclea, e:
Sphaerozoum punctatum, f. Acanthoplegma sp., g: Castanidium longispinum, h: Aulosphaera

sp., it Challengeron channeri, j: Challengeria naresii, k: Atlanticella sp., |: Tuscarora tubulosa.

Fig. 3. Proportion in total sequence reads (%) of Radiolaria (host) and other detected organisms
(possible symbionts, parasites and food sources). The first, second and third highest values for
each specimen are shown in red, orange and yellow, respectively. Taxa with green circles are
photosynthetic autotrophs, which have a potential to be symbiotic algae.

*: 18S rRNA sequences are not registered in NCBI database. **: The proportion of the host.

Fig. 4. Proportion in total sequence reads (%) of Phaeodaria (host) and other detected organisms
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(possible symbionts, parasites and food sources). The first, second and third highest values for

each specimen are shown in red, orange and yellow, respectively. Taxa with green circles are

photosynthetic autotrophs, which have a potential to be symbiotic algae.

*: 18S rRNA sequences are not registered in NCBI database. **: The proportion of the host.
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Radiolaria

Fig. S1. Images of radiolarian and phaeodarian specimens analyzed in this study. The
detailed information on each specimen is shown in Table S2.
*SEM images of the cortical shell of each individual composing a colony.



Fig. S1. continued.



Phaeodaria

Fig. S1. continued.
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TableS1. List of the hitherto-known symbionts and parasites of Radiolaria and Phaeodaria.
1: Biard et al. (2015) was referred to for determining the radiolarian species. 2: Sandin et al. (2021) was referred to for determining the radiolarian species.
*: The phaeodarian orders in the current classification are suggested not to reflect their phylogenetic relationships (Nakamura et al. 2015).
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Lithopteridae Lithoptera muelleri + Febvre & Febvre-chevalier (1979)
Amphilonche elongata + Febvre & Febvre-chevalier (1979)
Amphilonchidae P! L | O O S | §0 14 1 e AL LA
P SD. ¥ Hollande & Enjumet (1955), Cachon (1964), Mars Brisbin et al. (2018)
Amphibelonidae Amphit SD. Mars Brisbin et al. (2018)
Acanthometron pellucidum + + Hollande & Enjumet (1955), Cachon (1964), Febvre & Febure-chevalier (1979)
canthostaurus purpurascens Koeppen (1894)
Acantharia s onthostauridae canthometra, purt
Acanthonia claparedei Borgert (1897)
+ Koeppen (1894)
Acanthometra sp. ¥ ¥ ¥ Cachon & Cachon (1987), Mars Brisbin et al. (2018)
Acanthochiasmidae _Acanthociasma_sp. + +  + + + Decelle et al. (2012b)
Arthracanthida sp. + Febvre & Febvre-chevalier (1979), Decelle et al. (2012b,c)
ymphiacanthida sp. + Febvre & Febvre-chevalier (1979), Decelle et al. (2012b,c)
Taxopodia __Sticholonchidae Sticholonche zanclea + Fol (1883), Koeppen (1894), Cachon (1964), Cachon & Cachon (1987)
Dictyocoryne truncata Anderson & Matsuoka (1992), Yuasa et al. (2019)
Euchitoniidae Yuasa et al. (2012)
yocory! g: Yuasa et al. (2016)
Panartidae Dydimocyrtis tetrathalamus + Probert et al. (2014)°
Vmus_so. + Anderson et al. (1983b), Gast & Caron (1996), Gast et al. (2000), Gast & Caron (2001), Foster et al. (2006a, b)
. Spongotrocus glacialis Ishitani et al. (2014)
Spongosphaeridae SD. + + Cachon (1964), Hollande (1974), Cachon & Cachon (1987), Suzuki et al. (2009)
+ | Cachon (1964)
Spongodrymidae D, ¥ Cachon (1964), Holiande (1974), Cachon & Cachon (1987)
ia sD Probert et al. (2014)°
Haliommidae Haliomma capillaceum + Suzuki et al. (2009)
Haliomma sb. (. sD.) + + + || Holiande & Enjumet (1955), Cachon (1964), Hollande (1974), Cachon & Cachon (1987)
Hexacromyidae Hexacontium gigantheum + Kim & Park (2013)
Hollandosphaeridae _Hollandosphaera hexagonia Probert et al. (2014)°
o : Cl SO, + Hollande & Enjumet (1955), Hollande (1974)
Infraphylum Astrosphaeridae sp. Anderson (1976)
Py Rhizosphaeridae Rhi; SD. (. sp.) Hollande & Enjumet (1955), Hollande (1974)
Radiolaria = >
Zonariidae Tetrapyle octacantha + Probert et al. (2014)
Spumellaria sp. Cachon & Cachon (1987), Probert et al. (2014)
Acanthodesmiidae __Acanthodesmia vinculata Yuasa et al. (2016)
Nassellaria -Lithochytrididae Pterocanium praetextum Yuasa et al. (2016)
Eucyrtidiidae Eucvrtidium sp. + + Hollande & Enjumet (1955), Hollande (1974), Cachon & Cachon (1987)
Nassellaria sp. Probert et al. (2014)
Thalassicolla nucleata + + Chatton (1920), Hovasse & Brown (1953), Hollande & Enjumet (1953), Hollande & Carré (1974), Gast & Caron (2001), Gast et al. (2003), Gast (2006)
¥
Thalassicolla pellucida
. I D o
Thalassicollidae Thalassolampe margarodes *
¥ Hollande (1974), Cachon & Cachon (1987)
Thalassicolla caerulea + Probert et al, (2014)’
+ Probert et al. (2014)
Myxosphaera coerulea Chatton (1923), Hollande (174), Cachon & Cachon (1987)
Sphaerozoum acuferum Chatton (1923), Hollande (1974)
hd Probert et al, (2014)’
hd Probert et al, (2014)’
. ¥ i
Collodaria Probert et al, (2014) .
_Sphaerozoum punctatum * Chatton (1923). Hovasse & Brown (1953), Hollande (1974), Probert et al. (2014);
- Cachon & Cachon (1987)
Sphaerozoidae Sohaerozourm. o,
P Collozoum inerme + Brandt (1881), Chatton (1923), Hovasse (1923), Hollande (1974)
Gast & Caron (2001)
Collozoum pelagicum Chatton (123), Hollande (1974)
Hollande & Enjumet (1953), Hollande (1974) """ i}
“Collozoum_so. ¥ Hollande & Enjumet (1955), Hollande (1974), Cachon & Cachon (1987), Gast & Caron (1996), Probert et al. (2014)
Rhaphidozoum acuferum + Probert et al. (2014)'
i Collosphaera tuberosa + Probert et al, (2014)!
Collosphaeridae + Probert et al, (2014)/
Collosphaeridae sp. + Probert et al. (2014)'
Collophidiidae Collophidium _sD. + Probert et . (2014)"
Procyttarium prototypus + Probert et al. (2014)'
-_—
" Challengeriidae Challengeron sp. Cachon-Enjumet (1961)
. Coelodendridae Coelodend Cac met (1961)
Coelodendrum sp. + Hollande & Enjumet (1955), Hollande (1974), Théodoridés 1989
subclass " Medusettidae Planktonetta atlantica Cachon & Cachon (1987)
Phaeodaria * Phaeodinidae Phaeodina valdiviae Cachon-Enjumet (1961)
- + w
. Phasosphaeridae u ngata Cachon-Enjumet (1961)
Phaeosphaera pigmaeae + Cachon-Enjumet (1961)
* Aulacanthidae 1 Aulacantha scolymantha Hollande et al. (1953), Hovasse & Brown (1953), Cachon-Enjumet (1961), Hollande (1974), Cachon & Cachon (1987)




Table S2. Detailed information of radiolarian and phaeodarian specimens examined in this study. Note that the phaeodarian specimens with "phd" were dessected, and their "central capsules" and

"phaeodium" were separately analyzed.

classification . sampling
specimen Jenth
higher taxon  order family genus species name season area station (:"; gear
Litholophidae Litholophus Ae July, 2019 PhS (off Manazuru) 0-5 hand net
. Acanthoplegmidae Acanthoplegma krohni Ae duly, 2019 B 05
Acantharia Ae7 July, 2019 P 0-5 hand net
. ; Ae9 July, 2019 P 0-5 hand net
Acanthostauridae Acanthometron pellucidum Aeid v 3516 B 6UE
ax3 July, 2019 P 0-5
Taxopodia Sticholonchidae Sticholonche zanclea ax4 July, 2019 P 0-5
ax5 July, 2019 P 0-5
o ; ‘Me Sep., 2017 W KM1 0-5 hand net
Myelastrum trinibrachium S Rov. 5616 Bh K 6UE
it ; Kn10b July, 2018 W Kl 0-5
Euchitoniidae Dictyocoryne profunda Knide v 3518 W K 6UE
Spumellaria Dictyocoryne elegans Kn18b July, 2018 W Kl 0-5
infraphylum Dictyocoryne truncata Kn10a July, 2018 Wi Kl 0-5
Radiolaria i Sd4 Sep., 2017 WNP (off Kominato) Kl 0-5
Spongodiscidae Spongaster tetras st ar.. 5017 " "PhS {off Kashiwaiimay Ki1 05 hand net
Panartidae Didymocyrtis sp. Kn13d July, 2018 WNP (off Kominato) KM1 0-5 hand net
Nassellaria__Artostrobiidae Spirocyrtis sp. oth5b July, 2012 ENP 104 1000-1500 _VMPS
- GS14 July, 2012 ENP, 91 0-1000 80cm ring net
Thalassosphaeridae Thalassosphaera sp. G853 Gy 3013 ENB 10 51660 800m rina not
Collophidiidae Collophidium serpentinum Col4 Dec., 2014 ECS (off Sesoko) Ses1 0-8 hand net
Collodaria Sphaerozoidae Sphaerozoum strigulosum Col7 Dec., 2014 ECS (off Sesoko) Ses1 0-8
Sphaerozoum trigenimum KT23 Sep., 2019 PhS (off Manazuru) M 0-5 i
Collosphaeridae Odontosphaera macropore Col1 Dec., 2014 ECS (off Sesoko) Ses1 . 0-8 hand net
Collosphaera tuberosa Col2 Dec., 2014 _ECS (off Sesoko) Ses1 08 hand net
Or July, 2012 ENP 03 0-1000
Orodaria* Oroscenidae Oroscena huxleyi Or. July, 2012  ENP 02 0-1000
Or May, 2016___PhS 5A 16302045
JS12i May, 2012 WNP 16 200-1000
Challengeria naresii Pa Aug., 2017 H 500-2001
Pa2a Aug., 2017 H 500-2001
* Challengeriidae . Sy Feb., 2018 V3 00-200 closing NORPAC net
Challengeron channeri S Ruq.. 3013~ WNPB [off Santiku) b 500-2000 VMPS
py p e Feb., 2018 _PhS V 200-500 closing NORPAC net
Challengeron willemoesi Sy16 Feb., 2018 BhS v 00-500"""closing NORPAC net
v70 (phd)._ May, 2015 ECS TY4 0-30 vertical net
Aulosphaera sp.1 KJ35 July, 2015 PhS (off Kashiwajima) KJ1 0-5 hand net
* . y23 lay, 2015 ECS TY4 0-30 vertical net
Aulosphaeridae Alosphaera sp2 v65 lay, 2015 ECS TY4 0230 vertical net
; Se Dec., 2014 ECS (off Sesoko) Ses1 0-8
Aulosphaera sp.3 Sh60 Nov., 2018 WNP (off Kushiro) Al 0-500 80cm ring net
il Ct2 (phd)  July, 2012 ENP 02 250-500
. Castanellidae Castanidium sp. Ct3 (ohd)July, 2012 ENP 05556500
Castanissa_sp. Ct4 (phd)  July, 2012 ENP 02 250-500
Tus4 (phd)._. July, 2012 ENP 04 1000-1500
" : Td5 (phd) lay, 2012 WNP 6 200-1000 hi net
Tuscaroridae Tuscarora tubulosa 574 (ohdi May. 3013 WKB 8 5661666 ; inai
JS7b (phd) May, 2012 WNP 6 200-1000 _Gamaguchi net
* : : Por Aug., 2013 WNP D1 150-250 VMPS
Porospathidae Porospathis holostoma Bors Aug. 5013 WNP 51 TE60-5066 " ViiPa
Conchellium tridacna JS12e lay, 2012 _WNP 6 200-1000 net
* Conchariidae P JS2 lay, 2012 WNP. 6 200-1000 a net
Conchopsis compressa & v 5015 WP g 5661666 ichi et
e Cd1 July, 2012 ENP 02 0-1000 80cm ring net
Coelodendrum furcatissimum Kei Ty 5613 ENP 6 61666 80em rina net
subclass * Coelodendridae iaai Coel July, 2012 ENP 03 0-1000 80cm ring net
Phaeodaria Coelodendrum ramosissimum  -¢q ey July, 2012 ENP 03021000 80cm ring net
Coelanthemum auloceroides Do8 (phd) _Sep., 2018 S RM2 _ 0-5 vertical net
; Se9 Dec., 2014 ECS (off Sesoko) Ses1 0-8 hand net
Medusetta arcifera p5 Nov.. 012" NS (off Viliefranche-sur-Mer] ~ RM2 " 0-50 vertical net
Gazi Dec., 2015 PhS (off Kashiwajima) KJ 0-5 hand net
* Medusettidae Gazelletta kashiwaensis Gazb Dec., 2015 . PhS (off Kashiw: KJ 0-5 hand net
Ty03 ay, 2015 ECS TY2 0-30 vertical net
; Sy60 Feb.,2018 _PhS V3 100-200 closing NORPAC net
Kozohashefta diodon othi3c july, 2012 ENP 105""500-750"VMPS
Go1 ov., 2012 S (off Villefranche-sur-Mer) RM2 0-50 vertical net
* P ; Go?2 ov., 2012 S (off Villefranche-sur-Mer) RM2 0-50 vertical net
Phaeodinidae Phaeodina sp. GoA4 ov., 2012 S (off Villefranche-sur-Mer), RM2 0-50 vertical net
Go5 ov., 2012 S (off Villefranche-sur-Mer) RM2 _ 0-50 vertical net
: AuV3 ov., 2012 S (off Villefranche-sur-Mer) RM2 0-50 vertical net
* g::;cﬁ?th'dae 1 Aulacantha scolymantha AuV7? ov., 2012 S (off Villefranche-sur-Mer), RM2 0-50 vertical net
AuVs ov., 2012 S (off Villefranche-sur-Mer) RM2 _ 0-50 vertical net
R23 (phd). . Apr., 2014 SJ [0) 250-750
. Aulacanthidae 2 Aulographis japonica R24 (phd)  Apr., 2014 SJ o) 250-750
clade K** R25 (phd).. Apr., 2014 SJ [o) 250-750
Aulographis pandora Au20 July, 2012 ENP 101 0-1000
> Atlanticellidae Atlanticella sp. Med6 (phd) July, 2012 ENP 52 1500-2000
* : Sh9, ov., 2018 WNP (off Kushiro) A 0-500 80cm ring net
Cannosphaeridae _ Cannosphaera sp. Sho ov., 2018~ WNP (off Kushiro) A 0-500 80cm ring et
* Circoporidae Haeckeliana porcellana JS12h lay, 2012 WNP. 16 200-1000 Gamaguchi net
Circospathis sexfurca trifida Kr1 July, 2012 ENP 102 1500-2000 VMPS
KJ2 July, 2015 PhS (off Kashiwajima) KJ1 0-5 hand net
* Astracanthidae Astracantha sp. KJ3 July, 2015 PhS (off Kashiw: ) KJ1 0-5 hand net
Ty24 May, 2015 ECS TY4 0-30 vertical net

*: The phaeodarian "orders" in the current classification system do not reflect their phylogeny (Nakamura et al. 2015), and therefore, their order-level classification was ignored in this study.
**: The phaeodarian clades phylogenetically different from each other (Nakamura et al. 2015).

Abbreviations.

PhS: Philippine Sea. ECS: East China Sea. SJ: Sea of Japan. BS: Bering Sea. ENP: Eastern North Pacific. MS: Mediterranean Sea. WNP: Western North Pacific. ORI net: Ocean Research

Institute net. VMPS: Vertical Multiple Plankton Sampler



Table $3. Proportion in total sequence reads (%) of the host (Radiolaria and Phaeodaria) and other detected organisms (possible symbionts, parasites and food sources).

“The phaeodarian “orders" in the current classification system do not reflect their phylogeny (Nakamura et al. 2015), and therefore, their order-level classification was ignored in this study.
*: The clades nt from each other (Nakamura et al. 2015).
+:18S 1RNA sequences are not registered in NCBI database.

possible symbiont, parasite and food source

classification iste Disco Stramenopiles Alveolata
Iz Euale Ochrophva Dinofiagellata
Choro Pavio\ Prvmr Chivsochrom Pelza Bolde Dllomese _Dinoo Thores GYOIeles Paraees S Brach Dubos Basi Proro Thae
° k:}
H £ . 2 § g § 3 H 2
P : £ H g 5 kS
N . g 8 2 g £ 3 5 I3
e T — gonaspocies pncimen g s ! S EEEI NI SENE
S £ 3 H g 3 £
: £ i i g HENEEIE
o : e § £5 5 3 H £ E § 8§ 0§ % i g 5 g N
§ & 6§ 5 ¢ 8 58 & & b § 8 £ &8 5 8§ & & s 88 s
Titholoohidas Titholoohus 2.20
0.64 22158 1.47 0.10
Acantharia Acanthoplegmidae  Acanthoplegma krohni oo e e
Acanthostauridae Acanthometron pellucidum )
219 6263 B.86
Taxopodia  Sticholonchidae Sticholonche zanclea
000 009
727
Myelastrum trinibrachium s
Euchitoniidae Dictyocoryne profunda
E2  spumeliaria Bictyocoryne siegans 2,05
s Dictyocoryne truncata 1 70.74
g 3 ‘Spongodiscidae Spongaster tetras 013
< Panaridae © 377 018
Nassellaria Spirocurtis s othsb
Thalassosphaeridae  Thalassosphaera sp. [N -
Colloshididae Colloohidi Cold 036
Collodaria ‘Sphaerozour strigulosum Col? 17.68
Sphaerozoidae ‘Sphaerozou trigenimum KT23 033 007
S Odontosphaera macropore Coit 067
e tuberosa Col2 255 086
ot 732 372
Orodaria  Oroscenida Oroscena huxleyi o3 014 39.50 11.61
0r9
) 5121 0.21 0.08 0.35 12.37
Challengeria naresii Pat 076 0.02 670
Paza 028 20.71
. Challengeriidae [o——— st 027
59 0.08 2110 015
Challengeron willemoesi S 006 026 7
V70
Aulosphaera sp.1 l‘f;’s ohd (3333 (3333
. 23 0.06 27.32
V65
Aulosphaera sp.2 e 001 S -
i Sh6o 047
ci2 007 001 007 012 026 083
’ Ct2 ohd 225 915 0.08 813 0.06 2,87 [27.90
. Castanellidae Castanidium sp. c3 014 0.12 1.30 008
Ct3 ohd 002 0.11 002 1861 0.06 05312620 1.0 0.06 0.08 7.45 [HEIE 021 116 647 006
cua 1SS 0.0 0.26 0.09 0.31 011
Castanissa sp. Ctd_phd 001 003 001 001_0.30 1827 072 007965 1.01 251 12.47 BN 3.14 1.08 053 7.67
Tust 100
Tus4 ohd 620 238 0.29 19.16 231 360 19,60 13.18 0.94 0.50 [EENE 101 7.06
Td5 0.01
Td5 ohd 0.01 0.01 0.26 0.35 402 115 0.51 S 26.57 13.31
Tuscaroridae Tuscarora tubulosa Too ! 001 001 I S
JS7a ohd 0.98 0.01 002 0.96 012 462 610 029 0.01 8.47 064 196 (6897, 249 436
JS7b 0.01
JSTb_phd 006 0.03 005 001 001
FIS— Port 133
. pathidae Porospathis holostoma port -
Conchellum tidacra IS12e 0.01 006 001 007 003 003 003 250
. Concharidae Us20 0.12 001 001 002 065 0.08
e Conchopsis compressa ony 0.00 015 3367 001
%% ; Cat
3 Coelodendrum furcatissimum _ ¢qy 012 0.03 002 009 003 001
22 . Ce e Coel 21.51 0.02 26.16 0.04 0.02 896 067 15.16 0.19 [HEE
3 Coe2 001 974 0.01 001 001 060 16.18 020 004 138 163 042
Do8 001
Coelanthemum auloceroides g png 1.92 192 192 2885 2500 [N 1.92
Se9 002
Medusetta arcifera S . 004 007
Gazt 3852 0.03 0.04 321 [5811 0.08
. Medusettidae Gazelletta kashiwaensis Gazs 0.06 14.37
03 137
Sv60 0.01 0.14 034 024 095
Kozohashetta diodon oth13c 001 397 195 214 025
ot 273
Go2 001
. Phacodinidae Phacodina sp oo 001 o 7
Gos 007
AuV3 002 0.04
B Aulaanthidas 1 Aulacantha scolymantha AuV7 0.01
dlade I e
23
R23 ohd 0.01 0.88 199.10°
Aulacanthidae 2 Aulographis japonica 24 (XT3
. cI:de K,,‘ R24 ohd 0.01 501 0.01 0.01 0.01 2221 0.93 329 7.41 61.12
25
R25 ohd 0.01 049 5.02 1.90 1.00 5.86 8573
Aulographis pandora Au20 001 001 001 001 001
Med6 003 (] 007 007 002
. Atlanticelidaet Atlanticolla sp. Med6 _phd 002 002 002 002 2872 002 1.76 874 [57.44 324
Sho5 382 006
B Cannosphaeridaet  Gannosphaera sp. oo
- Haeckellana porcellana JS12h 0.50 75 015 002 00T 7839 006 Ta6.77] 030
Gircoporidaet o this sexturca trifida Krt 0.03 JNNGN 2210 014 003 003 006 0.03
(7
. Astracanthidaet Astracantha sp. KJ3 016




