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It is suggested that the ¢gqqd mesons, which have been predicted by the MIT bag model
and can be presumably identified with observed ¢(600~800) and etc., really have a short-
distance effect on the 0~ —0~ scattering.

§1. Introduction

The 1/N, expansion®) of QCD provides the conceptual link between the colour
gauge theory and the dual models.?> Especially, it is expected that QCD leads, in
the leading order of the expansion, to a confinement and gives somtehing like the tree
approximation of a planar dual model.?> In fact, for the mesons at least, experimental
data show the dominance of the simplest planar topologies, for example, the exchange
degeneracy, ideal mixing and the OZI rule. However, in the presence of the short-
distance interaction such as the one-gluon exchange, the confinement, or, the hadron
spectrum will be more complicated than what one usually imagines. In this paper,
we shall suggest a possible short-distance effect on the meson-meson scattering.

Recently, an improved dual Born amplitude has been presented.® It explicitly

_involves the quark-model hadron spectrum, i.e. the harmonic-oscillator spectrum of
SU(6)®0(3), multipliets. And, it is free from the ambiguity in the choice of satellite
terms. The opportunity has been brought about from a recognition of a local duality.
Seven years ago, Hoyer and Uschersohn® proposed a new-type local duality relation.
Taking account of the saturation manner in Schmid’s local super-convergence relation®
and following the supposition by Bando et al.®) and Nakkagawa et al.”) that the
dynamics of hadrons is governed essentially by the quark-orbital Regge trajectory,
the author® has generalized and modified the Hoyer-Uschersohn relations to a local
duality scheme involving the quark-model hadron spectrum. The local duality scheme,
the most general representation of the global duality, i.e. Z(s-channel poles)=ZX{(t-
channel poles) and an asymptotic convergence condition provides a uniquely determined
n-nt—n-n* Born amplitude.? As the representation of the global duality, we take
the most general Veneziano-type amplitude which provides an arbitrary residue at each
of the relevant resonance poles.

The uniquely determined n-n*—n-n*+ Born amplitude has good properties.
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It contains neither negative-norm states nor tachyons in a domain («'m2, a,) around the
physical m,, o' and «, It predicts partial decay widths of low-lying resonances
consistently with available experiments, when m,, «’ and «, are taken to be their physical
values and an overall multiplying factor is adjusted by observed p—2r width. And,
it is successful to the simultaneous description of low-lying resonances and high-
energy behaviours.?

Further, it turns out that the uniquely determined nn Born amplitude satisfies
Adler’s PCAC consistency condition in the limit m,=m,=0, which is involved in the
domain of no negative-norm states and no tachyons.® This will imply that when the
short-distance spin-spin effect is also considered, the amplitude embody the Caldi-
Pagels idea that the = and p along with their SU(3) partners are Goldstone bosons in
a non-relativistic world with a vacuum symmetry SU(6), and in the relativistic word,
in which the SU(6) vacuum symmetry is necessarily broken, the p will be massive
— however, it remembers its origin as a Goldstone state.!® Their idea is shown in
Table I, contrasted to the Wigner-Weyl route. The preudoscalars can remain strictly
massless ture Goldstone states in the relativistic world. The remaining essential
points of the Caldi-Pagels model are the vector-meson dominance as a consequence of
spontaneously broken chiral symmetry (the same mechanism that couples the axial-
vector current to the w couples the vector current to the p) and the partial conservation
of tensor current (PCTC) implied by the mechanism.

According to Jaffe!?) who studied the s-wave gqgj states in a semi-classical ap-

Table I.  Group diagram for the Caldi-Pagels Nambu-Goldstone route contrasted to the

Winger-Weyl route.
Wigner-Weyl route Nambu-Goldstone route
vacuum Hamiltonian vacuum
symmetry symmetry symmetry
static static static
U(6)RQU(6) U@e)RU(6) SU(6)
static static chiral
SU®) SU(6) SUGRSUE) SUG
strong
’ T PCAC
SUG) 5U3) SUGSE U@ SUQ)

1) The breaking of chiral SU(3)®SU(3) proceeds as in the Gell-Mann-Oakes-Renner model.!")
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proximation to the MIT bag model, the predicted s-wave qqgq states, for which the
spin-spin interaction plays an important role, are analogous to the usual s-wave qg-
mesons and gqq-baryons. They have large widths in mesonic channels, as they
preferentially decay by just falling apart into two gg-mesons, as shown in Fig. 1.
They are not baryonium-like states,!?) and they are often denoted as qgqq, which we
also use hereafter. As also discussed by Jaffe, the lowest nonet of qgqqg states are
natural candidates for the observed O+ mesons

&(600 ~ 800),14-15)5(975),16)5(980),16) 1)

the S(975) and 6(980) of which have well established, and the &(600~800) has been
recently emerged from an analysis of available data on meson pair production in yy
scattering'¥) and an amplitude analysis of the reaction n~n*—n%10'% after the
establishment of the £(1300).16) (The &(600—800) may have a connection with the

o

Fig. 1. Falling apart of gggg mesons in to two gg-mesons.

Here, we discuss possible contributions of the ggqq mesons to the meson-meson
scattering. In §2, we state the present model. In §3, we compare its predictions with
experiments for n7 scattering.

§2. The model

In order to discuss the meson-meson scattering, we consider a model at the tree
level. It is composed of a planar dual model provosed previously® and a short-
distance correction to the model.1”)

The planar dual model involves the harmonic-oscillator spectrum of SU(6)®
0(3),, multiplets and determines the dynamics of them by the following: (i) The
local duality scheme® for a process with one exotic channel (the exotic u-channel)

> REO(Ole=mi = 2 RS s=mis, N, N'=0,1,2,.... (2)
aeN beN’
Here, R (1)(R{(s)) is the residue of the scattering amplitude at the s-(#-) channel
resonance a (b) in the narrow-resonance approximation, and N (N') is the s-(¢-) channel
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resonance family. The resonance family N is defined to be a set of resonances with a
fixed total number N of quanta of harmonic-oscillator excitations. The relations are
assumed for each of the invariant amplitudes for the considered process. (ii) The
most general representation of the global duality. (iii) An asymptotic convergence
condition.

The resonance families and their members relevant to the z~n+—n-n+ scattering
and the appearance pattern of them are shown in Fig. 2.
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Fig. 2. The resonance families and their members in the z~—z* sact-
tering. The double circles imply that there are two states with
different quark-orbital angular momenta at their places.

The uniquely determined 7~7* —n~n* Born amplitude in the planar dual model is

F(s, t)=—24,,(1—-2) ’2& (=) 1(2n—

1
1+8)(2n—-3+p)

F'(n—a)l(n—a,) , (1=B) F'(n—a)l(n—oa,)
X( ?"(noc—ozs—noz,)oC + 2 F?n+1——oc,:—-oc,) ’ G)

where a;=a's+«, is the exchange-degenerate p—f Regge trajectory, A4, is an overall
multiplying factor and S is

p=2—30,—4o'm2. 4)

All the squared resonance coupling constants in (3) are positive in a domain in the
(o'm32, o’'m2) plane shown in Fig. 3.1 In the region a'm2, a'm2>0 of Fig. 3, all the
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Fig. 3. The domain where all the squared coupling constants for the
relevant resonances are positive. In the region a’m?, a’m3>0,
all the squared masses of the scattering particle and resonances
are also positive.

squared masses of the scattering particle and resonances are positive. (When m2 is
positive, then the other resonances have positive squared masses.) Thus, the hexagon-
like domain in Fig. 3 is theoretically advisable. In Fig. 3, we show also the point for
the physical values of m,, m, and «'.

The short-distance correction to the above planar dual model, which we take
account of, is shown in Fig. 4. According to Jaffe,!?) the heavier 0+ ggqg multiplets
and the higher-spin ggqq states do not contribute to the 0— —0~ scattering.

N\ 4588/
€600 t—
~800) /_\

t
S

Fig. 4. The s- and #-channel exchange of the ¢(600~800) in the
0-—0- scattering. There can not be any duality between
the two diagrams.

It is noted that there can not be any duality between the s- and #-channel exchanges
of the qgqq states in Fig. 4. '
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For the n~n*—n~n* process, we consider a correction term due to the &(600 ~
800) exchange in Fig. 4,

2 1112 2 mz .
Genal?s + Gennle (5)
mZ Z—t "
g — S mg — t

Here and hereafter the (600 ~800) is denoted as e&. The e-exchange amplitudes are
tentatively assumed in the narrow-resonance approximation.

§3. Comparison with experiments

Now we discuss the n~n*—n~n+ amplitude
amplitude (3)+amplitude (5). (6)

The comparison of the Born amplitude such as (6) with experiments is, in general, very
difficult, because we must consider the unitarization. However, a method for testing
the essences of the dual resonance models has been presented by Froggatt, Nielsen and
Petersen,'® using only the imaginary part of the amplitude. It is based on the obser-
vation that the general (s, f) Veneziano forms have two-dimensional inverse Laplace
transforms with a very characteristic support property. Because of its use of only the
imaginary part of the amplitude, to consider explicit unitarity corrections is not
necessary at high energies. Indeed, the support property of a certain kind of general
Veneziano-type models, including the Lovelace-Shapiro-Veneziano!®) and Frampton??®
ones, is upheld by phenomenological #~n* and isospin-I, = 1-exchange amplitudes in the
forward directions of 0=¢= —1.0 (GeV/c)?, which are essentially uniquely determined
by data, analyticity and phase-shift analysis (unitarity) from threshold up to a dipion
mass of 1.8 GeV. And, in details, the method is able to indicate a superiority of the
Frampton model, which may imply that the spectrum of the Frampton model is more
realistic than that of the Lovelace-Shapiro-Veneziano model.

Here, we use the method and the phenomenological amplitudes presented by
Froggatt, Nielsen and Petersen.

As has been discussed in Ref. 9), the dual Born amplitude (3) reproduces high-
energy data fairly well. This is due to an extra factor in contrast to the Frampton and
Lovelace-Shapiro-Veneziano amplitudes. In Fig. 5, the extra factor I(x,) in the
asymptotic form is shown together with the corresponding factor of the Frampton
model, I(e,)=1. (The Frampton amplitude possesses the same asymptoci form as the
Lovelace-Shapiro-Veneziano one possesses, because its satellite terms involve only
daughters.) The comparison of the prdiction from amplitude (3) with experiments
at high energy is shown in Fig. 6.

We examine whether or not the correction term (5) improve fits to data at lower
energies. In the threshold region, unitarity corrections to the imaginary part of the
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Fig. 5. The effects of the factor I(a,) of Fig. 6. The comparison of the present
the present planar dual model. planar dual model with experiments
A domping is brought about by the at a high y. The predictions from
factor. the Frampton and Lovelace-Shapiro-

Veneziano models are also shown.

dual Born term are important differently from at high energies. We suppose that the
correction (5) will work as the dominant part of the unitarity corrections. The interest
of this work is put on this supposition.

As in Ref. 9), the overall multiplying factor A, ; is adjusted by p—2zn width.
When the amplitude (3) is defined as in Ref. 18),

Ay,1=—0.743. . )
The other parameters m,, o’ and «, are taken to be their physical values
m,=0.140 GeV, «'=0.888 (GeV)~2, a,=0.475. ®)

Imposing Adler’s soft-poin PCAC consistency condition on the amplitude (6), we
obtain!?

gl=— %m’%—)F(Adler point), ©)

where

{13 —3a(m)} {T (2 —a(m3))}?
{5—3a(m)}I' (3 —2a(mz))

F(Adler point)=1, - % (1 —a(m2)} <

m 5 {2n—1 —a(m2)} {I' (n—o(m?))}*
+3{0 =3} 2 sy —-n3oc(m,2,;x} f{én +1 -—n30c(m,2,)}1"(n F1-2u(m2)))"

(10)
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a(m2)=o'm2+a,. (€8))
We emphasize that g2,, of (9) provides a prediction for I',_, 17
Iy, ..~0.6m,, 12)

which is consistent with experimental informations.!%:14) As for the predictions for
s-wave scattering lengths from amplitude (6) with g2 . of (9) and the kinematics in
7 — 7 scattering, they are!”)

a’=0=0.205m;, a’=2= —0.066m;1, (2a’=°—5a7=2=0.740mz"), (a’=°=
(0.26+0.05)m;1, a=2= —(0.028 +0.012)m; 1, 2a’=°—5a1=2=(0.657 +0.052)
m;! from Roy equation fits constrained by K,, data.2D), (13)

when m, is taken to be 800 MeV. Moreover, applying the Adler-Weisberger sum
rule, we obtain a prediction for the poion decay constant f,,17

f.=83.6 MeV, (14)

which is near to the experimental value f,~93 MeV from the charged-pion lifetime.

It is noted that if the ¢ decouples from nz in the absence of the spin-spin inter-
action due to the one-gluon exchange, the amplitude (6) satisfies the PCAC condition
on the non-relativistic world with the = and p as Goldstone bosons, and the end of
which does to the relativistic world where the p is massive, but the 7 remains a
Goldstone state.1?)*)

The support property of the two-dimensional inverse Laplace transform of the
general (s, 1) Veneziano-type amplitude is equivalent to the behaviour of the single
inverse Laplace or Mellin transform of the fixed-t general Veneziano-type amplitude.!®
And, one can test the amplitude F(s, t) of (6), considered at forward directions, by
calculating

GO, =2 dsysimFGs, ), (15)

and comparing it with corresponding phenomenological amplitudes. It is noted that
the calculation requires only the value of the imaginary part of the scattering amplitude
along the branch cuts.

Writing amplitude (6) as

—_— = Rl(at) geznnm% ggﬂm’"%)
F(s, )= %, il 7 i e s B (16)

*) As has been discussed in Ref. 17), it is known from the 7~ o*t—p~x* amplitude constructed in
the planar dual model stated in §2 that the limit #,=m,~0 corresponds to the non-relativistic world
where the = and p are Goldstone bosons.
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Fig. 7. The Adler zeros for pion PCAC in the present model. They are
in the domain where the squared coupling constants for the gg
resonances and the ¢(600~800) and the squared masses of the
scattering particle and resonances are positive.

where
F(ﬂ+3>
__ - _(B 1)
Ry(3) = ~hu1— (os 51 [(a+ L5 )0 0, B) =1, 2 B,
(17
B—1
riJj+o+ -+~~~
(7, o, ) =7 ( e ) (18)
F<J+ :
we have (
G(y, t)=a'P(p, t)e~« 000 4o/ g2 m2y*' ™, (19)
where
B(y, )= =y, I i) F(1-a, £51, PE255). o)
—a'tg=aot LD (1), (1)

In (20), F(a, b, c; y) is Gauss’s hypergeometric function. In order to eliminate the
contribution of the diffraction scattering to G(y, f) explicitly, it is better to compare
the model with experiments for the I,=1 amplitude defined by
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GI¢=1(ya t)=6n“n+—*n“1:+(y’ t)_G’n"’ﬂ:*—*n*n*(y! t)' (22)

The phenomenological amplitudes (G(y, £)) for the m*n* scattering are nonzero and
give a measure of the contribution from diffraction scattering. In the dipion mass
region of M, <1.8 GeV, the amplitudes for the #*n* scattering are typically of the
order of 209, of those for the n~n™* scattering, except near t= —0.5 (GeV/c)> where
the n~n* amplitudes have a zero.'® So, it seems reasonable to hope that the dominant
part of the #~n* amplitude is described by a Veneziano-type Born term. However,
the property of the zero is also important in the comparison of the models with experi-
ments. (It is noted that as for the predictions for G+ ;+,+,+(y, t) from the Veneziano-
type models, they are zero.)

The last factor in the first term of (19) is a property of the general dual resonance
models. And, it is well upheld by the corresponding factor of phenomenological
amplitudes at high energies.1®

We compare the model with experiments about

P(y, 1)+ glpumzy* miex 11n0=n, (23)

The predictions and phenomenological amplitudes are shown in Figs. 8 ~13. There,
we show also the predictions from the planar dual model, i.e. the first term in (23).
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Fig. 8. The comparison of the present model Fig. 9. The comparison of the present model
with experiments at y=0.1. The with experiments at y=0.2. The
prediction is shown by the broad curves are defined in Fig. 8.

solid curve., We show also the
prediction from the (present) planar
dual model by the slim curve.
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Fig. 10. The comparison of the present

model with experiments at y=0.3.
The curves are defined in Fig. 8.
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Fig. 12. The comparison of the present

model with experiments at y=0.5.
The curves are defined in Fig. 8.
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Fig. 11. The comparison of the present
model with experiments at y=0.4.
The curves are defined in Fig. 8.
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Fig. 13. The comparison of the present
model with experiments at y=0.6.
The curves are defined in Fig. 8.

In Fig. 14, we show the zeros of the theoretical and phenomenological amplitudes
for various y’s, together with those of the Frampton and Lovelace-Shapiro-Veneziano
models.
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Fig. 14. The zeros of the theoretical and phenomenological amplitudes
for various y’s, togethex_' with those of the Frampton and Lovelace-
Shapiro-Veneziano models. The curves are defined in Figs. 6
and 8.

As seen in Figs. 8 ~14, the ¢(600~800) improve fits to experimental data.

However, the description of the (600 ~800) by the narrow resonance approximation is
not suitable.
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