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OSCILLATION OF THE RIEMANN-WEBER VERSION OF
EULER DIFFERENTIAL EQUATIONS WITH DELAY

JITSURO SUGIE AND MITSURU IWASAKI

Abstract. Our concern is to consider delay differential equations of Euler
type. Necessary and sufficient conditions for the oscillation of solutions are
given. The results extend some famous facts about Euler differential equa-
tions without delay.
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1. INTRODUCTION

We consider the second order differential equation

y'(t) + — (ct)=0, t>0, (1)

OFe
129\ T (tlog 1)2?
where ' = d/dt and 6 and c are the parameters satisfying
6>0 and 0<c<1.

Let 2o > 0. By a solution of (1) at to is meant a function y : [cto,t1) — R
for some ¢;, which satisfies (1) for all ¢ € [to,?;). Since equation (1) is linear,
all solutions of (1) are continuable in the future. We may therefore assume
that {; = oo. A solution y(t) of (1) is said to be oscillatory if there exists a
sequence {t,} tending to oo such that y(¢,) = 0. Otherwise, y(¢) is said to be
nonoscillatory.

We can find many results on the oscillation of delay differential equations of
Euler type (see [1-3], etc.). The purpose of this paper is to obtain a necessary
and sufficient condition in terms of § and ¢ under which all nontrivial solutions
of (1) are oscillatory.

In case ¢ = 1, equation (1) can be rewritten as

, 11 6 B
v+ 5 (4+ (logt)2)y—0' (2)
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This linear differential equation without delay is called the Riemann-Weber
version of the Euler differential equation (see [4]) and has a general solution

o(t) = {\ﬂ{Kl(log 1)* + Ko(logt)'=2}  if 6 #1/4,
Vilogt{Ks + K4log (logt)} if 6 =1/4,
where K; (i = 1,2,3,4) are arbitrary constants and z is the root of
z(1—2)=6.
Hence we can divide equation (2) into two types as follows:

Proposition. All nontrivial solutions of (2) are oscillatory when § > 1/4
and are nonoscillatory when § < 1/4.

In the theory of oscillations, the number 1/4 very often appears as a critical
value. The question now arises whether the critical value for equation (1) is
also 1/4 or not. If not so, then what condition is necessary for all nontrivial
solutions of (1) to be oscillatory? We give a complete answer to this question.
Our main result is the following

Theorem 1. All nontrivial solutions of (1) are oscillatory if and only if

1
6> e 3)

Clearly, Theorem 1 is a generalization of the proposition above. The proof of
the theorem is given in the next section.

By Theorem 1 we see that solutions of (1) have a tendency to be nonoscillatory
as the delay grows larger, i.e., the parameter ¢ becomes smaller. In other words,
the delay has an adverse effect on the oscillation of solutions of (1). This is a
point of difference between equation (1) and the first order Euler differential
equation

V() + y(et) =0. ®)

In fact, changing variables t = e°, we can transform equation (4) into the
equation

z(s)+dz(s—r)=0, (5)

where "= d/ds; r = —logc and z(s) = y(e*) = y(t). Hence, as is well known,
the condition

1

or > —

e
is necessary and sufficient for all nontrivial solutions of (5) (or (4)) to be oscil-
latory. We therefore see that the delay has a positive effect on the oscillation
of solutions of (4).
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In the final section, we compare Theorem 1 with a previous oscillation result
concerning the second order Euler differential equation with delay

V(1) + u(el) = 0

and discuss the effect of the delayed term. We also consider another Euler delay
differential equation, which is different from equation (1), and give a necessary
and sufficient condition for the oscillation of solutions. This result bears a dual
relation to Theorem 1.

2. PROOF OF THE MAIN THEOREM

To prove Theorem 1, we need Brands’ result. Brands [5] gave some compari-
son theorems on the oscillation behaviour of solutions of second order differential
equations with delay. Mahfoud [6] extended his result by using a famous lemma
of Kiguradze [7]. The following result is a prototype of them.

Theorem A. Let 7y and 7, be nonnegative numbers and p(s) is a nonnegative
continuous function. Then all nontrivial solutions of

&(s) + p(s)z(s —m) =0
are oscillatory if and only if all nontrivial solutions of

&(s) + p(s)z(s —m2) =0
are oscillatory.

Theorem A shows that the constant delay 7 has no effect on the oscillation
of solutions of the equation #(s) + p(s)z(s —7) =0. Let ; =r and 7 = 0 in
Theorem A. Then we see that for any r > 0, all nontrivial solutions of

E(s) + :Z;x(s —r)=0

are oscillatory if and only if

v >1/4,
which is a necessary and sufficient condition for all nontrivial solutions of the
corresponding differential equation without delay

z+ lzz =0
s
to be oscillatory.

Proof of Theorem 1. Let s = logt and put r = —log ¢ and u(s) = y(e®). Then
y(ct) =y(e™") = u(s — ),

and therefore equation (1) is transformed into the equation

ii(s) — i(s) + i—u(s) + s%u(s —r)=o. (6)
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By setting z(s) = u(s)exp(—s/2) this equation becomes
6 —r/2
i(s) + %—lz(s -r)=0 (7
because 1
z(s) = {'&(s) —u(s) + Zu(s)} exp(—s/2)
and
z(s —r) =u(s—r)exp((r —s)/2).
Now, we consider the second order Euler differential equation without delay
) —r/2
i+ _efizr_/_)m = 0. (8)
s
Then, if assumption (3) holds, we have

Sexp(—r/2) = b:/c > i

Hence all nontrivial solutions of (8) are oscillatory. From Theorem A we con-
clude that all nontrivial solutions of (7) are oscillatory, and so are all nontrivial
solutions of (1). Conversely, if assumption (3) is not satisfied, then by means
of Theorem A again we see that equation (1) has a nonoscillatory solution. [

3. DiscussIiON

Kulenovié [2] investigated the oscillation problem for the second order Euler
differential equation

6
y'(8) + u(et) = 0, ©)

which has a simpler form than equation (1). Transforming equation (9) into
the differential equation with delay

E(s)—z(s)+d6z(s—r)=0 (10)

and using the fact that all nontrivial solutions of (10) are oscillatory if and only
if the corresponding characteristic equation

A — X+ 8exp(=Ar)=0
has no real roots, he gave the following result.
Theorem B. Every solution of (9) with 0 < ¢ <1 oscillates if and only if

Vri4+4 -2 r—24++vr24+4
6> 2 exp 3 . (11)

It is well known that the oscillation of solutions is determined by the roots
of a characteristic equation (see, for example, [8-13] and the references cited
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therein). Theorem B extends the following results in [14] and [3]: if § > 1/(4¢),
then every solution of (9) is oscillatory; if 0 < § < 1/4, then equation (7) has
a nonoscillatory solution. However Theorem B cannot be applied to equation
(1).

Let us now look at the oscillation of solutions of Euler differential equations
from a different angle. Equation (10) is equivalent to the system

u(s) = v(s) + u(s)a

8(s) = — Su(s — r). (12)

As is customary, we say that a solution (u(s),v(s)) is oscillatory if u(s) has
zeros for arbitrarily large s. By virtue of Theorem B we can decide whether all
nontrivial solutions of (12) are oscillatory or not. Using L’Hospital’s rule, we
see that the right-hand side of (11) tends to 1/4 as ¢ — 1 (or r — 0). Hence
Theorem B is a generalization of the elementary result that é = 1/4 is a critial
value for the oscillation of solutions of the system

u=v+u,
v=—6u.

We shall exmaine the critical value in more detail. Judging from the oscilla-
tion results above, it seems to be natural to consider the system

u(s) = v( ) + u(s),

3
o(s) = ——u(s) Su(s—r). (13)

Nevertheless, since the characteristic equation of (13)
1
M-+ 1 + dexp(—Ar) =

has no real roots when § > 0, all nontrivial solutions of (13) are oscillatory.
This means that the effect of the delayed term u(s — r) is the same as that
of the nondelayed term u(s) on the oscillation of solutions of (13). We can
interpret that the quantity —u(s)/4 in the second equation of (13) is the limit
for nonoscillation of solutions and if we add any delayed term, then system (13)
has no longer a nonoscillatory solution.

Since the second equation of (12) is rewritten as

v(s) = —0u(s) — du(s—r),

the term without delay is ignored, and therefore the parameter 6 of the delayed
term must satisfy estimate (11) in Theorem B.
To weaken the effect of the delayed term, we consider the system

)= ) + 405,

§ (14)
o(s) = ——u(s) = uls—n).
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Since system (14) is equivalent to equation (6), by Theorem 1 we see that all
nontrivial solutions of (14) are oscillatory if and only if

1
5>Z\/6_".

Finally, we consider the system

u(s) = v(s) + ku(s),
k2 6 (15)

o(s) = —-4—u(s) - ;z-u(s -r)

with k # 0 and its equivalent equation

i(s) — ku(s) + ?u(s) + S%u(.s -r)=0, (16)

which are more general forms than (14) and (6), respectively. Then, as in the
proof of Theorem 1, we obtain the following result.

Theorem 2. All nontrivial solutions of (15) or (16) are oscillatory if and
only if

1
6> ZVC’".

In case k > 0, putting ¢t = e** and y(t) = y(e**) = u(s), we can transform
equation (16) into the Riemann—Weber version of the Euler differential equation
with delay (1) where ¢ = e~*". Hence Theorems 1 and 2 are essentially the same
in this case.

On the other hand, if ¥ < 0, then we can give an alternative expression
instead of Theorem 2. Let t = e™** and put y(t) = y(e™**) = u(s) and ¢ = €*".
Then equation (16) becomes

" 2, 1 )
— —_— — = . 1
y'() + 5y’ (0) + pu() + (tlogt)zy(ct) 0 (17)
Hence we have the following

Theorem 3. All nontrivial solutions of (17) are oscillatory if and only if

\/E
§>—.
> 4
The delay in equation (17) has a positive effect on the oscillation of solutions.
Although equations (1) and (17) are of Euler type, the oscillation properties are
completely different.
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