
Atom-Economical Syntheses of Dihydropyrroles Using Flavin-Iodine-
Catalyzed Aerobic Multi-Step and -Component Reactions 
Aki Takeda, Marina Oka, and Hiroki Iida* 

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, 
Matsue 690-8504, Japan 

ABSTRACT: Herein, we report facile, atom-economical syntheses of multi-substituted 2,3-dihydropyrroles using flavin-iodine-cat-
alyzed aerobic oxidative multi-step transformations of chalcones with β-enamine ketones or 1,3-dicarbonyl compounds and amines. 
Exploiting coupled flavin-iodine catalysis, the multi-step reaction, including C–C and C–N bond formation, is promoted only by the 
consumption of O2 (1 atm), thus allowing aerobic oxidative synthesis that generates green H2O as the only waste. 

Dihydropyrroles are a vital class of five-membered N-con-
taining heterocyclic moieties that occur in numerous biologi-
cally active and natural products, such as bohemamine1 and spi-
rotryprostatin B (Fig. 1).2,3 Various methods of synthesizing 
multi-substituted 2,3-dihydropyrroles, which generally involve 
cycloaddition4 and metal-mediated reactions5, have been devel-
oped.6 This is because of their importance not only in medicinal 
chemistry, but also as useful synthetic intermediates in produc-
ing diverse N-heterocyclic compounds using highly functional-
ized pyrrolidines and pyrroles.7 The development of a novel ap-
proach to enable atom- and step-economical synthesis using 
readily accessible starting materials is required. In 2015, Li et 
al. reported the oxidative syntheses of 2,3-dihydropyrroles, 
which are promoted by the oxidative tandem reaction between 
chalcones and b-enamine ketones using stoichiometric amounts 
of I2 and K2CO3 (Scheme 1A).8 Changing the stoichiometric 
synthesis method to an eco-friendly catalytic process that pro-
ceeds under gentle oxidative conditions may lead to the most 
facile and straightforward routes to access multi-substituted 
2,3-dihydropyrroles among the synthetic methods reported to 
date. Furthermore, we anticipated that the catalytic system is 
favored when using three-component reactions that afford read-
ily accessible chalcones, 1,3-dicarbonyl compounds, and 
amines. The application to the multi-component reactions that 
provide high yields, atom/step economy, and shorter reaction 
times is recognized as a useful approach for developing eco-
friendly processes.9 

C–X (X = C, O, N, S…) bond formation via catalytic cross-
dehydrogenative coupling (CDC) between the C–H and X–H 
bonds of substrates is a key, attractive strategy to enable step- 
and atom-economical syntheses because pre-activation of the 
substrates in CDC is unnecessary.10 Although oxidative CDC 
requires stoichiometric amounts of oxidants, catalytic aerobic 
CDC, with O2 as the terminal oxidant, is an ideal green method. 
The use of O2 exhibits apparent economic and environmental  

 

Figure 1. Biologically active dihydropyrroles. 

 
Scheme 1. Synthetic strategy in preparing pentasubstituted 2,3-
dihydropyrroles 3 via the (A) previously reported stoichio-
metric reactions of 1 and 2, and (B) flavin-iodine-catalyzed aer-
obic two-component reactions of 1 and 2 or three-component 
reactions of 1, 4, and 5. 
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advantages, such as sustainable abundance, safety, cost-effec-
tiveness, atom economy, and minimal pollution,11 and catalytic 
aerobic CDC generates green H2O as the only waste.12 Recently, 
our group developed a metal-free dual catalytic system, using a 
biomimetic flavin organocatalyst13,14 and an iodine catalyst, for 
use in aerobic oxidative transformations.15 The flavin-iodine 
catalytic system was applied in aerobic CDC to form C–S16 and 
C–N bonds17, enabling the atom-economical syntheses of imid-
azo[1,2-a]pyridines17b and imidazoles.17c Herein, as an attrac-
tive application of the flavin-iodine catalytic system, we report 
the first catalytic syntheses of pentasubstituted 2,3-dihydro-
pyrroles 3 using chalcones 1 and b-enamine ketones 2 (Scheme 
1B). This dual catalytic system is further applied in three-com-
ponent syntheses, thus providing the first three-component re-
actions of readily accessible 1, 1,3-dicarbonyl compounds 4, 
and amines 5. In these systems, multiple flavin- and iodine-cat-
alyzed processes, including aerobic CDC in ring-closing C–N 
bond formation, lead to atom-economical O2-mediated synthe-
sis. 

We investigated the effects of various flavins, e.g. neutral ri-
boflavins 6, 5-ethyl isoalloxaziniums 7, 1,10-ethylene-bridged 
alloxaziniums 8, and 5-ethyl alloxaziniums 9, on the CDC reac-
tions of 1a and 2a (1.2 equiv) under O2 (1 atm, balloon) in 
CH3CN at 60 °C, with I2 as the co-catalyst (Table 1). The flavin-
iodine-catalyzed system was successful, and the desired product 
 
Table 1. Effects of flavin catalysts on the aerobic oxidative re-
action between 1a and 2a. 

 

 

3a was produced via the aerobic oxidative tandem reactions (en-
tries 1–9). Among the flavin catalysts evaluated, the use of elec-
tron-deficient 8-trifluoromethyl-substituted alloxazinium salt 
9b·TfO18 (TfO = triflate) resulted in the optimal yield (entry 9). 
Further optimization of the reaction conditions revealed that 3a 
was obtained in an 86 % yield when 3 mol% 9b·TfO and 2 
equiv of 2a were used in CH3CN (entry 10). Under the present 
condition, the further dehydrogenative oxidation of 2,3-dihy-
dropyrroles to pyrroles hardly occurred. Although investigation 
of the solvent effect revealed that 1,2-dichloroethane (DCE) ac-
celerated this reaction in comparison to that in CH3CN (Ta-
ble S1), we used non-halogenated CH3CN as the solvent in the 
two-component reaction.19 
    After optimizing the reaction conditions, we studied the sub-
strate scope and limitations of the two-component reactions be-
tween 1 and 2 (Scheme 2). 1 bearing electron-donating or -with-
drawing substituents, such as methoxy, nitro, methyl, and 
chloro groups, efficiently reacted with 2 to generate the desired 
products 3a–3f in moderate to good yields. Even when R4 of 1 
was a methyl group, the reaction proceeded and yielded the 
product 3d in 46% yield. Dihydropyrrole formation also pro-
ceeded using thiophenyl and furyl propenones, producing the 
desired products 3g and 3h in 67 and 66% yields, respectively. 
The use of 2 bearing an N-methoxyphenyl or a butyl group at 
the N-position furnished the corresponding 2,3-dihydropyrrole 
3i or 3j in a 65% or 44% yield, respectively. Conversely, when 
 
Scheme 2. Substrate scope of dihydropyrrole synthesis via the 
flavin-iodine-catalyzed oxidative reaction of 1 and 2. a Condi-
tions: 1 (0.50 M), 2 (1.0 M), 9b·TfO (3 mol%), I2 (10 mol%), 
and CH3CN under O2 (1 atm, balloon) at 60 °C for 30 h. b I2 (20 
mol%) was used. c In 1,2-DCE. d 1 (1.0 M) and 2 (0.50 M). e At 
80 °C for 18 h. 
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Scheme 3. Control experiments. 

 
 
the ester functionality was changed to an acyl unit, the yield of 
3k decreased to 14%. 

Following the assessment of the scope and limitations of the 
two-component reaction, we conducted control experiments to 
elucidate the reaction mechanism of the flavin-iodine catalytic 
system. The reaction of 1a with 2a did not proceed efficiently  
in the absence of flavin, I2, or O2 (Scheme 3A). Notably, 3a was 
catalytically synthesized when atmospheric air was used instead 
of O2. The addition of the radical scavenger 2,6-di-tert-butyl-4-
hydroxytoluene (BHT, 1.0 equiv) did not influence the yield of 
3a, suggesting that no radical process occurred in this reaction. 
    The flavin-iodine-catalyzed system provided an efficient 
two-component synthesis of 3, but 2 should be prepared via the 
dehydrogenative condensation of 4 and 5 prior to use. As the 
pre-functionalization of 2 should be reduced using this catalytic 
system, we attempted three-component syntheses of 3 via 
multi-step reactions using the readily accessible starting mate-
rials 1, 4, and 5. The three-component reaction of 1a, 4a, and 
5a successfully produced 3a in an 81% yield within 12 h when 
DCE was used as the solvent (Scheme 4). The reaction was suc-
cessfully scaled up to gram-scale, resulting in 3a with 76% yield. 
Gratifyingly, the substrate scope of the three-component reac-
tion was almost equivalent to that of the two-component reac-
tion with 2 as the starting material. Via reactions between 1, 4, 
and 5, diverse pentasubstituted 2,3-dihydropyrroles could be 
readily prepared. Compounds 1, 4, and 5 were amenable to 
these dihydropyrrole syntheses, generating products 3b, 3l, 3m, 
3h, 3i, and 3n in 67–81% yields. However, the three-component 
reaction using butyl amine or 1-phenyl-1,3-butanedione hardly 
gave the desired products 3j, 3o, or 3p. 
Based on the experimental results and reported literature8, we 
propose the mechanism of this flavin-iodine-catalyzed three-
component reaction (Scheme 5). b-Enamine ketone 2 is initially 
formed via dehydrative condensation between 4 and 5 
(Scheme 5A). I2 acts as a good halogen bond catalyst in Michael 
addition at the carbonyl oxygen of 1.20 In this system, 1 is acti-
vated via the formation of 1•I2 that undergoes Michael addition 
with 2, affording intermediate 10. The C–H bond of 10 is acti-
vated via electrophilic substitution with I2 to yield the iodo ad-
duct 11, which undergoes intramolecular nucleophilic 

substitution. This might be one of the examples where in-situ 
umpolung of carbonyl compounds is generated by the flavin-
catalyzed system.21 Thus, the I2-mediated intramolecular CDC 
of 10 produces the desired 2,3-dihydropyrrole 3, along with HI. 
The flavin catalyst Fl may regenerate I2 via aerobic oxidation 
of the in situ-generated HI (Scheme 5B). In the flavin catalytic 
cycle, HI oxidation is efficiently promoted by the reaction not 
only with Fl but also the flavin hydroperoxide FlOOH, which is 
formed by the reaction of O2 and Flred that is formed from Fl.15 
Therefore, flavin-iodine catalysis enables the atom-economical 
syntheses of 3 via two- or three-component reactions that con-
sume only O2 and generate green H2O as the only waste. Flavin 
catalysis contributes to the regeneration of I2 from I–, but it no-
tably consumes the H+ generated by the intramolecular CDC of 
10. Due to flavin catalysis, this reaction system does not require 
the addition of a stoichiometric amount of base to trap H+. Re-
markably, the three-component reaction of 1a, 4a, and 5a 
hardly occurred under the reaction conditions using stoichio-
metric amounts of I2 and K2CO3 (Scheme 3B), whereas the stoi-
chiometric reaction between 1a and 2a afforded 3a in a 50 % 
yield under these conditions (Scheme 3C). This clearly revealed 
the advantage of this flavin-iodine catalytic system, with the 
successful facile three-component syntheses of 3 using readily 
available 1, 4, and 5. 

 
Scheme 4. Facile three-component syntheses of 3 via the flavin-
iodine-catalyzed oxidative reactions of 1, 4, and 5. a Conditions: 
1 (0.75 M), 4 (0.50 M), 5 (0.50 M), 9b·TfO (3 mol%), I2 (10 
mol%), and DCE under O2 (1 atm, balloon) at 60 °C for 12 h. 
b Determined via 1H NMR spectroscopy, using 1,3,5-trimethox-
ybenzene as the internal standard. c Gram-scale reaction using 
1.0 g of 1a. d 1 (1.0 M). e For 18 h. 
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Scheme 5. Plausible mechanisms of the (A) aerobic oxidative 
three-component reactions of 1, 4, and 5 catalyzed by flavin and 
iodine and (B) flavin catalysis. 

 
 
    We demonstrated the first atom-economical catalytic synthe-
ses of pentasubstituted 3 using 1 and 2. Furthermore, we per-
formed facile three-component syntheses of 3 using readily 
available 1, 4, and 5 for the first time. In the multi-step synthesis, 
coupled flavin-iodine catalysis efficiently promoted the aerobic 
intramolecular CDC of intermediate 10 to form the new C–N 
bond of 3. Therefore, it enables atom-economical multi-step 
transformations under metal-free conditions, consuming only 
O2 and generating only H2O as a by-product. Our findings 
demonstrated that the coupled redox organocatalysis system en-
hances the electron transfer from the substrates to O2, which is 
an interesting and powerful tool for the design of eco-friendly 
synthesis protocols using aerobic oxidative multi-step processes. 
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