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1. Introduction

Martensitic transformation is caused by a shear defor-
mation without the diffusion of atoms.1,2) Although it is 
possible to obtain a very hard structure in steels via this 
transformation, the toughness of the resultant material is 
generally insufficient for use as practical structural materi-
als. Therefore, the material is used after adjusting a balance 
of strength and toughness by the heat treatment process 
called tempering. In the course of this process, various meta-
stable carbides form with a temperature change. Because the 
dispersion in microstructure significantly affects the strength 
of the material, detailed studies concerning this phenomenon 
have been undertaken. In particular, the precipitation of 
cementite (θ-carbide) is one of the causes of low-temper-
ature embrittlement,3) and observations of this carbide,4–15) 
as well as ε- and η-carbides, have been widely undertaken 
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by electron beam diffraction. Based on these experimental 
observations, it is hypothesized that the tempering process 
can be separated into the following four stages: the prelimi-
nary, 1st, 2nd, and 3rd stages.4,16)

In the preliminary stage, the microstructure is maintained 
by heat treatment below 100°C. An initial step of the first 
stage is aging up to temperatures of approximately 100°C, 
and it is suggested that the clustering of dissolved carbon 
occurs in the matrix phase in the temperature range from 
100°C to 200°C, resulting in a locally high-carbon region 
in which the metastable carbide with Fe2–3C composition is 
formed.8–11) The metastable carbides have been reported as 
two types of carbides: hexagonal ε-carbide and orthorhom-
bic η-carbide.12,13) In the first stage, aside from the report 
that the ε-carbide was generated as a metastable carbide,14) 
another study showed that both ε-carbide and η-carbides 
formed simultaneously.15) Thus, the detail of the transi-
tion behavior in this stage has not been fully understood 
to date. The second step of the tempering process occurs 
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in the temperature range from 200°C to 300°C, where the 
residual austenite decomposes into cementite and ferrite. 
The third stage of the tempering process occurs between 
300°C and 500°C, where the metastable carbide formed 
in the first stage disappears, and the more stable cementite 
Fe3C forms followed by the metastable Fe2n+1Cn as well as 
Fe5C2, known as χ-carbide. Because these precipitates in the 
early aging stage are very fine, it is difficult to clarify the 
precipitation process by experimental observation; however, 
recent improvements in analytical techniques have led to 
discussions of the transition to carbides with local clustering 
as a precursor.11,17)

In this paper, a thermodynamic analysis based on the 
first-principles calculations was performed, and the temper-
ing process was examined considering clustering behavior 
in a parent phase. We attempt to elucidate a formation 
mechanism of the metastable carbides present in the tem-
pering process, such as η-carbide and cementite. Note that 
in this study, χ-carbide with complex crystal structure and 
ε-carbide with non-stoichiometric carbide, were excluded 
from the object due to computational difficulties.

2. Calculation Procedures

2.1. Structure of Martensite
Figure 1 shows the crystallographic structure of body-

centered cubic (BCC) Fe and the location of the octahedral 
interstitial sites. Positions indicated by the symbols □, △, 
and ×  are octahedral interstitial sites, and all of these sites 
are equivalent to each other in the BCC structure. These 
positions are referred to as the a-sites, b-sites, and c-sites, 
respectively. The axial ratio of martensite is induced 
because of a bias in this site occupation that originates from 
the crystallographic structural correspondence between face-
centered cubic (FCC) and BCC in martensitic transforma-
tion. In FCC/BCC structures, a lattice correspondence called 
the Bain correspondence,18) shown in Fig. 2, exists. Thus, 
the a-sites, b-sites, and c-sites in the BCC structure are not 
equivalent in the FCC structure, and any one of these can 
correspond to the octahedral interstitial position in the FCC 
structure. Therefore, when the diffusionless transformation 
occurs, the transition to the BCC lattice occurs retaining 

only the carbon atoms dissolved in any one set of these 
sites. Therefore, in the martensitic transformation, the BCC 
structure is formed in which carbon is dissolved only in any 
one of these positions. This dissolved carbon causes uniaxial 
strain by increasing the distance between its first nearest 
neighboring Fe atoms. Below 0.25 at.%C, however, such 
a body-centered tetragonal (BCT) structure has not been 
observed. This is attributed to a short-range diffusion of 
carbon over the length scale of a single atomic spacing. That 
is, the BCT structure becomes cubic because the dissolved 
carbon can be distributed across the equivalent interstitial 
positions via short-range diffusion.19) From the presented 
crystallographic findings, it is understood that the uniaxial 
elongation is eliminated and the BCT structure transitions 
to the BCC structure during the tempering process through 
the migration of carbon.

A previous report20) described the BCT solid solutions 
using the first-principles calculations and pointed out that 
BCT-Fe2C ordered structures in the BCT structure could 
transform to η-carbide. However, that study used a model 
in which carbon occupies only the c-site, and the effect of 
carbon occupancy on the a- and b-sites was not discussed. 
In actuality, if the tetragonal strain is small, carbon is more 
likely to occupy the a and b sites as well. Such regions 
appear frequently in the martensite structure with low 
carbon content, such as in the surrounding matrix after the 
precipitation of high-carbon carbides.

In the present study, we performed new calculations 
using BCC-Fe as the structure model with negligibly small 
tetragonal strain for the discussion about the carbide pre-
cipitation process when the a- and b-sites are occupied as 
well as c-sites.

2.2. Cluster Expansion-Cluster Variation Method
In this study, the cluster expansion and cluster variation 

method (CE-CVM) was used to evaluate the free energy 
of formation for martensite. The cluster expansion method 
is a technique that expresses the enthalpy of formation of 
an ordered structure as the sum of a product of the effec-
tive cluster interaction energies (ECIs) and the correlation 
function corresponding to the cluster density, assuming the 
ordered structure is to be formed from various kinds of clus-
ters. In this method, the total energy, Eϕ(V), of an ordered 
structure, ϕ, in a volume, V, is expressed as

Fig. 1. Crystallographic structure of BCC-Fe and the location of 
the three considered octahedral interstitial sites.

Fig. 2. Crystallographic structural correspondence between face-
centered cubic (FCC) and body-centered tetragonal 
(BCT).
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where Jα(V) represents the ECIs in that volume and ζα repre-
sents the correlation function of the cluster of indexed by α. 
Using an infinite number of clusters, the total energy given 
by Eq. (1) can be accurately determined, but for practical 
calculations, the calculation must be terminated with a finite 
number of clusters. Therefore, defining a maximum cluster 
(αmax) that specifies an upper bound on size, the energy of 
the ordered structure is calculated by the sum of the ener-
gies of subclusters that are included in the αmax. The cluster 
correlation function (ζα) is defined by an array of occupied 
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In Eq. (2), n is the number of vertices in the cluster of α 
and N is the number of sites in the crystal structure. Because 
a combination of correlation functions can be uniquely 
determined for any perfectly ordered structure, the cluster 
concentration and the correlation function have a one-to-one 
relationship. The total energy, Eϕ(V ), of an ordered struc-
ture, ϕ, can be accurately evaluated using first-principles cal-
culations; the unknown ECIs, Jα, can then be obtained using 
Eq. (1). However, in this method, the ECIs that completely 
reproduce the left-hand side of Eq. (1) cannot be obtained 
because the actual computation is terminated at a finite 
cluster size αmax. Here, we calculate energies of ordered 
structures sufficiently large compared with the number of 
subclusters and determine the ECIs that can reproduce the 
difference between the left- and right-hand sides of Eq. (1) 
using the least squares method. Once the ECIs have been 
determined, the energies of any atomic arrangement can 
be obtained within the accuracy of the cluster expansion 
without using first-principles calculations. Furthermore, 
by considering the entropy of a given cluster arrangement, 
the free energy of the structure at temperature (T) can be 
expressed as

 F T V J V T S;� � � � � � � �� �
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where γα·Sα is the contribution to the entropy from clusters 
α obtained using the Kikuchi–Barker factor.21) The free 
energy can then be calculated by applying the variational 
method to Eq. (3) and obtaining a correlation function that 
minimizes the value of F(T ;V).

In this study, the projector-augmented wave method was 
used to evaluate the value of Eϕ(V) using the first-principles 
computational code Vienna Ab initio Simulation Pack-
age.22,23) The generalized gradient approximation was used 
to calculate the interchange correlation term, and the energy 
cutoff for the plane wave was taken to be 400 eV. iCVM 
code was used for CE-CVM calculations.24)

2.2.1. Ordered BCC Structures
This section describes the details of the method to gener-

ate the order structure data for the BCC structures used in 
the cluster expansion method. About 500 models with the 
sublattice model of Fe4(C,Vac)12 were constructed, and the 
structural relaxation based on first-principles calculations 

was applied. However, some of these structures deviated 
significantly from BCC because of the small minimum 
distance between the Fe and C atoms of the first near-
est neighbor pair. The cluster expansion method using all 
of these structures results in unacceptably high errors of 
500 meV/site.

Thus, in the present study, a screening of appropriate 
structure models was conducted. We used an energy–vol-
ume (E–V) curve calculation to screen for structures. The 
specific procedure used in this process was as follows:
① The BCC-Fe lattice is fixed, and carbon atoms and 

vacancies are considered at octahedral positions.
② Multiple structure models with different volumes are 

prepared, and the energies are evaluated after relaxing 
only the local atomic positions of each structural model 
under volume-fixed conditions.

③ E–V curve is created and regressed with the Murnaghan 
equation of state.25)

④ Structure models with large root-mean-square error 
(>  0.1 eV) are excluded.

⑤ The energy at the most stable volume of the selected 
structures is used for the cluster expansion.

In the calculations process of ②, it is often observed 
that atom positions deviating significantly from the BCC 
structure do not exhibit systematic positional relaxation 
across different volumes. As a result, the obtained E–V 
curves deviate from the Murnaghan equation. To eliminate 
data contamination caused by these structures, they were 
removed from the analysis. By applying this procedure, the 
error in the cluster expansion was successfully reduced to 
40 meV/site.

2.3. Monte Carlo Simulations
To confirm the clustering behavior of carbon during the 

tempering process, the Markov chain Monte Carlo method 
was used. In this method, the thermal equilibrium distribu-
tion of atoms was obtained using the ECIs determined from 
the cluster expansion method.

The Monte Carlo simulation uses the BCC-type supercell 
made up of 20 unit cells in each axis direction. Periodic 
boundary condition was applied at the boundaries of the 
cells. In the supercell, 16 000 iron atoms at the lattice points 
were considered as well as 48 000 octahedral interstitial 
positions. A process of exchanging atomic positions of all 
carbon atoms and vacancies at the octahedral interstitial 
positions was taken as a single Monte Carlo step (MCS), 
and the canonical ensemble was constructed by performing 
computations of up to 1 000 MCSs. The initial states were 
prepared as a supercell in which carbon atoms were placed 
randomly in the octahedral interstitial positions at 5 at.%. 
The temperatures considered were at 50 K intervals between 
350 K and 600 K, and this range covers the tempering pro-
cess from the initial to the third stage. All calculations were 
performed under constant volume conditions.

2.4. Variable-Cell Nudged Elastic Band Method
When a substance transitions from one state to another, 

a change in the energy because of the transition takes place 
along the minimum energy path (MEP). The highest energy 
point of this path is taken at the saddle point. The activa-
tion energy barrier is calculated from the energy difference 
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between the initial state and the saddle point. The nudged 
elastic band (NEB) method can be used to determine the 
MEP and the saddle point from the start and the end points 
of the transition process for a given composition. In this 
method, we first create an N+1 structure image (R0, R1, …, 
RN) linking the start point and the end point of the process. 
Here, R0 and RN are crystal structure images of the start 
point and the end point of the transition. Each structure 
image is regarded as a phase point on the transition path, 
and we consider a spring that connects these images on the 
energy surface. The force FiNEB  acting at the point Ri is 
defined as

 F F Fi i i
NEB S� ���  ,  ........................... (4)

where Fi��  is the normal component of the force from the 
potential gradient relative to the path and FiS is the paral-
lel component of the force received from a spring relative 
to the transition path. Considering the unit vector τ̂ i  of the 
tangent to the transition path at the phase point Ri, Fi��  and 
Fi

S can be expressed as

 F F Fi i i i i
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where Fi∇  is a potential force at Ri because of the energy 
surface and k is a hypothetical spring constant. In the NEB 
method, the MEP is obtained by optimizing the structure 
of each phase such that FiNEB is minimized for all phases. 
However, because the lattice shapes of the unit cell are 
calculated under the condition of invariance in the conven-
tional NEB method, it is not possible to consider a transi-
tion process including the lattice deformation as a degree 
of freedom. Therefore, following the work of Qian et al.,26) 
we used the technique referred to as the variable-cell NEB 
(VC-NEB) method. The conventional NEB method pro-
ceeds considering the energy surface, whereas the VC-NEB 
method introduces a finite strain tensor that allows for the 
energy surface to be extended to an enthalpy surface; this 
method was then used to carry out the calculation. In this 
study, the MEPs of the phase transformation were obtained 
using the VC-NEB method, which was implemented in the 
Universal Structure Predictor: Evolutionary Xtallography 
code (USPEX).27,28)

For the calculations, 11 initial images were created by 
the linear interpolation from the initial structure to the final 
structure. The distance between those images was defined 
from the sum of the displacements of all atomic positions, 
and new interpolated image was added in the calculation if 
the distance between the images was greater than the defined 
threshold. The threshold was given as the average distance 
between the initial images.

3. Calculation Results

3.1. Free Energy of the Fe–C Binary System
The formation free energy of the Fe–C binary system 

up to 50 at.%C at 350 K calculated using the CE-CVM 
is shown in Fig. 3. The figure shows that for higher car-
bon concentration, the free energy is increased, which is 
considered to be because of energetical destabilization by 
a supersaturated solid solution of carbon. Furthermore, in 

the concentration range of 0–33 at.%C (i.e., Fe–Fe2C), the 
second derivative of the carbon concentration of the free 
energy of formation is negative. This indicates that there is 
a two-phase separation between higher and lower composi-
tion regions. Because a metastable ground state (P42/mnm) 
was identified in Fe2C from the ordered structures created by 
the cluster expansion method, it is expected that the order-
ing of the P42/mnm structure is a candidate for the origin 
of the two-phase separation. Such two-phase separation has 
also been confirmed in a previous study20) investigating the 
BCT structure model. It can thus be inferred that such a 
two-phase separation is one of the thermodynamic origins 
of the carbon clustering that is observed during the early 
stages of tempering.

3.2. Atomic Arrangement of Carbon in BCC-Fe
The change in the configuration of the carbon atoms with 

increasing MCSs at 350 K is shown in Fig. 4. As the number 
of MCSs increases, the carbon-enriched clusters gradually 
develop. In Fig. 4, an enlarged view of one of the clustered 
regions is also shown. The figure also displays carbon–
carbon bonds at distances of about 2.8 Å. In small clusters, 
two carbon atoms are locally aligned in the <001> BCC 
direction at this distance. In larger clusters, carbon atoms 
consisting of several atoms were observed to be aligned 
in the <001> BCC direction. These features were observed 
similarly over the temperature range of 50 K to 600 K.

The characteristics of the atomic arrangement of carbon 
atom clusters are shown in Fig. 5. The small spheres in 
the figure represent carbon/vacancy sites, and circled sites 
are occupied by carbon. The dotted lines between carbons 
correspond to the bonds between carbons shown in Fig. 

Fig. 3. Formation free energy of the Fe–C binary system for a 
temperature of 350 K calculated using the CE-CVM. 
There is a two-phase separation between higher and lower 
carbon concentrations.



ISIJ International, Vol. 64 (2024), No. 2

© 2024 ISIJ261

of equivalent clusters in the three axes of <001> BCC at the 
same time. Figure 5(a) shows the arrangement of clusters 
consisting of carbon pairs identified in the smaller clusters. 
The carbons occupy a vacancy site corresponding to the 
third nearest neighbor from carbon atom (~2.8 Å) in the 
[001]BCC direction. In contrast, the vacancy sites at the first 
nearest neighbor (~1.4 Å) and second nearest neighbor 
(~2.0 Å) from carbon are not occupied by carbon, sug-
gesting a tendency to have repulsive interactions between 
carbon atoms at these distances in BCC-Fe. Furthermore, 
the carbon pairs tend to be arranged orderly and be aligned 
in the [012] or [102] shifted position. Figure 5(b) shows 
the atomic arrangement of the carbon atoms in the large 
clusters. The local structural features are identical to those 
in Fig. 5(a), but the one-dimensional arrangement of the 
carbon atoms increases with increasing size. The three-
dimensional arrangement is also well defined, and when 
constructed to satisfy the periodic boundary condition 
based on this arrangement, we obtain a Fe2C structure with 
P42/mnm, which is consistent with the metastable basis 
described in Section 3.1. This suggests that the carbon con-
centration increases up to Fe2C because of the development 
of clusters by the two-phase separation. Because this Fe2C 
has the same composition as η-carbide, a structural trans-
formation to η-carbide is assumed. Therefore, this structure 

Fig. 4. Changes in a configuration of carbon atoms with increasing Monte Carlo steps (MCSs) at T =  350 K for 5 at.%C. 
Fe atoms are erased and only carbon atoms are shown. The carbon–carbon bonds in the third nearest neighbor 
are displayed by the short solid lines in the figure. (Online version in color.)

Fig. 5. Details of the crystal structure in clustered regions of car-
bon. Visualization of characteristics in regions where (a) 
cluster size is small and (b) cluster size is large. The sites 
occupied by carbon are indicated by circles. (Online ver-
sion in color.)

4. The figure shows an example of carbon aligned in the 
[001]BCC direction, but because of the cubic symmetry, the 
Monte Carlo calculation confirmed the atomic arrangement 
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was introduced into the VC-NEB calculations.
On the other hand, a structure consisting of carbon pairs 

was observed in the region of small clusters, and it is 
considered that the structure reaches Fe2C with a gradual 
increase in carbon concentration. Because the carbon 
enrichment process to Fe2C from Fe also involves Fe3C 
composition, cementite precipitation is assumed to occur 
in the intermediate stage of the enrichment process. Hence, 
we created a Fe3C structure (P21/c) by replacing some of 
the carbon in Fe2C P42/mnm with vacancies and used it in 
the VC-NEB calculation to determine the transition process 
from η-carbide to cementite. The details of the structure are 
described in Section 3.3.1.

3.3. Calculation of Transition Barriers
3.3.1. Transition Models

To calculate the transition barriers using the VC-NEB 
method, it is necessary to construct a transition model con-
sidering a correspondence between the atomic positions in 
the structure before and after the transition.

In the first stage of tempering, the transition from the 
BCC-Fe structure to η-carbide occurs. In the third stage of 
tempering, the transition from BCC-Fe to cementite struc-
ture or from η-carbide to cementite structure occurs. There-
fore, η-carbide and θ-carbide were used as the final states 
of the phase transition. The structural parameters of the 
η-carbide are the space group Pnnm with lattice constants 
a =  4.70 Å, b =  4.32 Å, c =  2.83 Å. On the other hand, 
the θ-carbide of the space group is Pnma and the lattice 
constants are a =  4.38 Å, b =  5.01 Å, c =  6.69 Å.

To obtain an atomic correspondence between the BCC-
Fe and η-carbide structures, a transition model was created 
based on the orientation relationship ([100]η//[1–10]BCC, 
[010]η//[110]BCC, [001]η//[001]BCC) obtained by Jack.8,29,30) 
Regarding the BCC-Fe and cementite structures, several 
orientation relationships have been found.11,31–35) These 
appear in different orientations depending on composition, 
temperature, and cementite precipitation size. In this study, 
we did not construct the models from all of these patterns 
and perform a comprehensive calculation. The present study 
focuses on the model according to Bagaryatsky’s orientation 
relationship,34,35) i.e., [100]θ//[1–10]BCC, [010]θ//[111]BCC, 
[001]θ//[11–2]BCC. The relationship shows a relatively 
good correspondence between clustered local structure and 
atomic positions based on the Monte Carlo simulations.

On the other hand, the orientation relationship between 

η-carbide and cementite is not clear. Therefore, in this 
study, we estimated the orientation relationship by combin-
ing Jack’s and Bagaryatsky’s orientation relations. That is, 
the matrix correspondence is expressed as follows.
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Here, the matrix on the left side is the three components of 
Jack’s BCC orientation, and the second matrix on the right 
side of the equation is the three components of Bagaryatsky’s 
BCC orientation. From this, we assume that the orientation 
relationships are [100]θ//[100]η, [010]θ//[011]η, and [001]θ//
[01–2]η.

These orientation relationships are summarized in Figs. 
6 and 7. Figure 6 visualizes the orientation relationship 
between η and BCC-Fe based on Jack’s orientation rela-
tionship, while Fig. 7 shows the orientation relationship 
between cementite and BCC-Fe based on Bagaryatsky’s 
orientation relationship. The relationship in Eq. (7) was also 
applied to η-carbide in Fig. 7. The orientation relationships 
between η-carbide and BCC are shown in Figs. 6(a) and 
6(b), and Figs. 7(a) and 7(b) show the orientation relation-
ship between cementite and BCC-Fe. In addition, the habit 
planes are shown in gray colors in the figures.

Note that in VC-NEB calculations, the number of car-
bon atoms, as well as the orientation relationship, must 
also match the initial and final structures. In terms of the 
number of carbon and iron atoms, BCC-Fe2C in Fig. 6(c) 
corresponds to η-carbide. Besides, BCC-Fe3C and η-type-
Fe3C in Figs. 7(c) and 7(e) correspond to cementite. The 
η-type-Fe3C is formed by removing carbon from η-Fe2C. 
These structures are based on the atomic arrangements in 
the local structures obtained from the Monte Carlo calcula-
tions described in Section 3.2. Figure 6(c) shows a structural 
model of the long-range ordered structure of Fe2C sliced 
by Bagaryatsky’s orientation relation. On the other hand, 
the structure of BCC-Fe3C is shown in Fig. 7(c), where 
the carbon atoms replaced with vacancies in BCC-Fe2C 
are indicated by shaded symbols and arrows. Because the 
carbon–carbon pairs exist as shown by the dotted lines, this 
structure reproduces the local atomic arrangement observed 
in the Monte Carlo calculation shown in Fig. 5(a). Fur-
thermore, the η-Fe2C structure and BCC-Fe2C have high 
similarity by comparing Figs. 6(a) and 6(c) and Figs. 7(c) 

Fig. 6. Orientation relationship between (a) η-carbide and (b, c) BCC-Fe.
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and 7(d), and the atomic positions of iron and carbon in the 
two structures are close. Based on this correspondence, the 
η-type-Fe3C structure was created by introducing vacancies 
at carbon atom positions similar to those in Fig. 7(c). The 
structure of η-type-Fe3C is shown in Fig. 7(e). Previous 
experimental findings do not suggest the existence of such 
a carbon-deficient structure from η-Fe2C, but at the inter-
face between η-Fe2C and matrix, the migration of C atoms 
can occur constantly via a thermally activated process. This 
suggests the possibility that such a structure could be locally 
developed. The transition from BCC-Fe2C to η-carbide was 
then calculated using Figs. 6(c) and 6(a), from BCC-Fe3C 
to cementite was obtained from Figs. 7(c) and 7(a), as well 
as the transition between η-carbide and cementite from 
Figs. 7(e) and 7(a). Furthermore, because the precipitates 
in this study undergo structural transitions in the presence 
of an interface with different phases, the interface energy 
contributes to the transformation barrier. Therefore, in this 
study, energy calculations of the transformation barrier for 
structures with two-phase interfaces were also performed. 
However, an attempt to reproduce the crystal structure of 
the precipitate accurately, including all three-dimensional 
interfaces, would require a structural model beyond the size 
that is available for first-principles calculations. Therefore, 
based on the experimental knowledge for habit plane,29,34) 
structural models with interfaces only on the habit plane, 
as shown in Fig. 8, were created and used in the calcula-
tion. These structural models have an interface on the habit 
plane, but have no interface in the horizontal axial direction 
because of the periodic boundary condition.

The interface models were constructed using MedeA.36) 
The NEB method was then applied to calculate the transi-
tion energies as in the calculations for the single phase. A 

summary of the transition model with the interface is shown 
in Table 1. In this study, the process of precipitation and 
growth of carbides was described by a rather simplified 
model considering the initial and final states of the process. 
For example, model I corresponds to the process in which 
BCC produces η-Fe2C, forming a new interface with BCC. 

Fig. 7. Orientation relationship between (a) cementite, (b, c) (BCC)-Fe, and (d, e) η-carbide.

Fig. 8. Example for the initial structure models with an interface. 
Models I and II correspond to that listed in Table 1.
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On the other hand, the model IV corresponds to the process 
where the BCC having the interface with the θ-Fe3C trans-
forms to θ-Fe3C, resulting in an increase in the volume of 
θ-Fe3C. Based on the above concept, six transition models 
(I-VI) given in the Table 1 were created.

3.3.2. Calculation Results of VC-NEB
The results for BCC-Fe2C to η-Fe2C, BCC-Fe3C to 

cementite, and η-type-Fe3C carbides to cementite calculated 
by VC-NEB are plotted in Figs. 9–11, respectively. Figures 
9(a), 10(a), and 11(a) show the calculated energy changes 
for the case of a single-phase transition without interface. 
On the other hand, Figs. 9(b), 10(b)–10(d), and 11(b)–11(d) 
show the results for the transition processes calculated using 
the structural models with the interface for the items I–VI 
listed in Table 1. The initial and final structures in Figs. 
10 and 11 were at first relaxed to the local stable state by 
structural relaxation. On the other hand, the unrelaxed ini-
tial structure was used in Fig. 9 because relaxing the initial 
structure led to a spontaneous change to the final structure 
comprising the absence of a locally stable structure.

The transition energy barriers estimated from the VC-
NEB calculations are summarized in Table 1. We describe 
the transition barrier energies in more detail in the following 
sections.

3.3.3. Transitioning from BCC to η-Fe2C
As shown in Fig. 9, transitioning from the BCC-Fe2C to 

the η-carbide phase shows a monotonous and continuous 
decrease in energy in both cases with and without the BCC 
matrix interface. This is because of the high similarity in 
carbon and iron atom positions between the η-carbide and 
BCC-Fe2C as described in Section 3.2., and thus, no large 
migration of atoms is required. This infers that BCC under-
goes the structural phase transition to η-Fe2C without any 
barriers once the clusters are generated in BCC.

However, the question arises whether the structural trans-
formation to η-Fe2C can occur even if the cluster size is 
minute. The magnitude of the critical nuclear radius is not 
discussed in the framework of VC-NEB because VC-NEB 
uses a structural model with periodic boundary conditions 
applied in the axial direction parallel to the interface and 
performs calculations in which precipitates with infinite 
size are generated. By contrast, the balance between the 

Table 1. List of created transition models with interfaces and transformation explanation for each model.

Model Initial state Final state Explanation of transformation Energy  
barrier (eV)

I BCC-Fe/BCC-Fe2C 6(b)/6(c) BCC-Fe/η-Fe2C 6(b)/6(a) Precipitation of η-carbide in  
BCC matrix 0.000

II BCC-Fe/BCC-Fe3C 7(b)/7(c) BCC-Fe/θ-Fe3C 7(b)/7(a) Precipitation of cementite in  
BCC matrix 0.093

III η-Fe2C/BCC-Fe3C 7(d)/7(c) η-Fe2C/θ-Fe3C 7(d)/7(a) Precipitation of cementite with aid from  
η-carbide as precipitation site 0.075

IV θ-Fe3C/BCC-Fe3C 7(a)/7(c) θ-Fe3C/θ-Fe3C 7(a)/7(a) Growth of cementite at the interface with BCC 0.055

V η-Fe2C/η-type-Fe3C 7(d)/7(e) η-Fe2C/θ-Fe3C 7(d)/7(a) Precipitation of cementite in η-carbide 0.100

VI θ-Fe3C/η-type-Fe3C 7(a)/7(e) θ-Fe3C/θ-Fe3C 7(a)/7(a) Growth of cementite at the interface  
with η-carbide 0.075

The figure numbers of the corresponding structures are listed together. The transition barrier energies obtained in Sec. 3 are also 
listed.

surface energy of the precipitate and the driving force per 
unit volume of transformation gives a finite critical core 
radius in reality. Then, we applied the classical nucleation 
theory in conjunction to obtain the precipitate nucleus size 
of η-Fe2C. According to the classical nucleation theory, the 
critical nucleation radius, r*, and the activation energy, Δgc, 
are given by

 r
GV

* ,� �
2�
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3

2

��
,  .............................. (9)

where σ is the interface energy and ΔGV represents the 
driving force per unit volume. The interfacial energy σ was 
obtained from a difference between the energy Eint in the 
interfacial model and the average of the energies EBCC and 
Eη for the BCC-Fe and η-carbide phases normalized by the 
area of the interface

Fig. 9. Transition energies from BCC-Fe2C to η-Fe2C. The terms I 
correspond to that listed in Table 1.
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The energy of each model was calculated so that the number 
of Fe atoms is equal. The driving force ΔGV was calculated 
by calculating a tangent to the free-energy curve showing 
against carbon composition at the compositions of 2.5, 5.0, 
and 10.0 at.%C and deriving the difference between this and 
the tangent to the free-energy curve at the stoichiometric 
composition of the η-carbide phase, i.e., 33 at.%C. The 
critical nucleation radii and activation energies calculated 
in this work are summarized in Table 2. The size of criti-
cal nucleation radii is in the order of a few atoms, and the 
activation energies are very small. Thus, the formation of 
η-carbides is considered to proceed more dominantly by 
the cluster formation process than by the nucleation process. 

Furthermore, the critical nucleation radii obtained here are 
consistent with previous experimental investigations13,15) in 
which the precipitation of η-carbide was so fine that it was 
difficult to observe by electron‐beam diffractometry.

3.3.4. Transition from BCC to Cementite
As shown in Fig. 10(a), the transition from BCC-Fe3C to 

cementite has an energy barrier of 0.060 eV. When the inter-
face was considered, the transition energy was 0.093 eV, as 
shown in Fig. 10(b). On the other hand, the energy in the 
case of the transition from BCC to cementite with the inter-
face to η-carbide was calculated as 0.075 eV, given in Fig. 
10(c). This value is lower than 0.093 eV, and the cementite 
precipitation from the BCC matrix is not likely to occur 
directly, but rather via precipitation with the assistance of 
η-carbide.

In the case of the transition of the BCC structure to 
cementite at the interface with cementite, the transition 

Fig. 10. Transition energies from BCC-Fe3C to cementite. The 
terms II–IV correspond to those listed in Table 1. The 
values in the figure are the energies of the transition bar-
riers.

Fig. 11. Transition energies from η-type-Fe3C to cementite. The 
terms V–VI correspond to those listed in Table 1. The 
values in the figure are the energies of the transition bar-
riers.

Table 2. List of critical nucleation radii and activation energies.

at.%C wt.%C ΔGV (kJ/m3) σ (J/m2) r* (nm) Δgc (J/atom)

 2.5 0.55 –2.3 ×  106 0.42 3.0 ×  10–20

 5.0 1.12 –2.1 ×  106 0.49 0.46 3.6 ×  10–20

10.0 2.33 –1.6 ×  106 0.60 6.0 ×  10–20
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barrier energy was 0.055 eV, as shown in Fig. 10(d). This 
energy is the smallest value among the four conditions in 
Fig. 10. This implies that once cementite is formed, the 
energy barrier for the cementite formation from the neigh-
boring region becomes smaller and grows easily.

3.3.5. Transitioning from η-Carbide to Cementite
The transition energy from η-carbide to cementite was 

0.084 eV with the absence of an interface, as shown in 
Fig. 11(a). The energy changed to 0.100 eV when an inter-
face with BCC was involved, as given in Fig. 11(b). By 
contrast, the energy barrier for the transition of η-Fe3C to 
cementite with the interface between η-Fe2C and cementite 
is 0.075 eV, as shown in Fig. 11(c). Thus, it is inferred that 
the η-type-Fe3C is most likely to transit to cementite under 
the condition that the interface with cementite exists.

4. Discussion

4.1. Clustering Behavior in BCC and BCT-Fe
The CE-CVM and Monte Carlo methods show the results 

of two-phase separation based on ordering. The results show 
that the ordered structure of BCC-Fe2C (P42/mnm) is differ-
ent from that of BCT-Fe2C (Pnmm) reported previously.20) 
Carbon atoms in the ordered structure occupy only the 
c-site in the BCT, whereas the ordered cluster is formed in 
the form of a- and b-site occupancy in BCC. Furthermore, 
the atomic arrangement of BCC is highly similar to that of 
η-carbide. This is the reason for the transition to η-carbide 
without any transition barriers besides carbon diffusion.

Recently, Kawahara et al.11) identified the carbon-
enriched region with a tetragonal strain of c/a =  1.1, which 
was inferred to be Fe8C based on the correlation with the 
axial ratio of α″-Fe16N2. However, such a stable structure 
was not clarified in this study. The present study is lim-
ited to the investigation of the arrangement patterns of 
carbon and vacancies in the 12 sites using the maximum 
Fe4(C,Vac)12 sublattice model. A larger structural model 
Fe8(C,Vac)24 is required to describe Fe8C; however, this 
calculation was avoided in the present study because of the 

exponentially increasing number of cluster combinations. 
Considering the formation of this carbide is expected to be 
our future research subject.

4.2. Comprehensive Transition Processes in Tempering
Transition processes are discussed from the perspec-

tive of the relationship between the clusters in BCC and 
the transition barrier energies. Because complex carbides 
such as χ-carbides and non-stoichiometric carbides such as 
ε-carbides are out of our scope, the discussion focuses on 
the carbide formation processes in the first and third stages.

4.2.1. Transition Processes in the First Stage of Tempering
The free energies calculation using the cluster expan-

sion and variation method showed two-phase separations 
between Fe and Fe2C. The Monte Carlo simulation showed 
that the clusters of carbon in a one-dimensional arrangement 
originate from the two-phase separation form in BCC-Fe. 
This suggests that the precipitation of η-carbide occurs 
almost simultaneously with the formation of clusters. Based 
on the classical nucleation theory, the critical nucleation 
radius was found to be in the order of several atoms. This 
result is supported by experimental findings that the initial 
precipitation of η-carbide occurs so finely that it is difficult 
to observe via electron diffraction.13)

4.2.2. Transition Processes in the Third Stage of Temper-
ing

Potential transitions in the third stage of tempering are 
discussed referring to the transition processes II, III, IV, 
V, and VI listed in Table 1. First, comparing the values of 
the energy barriers for transitions II and III, cementite is 
unlikely to precipitate directly from the parent phase; rather, 
it may precipitate on the previously formed η-carbide that 
acts as precipitation sites. Furthermore, because the energy 
barrier of transition IV is rather small, cementite grows by 
consuming carbon from the martensite matrix continuously. 
When the energy values of transitions V and VI are com-
pared, we concluded that the transition from η-carbide to 
cementite begins from the interface between η-carbide and 

Fig. 12. Schematic diagram depicting the process of tempering in steel.
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cementite produced by transition III, and eventually, the 
η-carbide disappears.

The whole process of tempering is summarized in the 
schematic diagram of Fig. 12. In low-temperature tempering 
of martensite, the transition process of “clustering” → I → 
III → IV → VI occurs, followed by the disappearance of 
metastable η-carbides via precipitation into cementite. Such 
a transition process is supported by previous experimental 
work.13)

5. Conclusions

In this study, the tempering behavior of martensite Fe–C 
was analyzed using a simulation based on first-principles 
calculations, and the formation mechanisms for the meta-
stable carbides at the first and third stages of tempering were 
discussed. The primary findings obtained in this work can 
be summarized as follows:

(1) The Monte Carlo simulations using ECIs evaluated 
from the cluster expansion method suggested that ordered 
structures with a composition of Fe2C with local structures 
similar to η-carbide formed in clusters in the BCC structure. 
Simultaneously, clusters with lower carbon concentrations 
were observed in the microstructure. This is caused by the 
two‐phase separation between Fe and Fe2C compositions 
calculated using the cluster expansion and variation method.

(2) The VC-NEB method showed that the transition 
from the BCC-Fe2C ordered structure to η-carbide occurred, 
and subsequently, fine η-carbide precipitated. Furthermore, 
the transition from the BCC-Fe3C ordered structure to 
cementite was confirmed at the interface between η-carbide 
and matrix in the third stage of tempering. It was suggested 
that the cementite formed using prior precipitated η-carbide 
as a precipitation site. It is possible for cementite to grow 
further by consuming carbon from the matrix, suggesting 
that η-carbides disappear through the transition to cementite.
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