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ON LOCAL WELL-POSEDNESS FOR H°-CRITICAL NONLINEAR
SCHRODINGER EQUATIONS

KOSUKE TABATA AND TAKESHI WADA

ABSTRACT. This paper concerns the Cauchy problem for the nonlinear Schrédinger equation
with power nonlinearity. Time local well-posedness in H*(R™) is proved in the case where
the nonlinear term is critical from the scaling point of view, and has limited regularity so that
the nonlinear term does not belong to C*(R?; R?).

1. INTRODUCTION

In this paper we consider the following Cauchy problem for the nonlinear Schrodinger
equation with power nonlinearity:

idu+ Au= f(u) = Alu|*u, u0) = @, (1.1)

where u is a complex-valued function defined on the spacetime R!*" with N > 3, A is the
Laplace operatoron R™, A € C, and @ > 0. We introduce the free propagator U (t) = exp(itA)
and convert (1.1) into at least formally equivalent integral equation

u(t) = dW)(t) = U(t)p — iJ Ut — 1) f(u(7)) dr. (1.2)
0

We need the Sobolev space H*(R") and the Besov space Bj’z([RN ), where s € R and 1 <
r < oo. We are interested in the well-posedness of (1.1) in H$(R"). From the scaling point
of view, the critical exponent for a in H*(R") is

4
N -2s’
Roughly speaking, (1.1) is expected to be time locally well-posed in H*(RY) if a < a*(s)

a=a'(s)=

(¢ < 0 if s > N /2). We mainly study the critical case, so throughout the paper we always
assume 0 < s < N /2.

There is a large amount of work on the well-posedness of (1.1). To describe the preceding
results precisely, we should distinguish the cases (i) « > s—1 and (ii) @« < s — 1. We note that
the complex-valued function f(z) belongs to the class C**!'(R?; R?), which is understood as
C*!(R?; R?)if a is an integer. Therefore, if @ > s — 1, then the nonlinear term £ (u) is s-times
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differentiable in x, so that we can directly multiply (1 — A)*/? by the equation and estimate
u in C([0,T]; H*(R"™)) or Bochner type spaces L0, T, Bf’Z(RN)). On the other hand, if
a < s—1, then f(u) is not smooth enough to be estimated in Sobolev/Besov spaces of order s.
To overcome this difficulty, we should reduce the total number of derivatives by evaluating
o,u instead of Au, since one time derivative is homogeneous to two space derivatives for the
Schrodinger equation. Once we obtain the estimate of d,u, then using the equation itself we
can recover spatial regularity.

We first summarize the previous results concerning the case (i) « > s — 1. It is known
that if s — 1 < a < a*(s), then (1.1) is time locally well-posed in H*(R"). See Ginibre—
Velo [9, 10], Tsutsumi [22] and Kato [11, 12] for subcritical cases @ < a*(s) with s = 0, 1;
for the case s — 1 < a < a*(s) with 0 < 5 < N /2, where the critical case is included, see
Cazenave—Weissler [5] and Kato [13]. Precisely speaking, more strict condition a > [s] is
assumed in [5, 13], but if we use a nonlinear estimate derived by Ginibre—Ozawa—Velo [8],
we can bring down the lower bound to & > 5 — 1.

We next consider the case (ii) « < s — 1. Let a,(s) = max{0;(s — 2)/2;s — 3}. We
have a,(s) < s — 1 for s > 1. It is known that if @, (s) < a < a*(s) with 1 < s < N/2,
namely if the nonlinear term is subcritical, then (1.1) is time locally well-posed in H*(R™);
see Tsutsumi [21], Kato [11, 12] and Cazenave—Weissler [5] for s = 2, and Pecher [17],
Fang-Han [7], Uchizono—Wada [23, 24], and Wada [25] for | < s < N /2. Unlike the
case (i), the well-posedness for the critical case has not been well-studied. If s = 2 and
a = a*(2) = 4/(N — 4) with N > 8, Cazenave—Fang—Han [4] showed that (1.1) is time
locally well-posed in H*(R"). Nakamura—Wada [15, 16] showed that if 1 < s < 4 and
a,(s) < a = a*(s), then (1.1) is time globally well-posed in H*(R") for small data (the case
s = 2 had been solved in [5]). Nevertheless, to the best of our knowledge, there is no prior
work except [4] concerning the critical case without restriction on the size of data.

This paper aims to prove the time local well-posedness for large data under the condition
that @« = a*(s) < s — 1. To state the main result in this paper, we set

-

1, 2<s <3,

s—2, 3<s<4,
ay(s) =4

2, 4<s<5,

Ks—3, 5<s.

Clearly, a,(s) < y(s) < s—1for2 < s <5, and a,(s) = a,(s) for s > 5. We shall prove the
following:

Theorem 1.1. Let2 < s < N /2 and let ay(s) < a = a*(s). For any ¢ € H*(RN), there
exists T > O such that the following hold:

(i) The equation (1.2) has a unique solution u € C(I; H*(RN)), where I = [0,T]. Fur-
thermore, u € Li(1; Bj’z(RN))for any admissible pair (q, r).
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(i) Let {@, )32, € H*(RN) satisfy ¢, — @ in H*(RN). Then, for sufficiently large k, (1.2)
with @ replaced with @, has a unique solution u, € C(I; H*(RN)). Furthermore, u, — u in
C; H5(RV)).

There exists a number s satisfying 2 < s < N/2 and a*(s) < s — 1 only when N > 8. In
this case, Theorem 1.1 gives a new result. On the other hand, if 5 < N < 7, the result above
has already been shown in [5, 6], including continuous dependence with respect to the data.

This paper is organized as follows. In §2, we first give notation used in this paper. Next
we summarize linear and nonlinear estimates used in the proof of Theorem 1.1. In §3, we
give the proof of Theorem 1.1, which is done by a series of propositions. We divide the
proof into the case s —2 < a < s — 1 (Propositions 3.1 and 3.2), and the case s —3 < a <
s — 2 (Propositions 3.3 and 3.4), since in the latter case we need the second derivative dtzu.
In the critical case, it is difficult to show that the nonlinear term f(u) is sufficiently small
in Li(1; Brs’gz) so that the contraction mapping principle works. To this end, we estimate
f () — U(t)@ instead, by the use of Lemmas 2.3 and 2.4.

2. PRELIMINARIES

We begin this section with giving notation used in this paper. For 1 < r < oo, we set

¥ =r/(r—1). We denote by L"(R") the usual Lebesgue spaces. Lets € Rand 1 < r,m < 0.
We define the Sobolev space H*(R") by

HRY) ={ue ' ®RY) : |lully = 11 — A)7?ul|;» < o).

We also define the Besov space Bf’m([RN ). For this purpose, we need Littlewood—Paley de-
composition. Let y € Cg"([RN ) be a spherically symmetric function satisfying 0 < y(§) < 1
with y(&) = 1for |£| < 1,and with y(&) = Ofor |£] > 2. We setn, (&) = y(&/2F)— y(&/2F ).
Then we have suppn, C {& : 2571 < €] < 2%}, and y (&) + X2, m, (&) = 1 forall £ € RV,
We set

B (RY)={u€.RY) : |lully, < oo},

where
o 1/m
lull g, = 1L Dull, + (X 2%l Dylly, )
k=1

with trivial modification if m = co. Here, y(D) = .Z ! y(£).#, and .% denotes the Fourier
transform. In this paper, we always take m = 2, so we omit the third index and write BrS(RN )=
Bj,z([RN) for short. If r = 2, then B3(R™) = H*(R"). For the detail, see [1,2,19,20]. For an
interval I C R and a Banach space X, we denote by C*(I'; X) the space of C*-functions from
I to X, and by L(I; X) the space of measurable functions u from I to X with ||ul| 4 x) =
llull o(s.x) < oo. Similarly, we denote by Wka(I; X) the space of functions u from I to X
which are weakly differentiable up to k-times with ||ulycqx) = max,.; 0] ul| Lacx) < 0.
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We next prepare several indices that are used throughout the paper. Let @ = a*(s). We set

a+?2 1 1 1
=a+2, == —_— == -, 2.1
r=a P 1+as/N p* 2 N 2.1
1_1_>s 1_1_s _ N-2s 2.2)
u 2 N’ v p N N@+2) .

Since N >3,a>0and0 < s < N/2,wesee2<vy,p,p*, u,v < . These exponents are
defined sothat 1/p’ = a/v+1/pandthat2/y = N/2 — N /p =2/(a + 2); namely (y, p) is
an admissible pair defined below. The pair (2, p*) is also an admissible pair, which is called
the endpoint. Furthermore, for j = 1,2 with s —2j > 0, we also set

2j 1

1 1
=--=Z - = - — 2.3)
p; p N P; 2 N K;

z|

1
2
provided that the right-hand sides are positive. It follows from the Sobolev embedding theo-
rem [2, Theorem 6.5.1] that

HRY) c B"¥RY) c L*(RY) and B;(RN) C B;_‘zj([R{N) c LY(RM).
Definition 2.1. Let N > 3. A pair of numbers (g, r) is said to be admissible if (g,r) €

[2,00] X [2,2N /(N —2)] and if 2/qg = N/2 — N /r.

Lemma 2.1. Let s € R. Let (q, r) and (qy, ry) be two admissible pairs. For ¢ € H*(R™) and
[ € L%R; B, (RN)), we set
0

t

u(t)=U@®p — iJ Ut—7)f(r)dr.

0

Then, the following estimate holds:

ol oy S Nl + 171 s 24)
"o

Furthermore, we have u € C(R; H*(RV)).

Proof. See [5,14,18,26] |

Definition 2.2. Let a > 0. We say that a function g : C — C belongs to the class A(a + 1) if

g € C"(R?,R?) for any nonnegative integer m < a + 1, if g(0) = g’(0) = -+ = g™ (0) = 0,

and if

18" (z)) — g™ (z,)| < C {(I21| +2,D "z = 2|, m<a,
1 21 =

|z, — z,|*F1=, a<m<a+l.

Remark. (i) g(z) = |z|*z € A(a + 1) for a > 0;
(ii) if g(z) € A(a + 1) with & > 1, then g'(z) € A(a).
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Lemma2.2. Leta>0,g € A(a+1),0<o<a+1landl <r,ryr,ryr; < oco. Then the
following estimates hold for all u, v, w such that the norms in the right-hand sides are finite:

W) If1/r=afry+ 1/r,, then
18G5z < Clall?, 1l 2.5)
(ii)) If max{l;0} < aand 1/r =(a = 1)/ry+ 1/ry +1/r, — 6 /N with 2N /(N + 20) <
ri<N/o,1<j<2, then
8" @l < lluell 7, llull g llvll 5 - (2.6)
(iii) If max{l;0} < @« — land 1/r = (¢ = 2)/ry + 1/ry + 1/ry + 1/r; — 26 /N with
2N/(N +20)<r;,<NJo, 1 <j<3 then
8" @owll e < Nullfy llull g7 llvll gy Nl g - (2.7)

Proof. For the proof of (2.5), see e.g. [8, Lemma 3.4]. To prove (2.6), we set 1/m; = 1/r; —
o/N,1 < j < 2. By assumption, we see 2 < m; < co. From the Sobolev inequality, we
have the inclusions B” c L™. Letl/m* = 1/r—1/m, and 1/r* = 1/r — 1/r,. Since
1/m*=(a—1)/r,+ 1/r1 and 1/r* = (a —1)/ry+ 1/m,, it follows from (2.5) together with
the Leibniz rule that

lg'@ollg; 5 118" @llgs 101, + 18" @I Nloll 5
-1 -1
S Nullp lull gy vl + el lullpn lollg, S llull 57 llull gz lIvll g -

Thus we have proved (2.6). We can prove (2.7) in the same way. O

Lemma 23. Let 1 < g <r < ooandletl < ryry < oo withq/r=(q—1)/ry+1/r,.
Let I = [0,T] and let v € Li(I; Lo(RN)) n Wha(I; L"(RN)) satisfy v(0) = 0. Then the
Jfollowing estimate holds:

”U”i‘x’(L’ < ”U”Lq(Lr())”0“L4(L’1)' (28)
Moreover, ifc € R, ¢ =2 and v € L*(I; B;’O([RN)) N wWhA(I; B (RM)) with v(0) = 0, then
the following estimate holds:

”U”LC’"(B“ < ”U”LZ(B;’O)”D”Lz(Bfl)' (29)

Proof. We have the identity 9,|v|? = g|v|9~> Re(dv). Integrating the both sides on 7 and using

v(0) = 0, we obtain
T

lo()]4 < qJ lo()]97 o) dt.

0
Therefore, it follows from the Minkowski and Holder inequalities that

oI, < qJ oI 0 dt < gllol % 191 o (2.10)
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Taking the supremum on I, we obtain (2.8). We shall next prove (2.9). Recall that y and
n, are Littlewood—Paley functions. Letting ¢ = 2 in (2.10) and replacing v with 5, (D)v, we
obtain

||nk(D)U(t)||2r < 2||’7k(D)U||L2(L’0)||nk(D)0||L2(Lr1)

for every t € I. We also have the analogous inequality for y(D)v. Taking the summation
and applying the Schwarz inequality in k, we obtain the desired estimate. U

Lemma 24. Let2 < s < N/2and a = a*(s). Let | < g < ocoand1 <r < N/2. Let
1/r, = 1/r —2/N. Then the following estimates hold for all u, v, w such that the norms in
the right-hand sides are finite:

(1) If0 <o < a+ 1, then we have

”f(u)”Lq(Bg) S ||”||aLoo(Ly)||u||Lq(Bgl)- (2.11)
i) If0<o <s—2 max{l;o} <a, and2N /(N +20+4) <r < N/(o + 2), then we
have
| f (u) — f(U)”Lq(Bg) S (“u”Loo(Lu) \4 ||U||Lo<>(Lu))a_1
X (”u”Lq(Bgl) v ”U”Lq(Bgl))”u - U”L“’(Bi_l*z)' (2.12)

(iii) If s > 4, max{1;s —4} < a, and 2N /(N + 2s) < r < N /s, then we have

-1
||f,(u)U||Lq(B;—4) S ”u”Zoo(Lu)”u”LfI(le‘z)”U”L‘”(Bf(?“)’ (2.13)
-1
| f(w) — f(U)”Lq(B-;—4) S ("u”Lw(Lﬂ) N ”U”L‘”(Lﬂ))a
X (||U||Lq(3s—2) v ||U||Lq(3s—2))||u - U||L°°(BS-4)~ (2.14)
r n K1

(iv) Ifs > 4, max{l;s—4} <a—1,and2N /(N +2s—4) <r < N /(s —2), then we have

-2
{f () - f/(U)}w||Lq(B;-—4) S (”u”Loo(Lu) \4 ”U”Loo(u))a (”u”Lw(B;;*) \4 ”U”Lw(Bg‘*))
X ||I/l - U”L""(Bf(;“)”wlqu(le_4)' (215)

Proof. Since 1/r = a/u + 1/r|, the estimate (2.11) follows from Lemma 2.2 (i). The in-
equality (2.12) is proved by Lemma 2.2 together with the mean value theorem. We write

1

f—f) = J [ (ug)(u —v)do

0

with u, = Ou + (1 — @)v. Therefore, we have
_ < ! - .
| f(w) f(U)”Lq(Bg) = ggeasxl | /7 (ug)(u U)”Lq(B;r)

Wesetl/u* =1/u+0c/N = 1/k;, — (s — o —2)/N, so that we have the relation 1/r =
(a=1)/u+1/r,+1/u*—0o/N. By assumption, we have 2N /(N +20) < r,,u* < N /o.
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From the Sobolev inequality, we have the inclusion B;I‘Z(RN )C BZ*([RN ). Hence, it follows
from Lemma 2.2 (ii) that

£ () (1t — U)”Bg p ””9”(51””9”371 llu — U”BZ*
S lall o v 00" allgy Vol )l = oll e 2116)
Taking the L9-norm in ¢, we obtain (2.12). We shall next prove (2.13). Let1/r, = 1/r—4/N.

From the Sobolev inequality, le‘z C Bf2‘4. We have the relation 1/r = (a — 1)/ + 1/r, +
1/x, — (s —4)/N. Hence, it follows from Lemma 2.2 (ii) that

1@l g S Il il s ol s S Wl el s 10 g
Taking the L9-norm in ¢, we obtain (2.13). The estimate (2.14) immediately follows from (2.13)
and the mean value theorem. To prove (2.15), we write
1
{f'w) - f'w= J S (ug)(u — v)w do,

0

so that the left-hand side of (2.15) is bounded by max g, ||./"(ug)( — V)W|| 4(ps-+). Here,
u, is the same as above. Since 1/r = (a —2)/u+2/x,+ 1/r; —2(s —4)/ N, it follows from
Lemma 2.2 (iii) that

-2
17" tg) = )0l s S Nt gl el = gl
2 K2 r
-2
S (e 10l g V0l )l = Ol gl

Taking the L?-norm in ¢, we obtain (2.15). ]

Lemma 2.5. Let2 < s < N/2 and a = a*(s). Then the following estimates hold for all
u,u,, u, such that the norms in the right-hand sides are finite:
(1) If0 < 0 < min{a + 1; N /2}, then

17 @Ol S Nl gy Ml - 2.17)

2
”f(u)”Lz(B;*) S (”u”L""(Lﬂ)”u”LV(LV))a/ ”u”LV(Bgl)' (2.18)

(1) If a > max{1;s — 2}, then

-1
||f,(u)u1”Lr’(B;,-2) S lul (zy(Lv) u”u(B,s"l—Z)”ul ”L}’(B;—Z)a (2.19)

-1)/2
”f’(u)”]”y(gzj) S (”””Lw(u)”””U(Lv))(a )/

2
X (||”||L°°(B;§]—2)”u”U(B;]—Z))l/ [luy ||U(3;1—2)- (2.20)
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(iii) If s > 4 and a > max{2;s — 3}, then

| f/ (W, ||Lr’(B;74> S ”uHaL;(lLv)”u”U(szf)”ul”U(B;"‘)’ 221)
Ilf’(u)u1||L2(B;;4) S (”u”Loo(L”)”u”LY(LV))(a_l)/Z

X (Ilr«tllLoo(B;;;)||u||Ly(B;;4))1/2||u1 [Py (2.22)
17 @il ey & Al

X (”u”Lw(Bf(;“)||u||LV(B;;4))]/2||u1 ”LV(B;;“)’ (2.23)

”f”(u)uluz”LV'(B;,“‘) S ||u||1;(2p)||u||Lr(B;;4)||u1||LV(B;1—4)||u2||U(B;1_4). (2.24)

-2)/2 1/2
||f”(u)u1u2”L2(B;;4) < (”u”Loo(Lu)”u”Lr(Lv))(a 4 (”u”L‘X’(B’i;‘)”u”LV(B;;“)) /

1/2
X (”ul"Lm(B;?)”ul||Ly(B;;4)) / ||u2||u(3’§;4)~ (2.25)

Proof. The estimates (2.17)—(2.24) follow from Lemma 2.2 together with the Holder inequal-
ity. For the proof, we note that the indices satisfy the relations 1/p’ = a/v+1/pand 2/p* =
a(l/u+1/v)+2/p,. For instance, we shall prove (2.20) and (2.24). Weset2/f, = 1/u+1/v
and 2/, = 1/k, +1/py, s0 that ull2,, < lull o ull . and [l S llull s el o Sinee

1
1/p*=(a—-1)/py+1/p,+1/p, — (s —2)/N, we obtain from Lemma 2.2 (ii)
I @ llp2 S IIulli;(fIIuIIB;l—zllulIIBZI—z S (”u”Lﬂ”u”LV)(a_l)/z(”u”Bil—?”u”B;1—2)1/2”u1||B;I—2-

Taking L? norm in ¢ and using y = a + 2, we obtain (2.20). Similarly, since 1/p’ = (a —
2)/v+1/p,+2/p, —2(s —4)/N, we obtain from Lemma 2.2 (iii)

1" @yl gos S Nl 572 etll g oty ] poms 143 [ goms-
P ) (41 (4]

Taking L”" norm in ¢ and using the relation y’ = y/(a + 1), we obtain (2.24). The other
estimates can be proved analogously. U

Lemma 2.6. Let2 < s < N /2 and a = a*(s). We define operators F and F, by F : u —
fw)and F, : [u,v] = f'(u)v respectively.

(1) Let « > max{1l;s — 2}. Then, the operator F is locally Lipschitz continuous from
L>(1; B}SCI‘Z(IRN)) into L*(I; H"2(RM)).

(ii) Let s > 4 and a > max{2;s — 3}. If {u, } is bounded in L®(I; H*(R™)) and u, — u
in L*(I, B,S(I‘Z(RN)), then f(u,) — f(u)in L®(I; H=(R"N)); especially, the operator F is
continuous from L*(I; H*(RN)) into L*(I; H*"*(RN)).

(iii) Let s > 4 and a > max{2;s—3}. If [u, v,] = [u,v] in L=(I; Bf(z“‘([R{N) X B,S(I“*(RN)),
then f'(u)v, — f'(wvin L=(I; H4(RN)); especially, the operator F, is continuous from
Le(I; HS(RN) x H*2(RN)) into L*(I; H~*(RM)).

Proof. (i) Foru,v € L*(I; Bf(l‘z), we obtain from Lemma 2.4 (ii) that

| f () — f(U)||L°°(HS—2) < (”u”LW(Bf(l—Z) \4 ||U||L°°(B;§l—2))a”” - U||L°°(B;]—2)a (2.26)
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which means that F is locally Lipschitz continuous.
(i) We put M = sup, |[u || frs)- We choose O < € < 1 such that s —2+¢& < a+ 1. Then,
it follows from Lemma 2.4 (i) together with the Sobolev inequality that || f ()| ;e (ps-2+< hS

) ~
2N /(N+2¢)
||u||“LJ;1( oy < M**+!On the other hand, it follows from Lemma 2.4 (ii) that

| f (uy) — f(”)”Loo(Blsq—‘t) S (”uk”Lw(Blsq—Z) \4 ”u”Lw(Bi_l—Z))a”uk - ””Lw(B;I—Z)

S M®||uy — “”Lw(B;l—Z) — 0.
Thus, by the interpolation relation

(B 'S«:4(RN)’ Bzz_vzf(]ewzg)(RN))2/(e+2),2 = H**(R") (2.27)

(see [2, Theorem 6.4.5]), we obtain || f (u,) — f W] pw(gs-2) = 0, which implies the continuity
of F.
(iii) We put M| = sup, ||[uy, U]l o(ps-txps—+)- From Lemma 2.4 (iii)—(iv), we have
k2 K1

ILf' v, — f,(u)U”L‘X’(HS“‘)
S ||f’(”k)(Uk - U)”Lw(HH) + ”(f’(uk) - f’(”))U”Lw(HH)
S (””k”Loo(Bz;t) \4 ”u”Lw(Bi?))a—l
X (ll”klle(Bls(;‘*)llUk - U”Loo(B,s;‘) + [luy — u”Lw(Bg‘l)”U”Lw(B;#))

S Mil(”l)k — U”Loo(Bi]—ll) + ””k — u”Loo(Bls(;4)) - O D

Lemma 2.7. Let2 < s < N/2and a = a*(s). Lety =a+ 1, p=2N(a+ 1)/(N + 2as).
(i) Let « > max{1;s—2}. Ifu € ﬂ,l:o WIiT(I; B;_ZJ([RN)), then f(u) € C(I1; H*2(RM)).
(ii) Let s > 4 and a« > max{2;s — 3}. Ifu € ﬂjz.zo Wj’7(I;B;_2j([RN)), then f(u) €

C'(I; H*RM)) n C(; Bf(l“‘([RN)). Furthermore, if u € L*(1; H*(R"N)), then f(u) €

C(I; H*(RM)).

Remark. We can easily check that (7, p) is an admissible pair.

Proof. () Let1/v=1/p—s/N andlet1/5, = 1/p—2j/N, j = 1,2 with s —2j > 0. Then
the inclusion B} C B;fzf C LY holds. We have the relation 1/2 = (a = 1)/v+1/p, + 1/p -
(s —2)/N. Applying Lemma 2.2 (ii), we see

-1 . .
”azf(u)”Ll(Hsﬂ) S ”u”ay(u) u”U(B;l’z)”u”U(B;*Z) S ”u”iy(gg)”u”U(B;ﬁ)-

Similarly, we see || f @l 12y S [ull |ull ;7(ps2y. These estimates show that f(u) €
P

o
L/(B)
WLI(I; H2(RN)), which implies f(u) € C(I; H*72(RN)).
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(i1) From similar estimates with the index (s — 2) replaced by (s — 4), we obtain f(u) €
WL, H=*(RN)). Furthermore, applying Lemma 2.2 (iii), we see

”atzf(u)”Ll(HS*“) = |If (Wi + f/’(u)ua“Ll(Hff‘*)
a—1 .o a=2 12
S Wl el sy Nl gy + IIuIIU(mIIMIIU(B;;t)IIuIIU(B;]_4)
-1 .. L2
S ||u||(2y(32)(||u||L7(B;)||“||L7(B;—4) + ||”||L;(B;_z))-

This estimate shows that f(u) € W2!(I; H*=*(RN)), which implies f(u) € C'(I; H*~*(R"N)).
On the other hand, since B:“(RN ) has the same scale as H52(RN), we see as before that
fw) e Whid; Bf(l‘“([R{N ), although f (1) might not be differentiable (s—2)-times. Hence we
obtain f(u) € C(1; Bf(l‘“([RN )). To prove the last assertion, let u € L®(I; H*(R")). Then,
from Lemma 2.4 (i), we obtain f(u) € L*(I; B2t (RN)). Therefore, as in the proof of

2N /(N+2¢)
Lemma 2.6, by the interpolation relation (2.27), we obtain f(u) € C(I; H*"*(RM)). O

3. PROOF OF THEOREM 1.1

In this section, we shall prove Theorem 1.1. Let ®(«) be defined by (1.2). We look for so-
lutions to (1.2) by finding fixed points of ® in appropriate metric spaces. Since the nonlinear
term has limited regularity, as explained in § 1, we replace spatial derivatives by temporal ones
to reduce the total number of derivatives. Taking the time derivative of (1.2) and integrating
by parts (see [17]), we obtain

t

0,@u)(1) = U@ - iJ U(t —1)0,f(u(r)) dz, (3.1

0
where ¢ = i(Agp — f(@)) is the initial data for 0,®(«). Furthermore, if s —3 < a*(s) < s —2
with s > 4, then we also need the second derivative 0t2<I>(u), which satisfies

t

f@@XﬂzUm¢—iJUa—ﬂffw@»m- (3.2)

0
with » = i(A¢@ — f'(¢)@). For each j > 0, the corresponding differential equation for 0{ D(u)
is

(i0, + A0/ D(u) = & f (w). (3.3)
It follows from Lemma 2.6 that ¢ € H*"2(R"), and p € H*~*(R"). Furthermore, if ¢, — ¢
in H*(RY), then ¢, = i(Ag, — f(@,)) = ¢ in H*>(RN), and ¢, = i(Ap, — f' (@ )@,) = &
in H5~4(RN).

Let I =[0,T] forsome T > 0. Weset Z(I) = L"(I; L(RN))n L>(I; L” (R")), and
X,(I) = L'(I; B7YRN) 0 LX(I; BT (RM))
for j =0,1,2 with s —2j > 0. Here, the admissible pair (y, p) and the index p* are defined
by (2.1). We set
XI)={ue X,(I):oue X,)},
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with ||lullx = llully, V llallx,. If max{2;s -3} < a*(s) <s—2 with s > 4, we also need the
spaces
Y,(D) = L'(1; B ARY) 0 LA B YT (RY)),
1
J = 0,1, where the indices p, and p] are defined by (2.3). We have the inclusion X (1) C
Y;(I). We set
Y()={ueY,(HnXU):dueX,I),j=12}
with [lully = lully, V llully, v llally, v il
We begin with the case a*(s) > s —2. We shall first show the unique existence of solutions

in Proposition 3.1. The proof of the continuous dependence of solutions on data is proved in
Proposition 3.2.

Proposition 3.1. Let N > 8,2 < s < N/2 and let a = a*(s) satisfy max{l;s — 2} < a <
s — 1. Then, for any ¢ € H*(RN), there exists T > 0 such that (1.2) has a unique solution
u € C(I; H*(RN)), where I = [0,T). Furthermore, u € Li(I; B3(R™)) for any admissible
pair (q,r).

Proof. For R > 0, we define the metric space
B ={ue XU) : u0) =, |lully <R}

with metric d(u,,u,) = |lu; — u,|| ,. We note that (Bg, d) is a complete metric space. For
suitable T" and R to be specified later, we shall prove that the mapping @ is a contraction
mapping on B,. We set

Ry =Ro(p:T) = IUO@lix vV IIUO@x, VIS U OO 1) 3.4

From Lemma 2.1, we see U(")p € X(I), U()¢ € X,(I). It follows from Lemma 2.4 (1)
together with the unitarity of U (¢) in H*(R") that ||f(U(-)(p)||LV(B;_2) S el U(')(P||U(B;)-
We have lim;_, R,(@;T) = 0 by the definition of X(I). For u € By, we set v(t) = u(t) —
U(t)p. Since v(0) = 0, it follows from Lemma 2.3 that

2 : 2
||U||Loo(B;1—2) < ”U”LZ(B;;Z)”U”LZ(B;;Z) S ”U”X (3.5
1

From (3.5) together with the inequalities [lu—v||y < [|@ll s ARy and ||u=0l| pw(ps2) S @]l g5
K]
we obtain

lollx S llullx v Ry, ”””Loo(u) S ””||L°°(B,§I2) S llully v ll@ll - (3.6)

We shall show that @ maps By, into itself. We apply Lemma 2.1 to (1.2) and (3.1) together
with Lemma 2.5 to obtain

1@y, S IO, + 1F @l S Ro+ lully lully, S R+ R, (37)

10,2y, S NIUC@llx, + ||f'(u)b't||Ly'(B;,—z) S Ry + llully llally, S Ry + R, (3.8)
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especially, we have used (2.17) for (3.7), and (2.19) for (3.8) respectively. Lemma 2.1 also
shows that ®(u) € C'(1; H*?), with the estimate

1}261714 ||afq)(u)||Loo(Hx—2) Slollgs Vel g + R, (3.9)
For the estimate of ®(u) in X (I), we use the equation (3.3) with j = 0. Then, we obtain

Wl ~ (1 = AWy, S IPWIl, + 19Dy, + £l - (3.10)

From the estimates (3.7) and (3.8), the first two terms of the right-hand side are bounded by
CR,+CR*"!, so it suffices to consider the third term. In L*(I; BZJZ(RN )), we can treat f(u)
directly. It follows from (2.18) that

2 2+1
1@l omszzy S Mully 2o el 050 S (RV D@l )2 R (3.11)
Kq P

On the other hand, in L"(1; B;‘Z(IRN )), similar estimate would not work. (See the remark
below.) Instead, taking account of the inequality || /(U (-)@)|| 1, (g-2) < Ry, we estimate the
difference f(u) — f(U(-)p). It follows from Lemma 2.4 (ii) and (3.5) that

| f () — f(U(')go)”LV(B;*Z)
S (lull poony V ||U(‘)(P||L°°(Lu))a_l(||u||LV(B;) v ”U(')(p”LV(B;))”U”L‘”(B;l‘z)
S (lullx v Allell )™ Alullx VIOl S (RV (@l g)* (RV Ry (3.12)
Combining (3.11) and (3.12), we obtain
IF@llx, S RV l@llz)? R + (RV @l ) (RV Ry + Ry, (3.13)
Collecting the estimates (3.7)—(3.10) and (3.13), we obtain
IP@Wllx < CRy+ CRV (|9l g ) >R + C(RV @]l 1) (R V Ry’
for some constant C > 1. Similarly, for u,,u, € By, we can easily show
Du,) — Pu)|l; £ CR[|uy — ]l -

Now, we choose R and T so small that

. 1 1
3CR(¢:T) < R < mln{ : . (3C)" Ve } (3.14)
0 GO llly: 3Cllell%!

Then, we can obtain [|[®(u)||, < R, so that ® maps By into itself. We also obtain that @ is
a contraction mapping on Bj. From the contraction mapping principle, ® has a unique fixed
point in By, which gives a solution u € X (/) to (1.2). Furthermore, as we have mentioned,
u=®@u) e C'(I; H*2(R"N)). On the other hand, since X(I) C ﬂ;:o WIi(I, B;_zj([RN)), it
follows from Lemma 2.7 (i) that f (u) € C(I; H*"*(RN)). Hence, we see —Au = id,u—f (u) €
C(I; H*"2(R")), so that u € C(I; H*(R")). The uniqueness of solutions in C(I; H*(R"))
has been proved in [3, Proposition 4.2.13]. Finally, we can easily check thatu € L7([; Bf([RN )
for any admissible pair (g, r), since L®(1; H*(RN))n L*(I; B;*(RN)) C Li(I; B (RM)). O
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Remark. A direct application of Lemma 2.2 gives || f(w)|| 1, B S (RV |@ll g)* 'R, which
would not suffice to show that ® should be a contraction mapping. This is why we estimate
the difference || f(u) — f(U()o)|| Lr(Bs2) instead. On the other hand, we cannot estimate
| f@) — fFUCG@)|| L2852 by Lemma 2.4, since the assumption p* < N /s for the lemma
might not be satisfied. This is why we estimate || /' (u)][ . B and || f ()|l B differently.

Proposition 3.2. Let N > 8,2 < s < N/2 and let a = a*(s) satisfy max{l;s — 2} < a <
s—1. Let p € H(RY) and let {9, }3> | C H*(R") satisfy ¢, — @ in H*(R"). Then there
exists T > 0 such that (1.2) has a unique solutionu € C(1; HS(RN)Nn X I) with I = [0,T],
and that (1.2) with ¢ replaced by ¢, has a unique solution u, € C(I; H*(R™))n X(I) for
sufficiently large k. Furthermore, u, — uin C(I; H*(R™)) n X (I).

Proof. Step 1. Let R and T satisfy (3.14) in the proof of Proposition 3.1. We note that we can
take R arbitrarily small, if we choose T smaller so as to satisfy the first inequality of (3.14).
By Proposition 3.1, the equation (1.2) has a unique solutionu € C(I; H*(RY))n X (I). From
Lemmas 2.1 and 2.4, we see Ry(@,;T) — Ry(p;T) as k — oo, where R, is defined by (3.4).
Especially, we use (2.12) to show that || f(U(-)@,) — f(U(')(P)||Lr(B;—2) — 0. Therefore, for
sufficiently large k, the mapping ® with ¢ replaced by ¢, is still a contraction on By, so that
(1.2) with ¢ replaced by ¢, has a unique solution u, € C(I; H*(R™)) n X(I). We have
ety < R and el oy S RV (19l
Step 2. From the equations for u and u,, we have

”uk —ully S ||uk - u”)(1 + ””k - u”xl + ”f(”k) - f(u)”xl’ (3.15)
oy — u”Loo(Hx) S luy — “”Loo(Hs—Z) + [l — ’;‘||Lco(Hs—2) + 1/ () - f(”)||Loo(Hs—2)~ (3.16)
From Lemma 2.4 (ii), and (2.20) together with the mean value theorem, we obtain

”f(uk) - f(“)”Lr(Bj;?)

S (””k”Lw(B;TZ) \ ”u”L°°(B;§l—2))“—1(||uk”)( \ ||“||X)||uk - u”Loo(Bf(T2), (3.17)
1/ @) = f @)l a2
S (||uk||L°°(B;1—2) 4 ”u”Lm(Bil—Z))a/z(”uk”X vVl ) Nluy, — u||U(B;l_2), (3.18)
From (3.17) and (3.18), we obtain
1/ @) = f@lix, S Rlluy — U||L°°(Bi;2) + Ra/z””k - u”U(BZIZ)' (3.19)

As in the proof of Proposition 3.1, we set v(t) = u(t) — U(t)@, and analogously v, (1) =
u, (t) = U(t)@,. so that v(0) = v,(0) = 0. Like (3.5), we have ||v, — Ulle(Bgz) < o = ollys
so that

lluy — u”Lw(B;IZ) S llue —ully + llo, — @ll gs- (3.20)
It follows from (3.15), (3.19) and (3.20) that

. . 2
llug = ullx S Ny = ull, + Il = dlly, + RV Ry = ullx + @ = @ll -
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If R > 01is small enough, the third term in the right-hand side is absorbed into the left-hand
side, so that we obtain
Ny —ullx <l —ullx, + i, —allx, + o — @l s (3.21)
Step 3. We shall show

]}l_)l’{.lo ||uk - u”Loo(Hs—Z)nXl = 0. (3.22)

From Lemma 2.1 and the estimate (2.19) together with the mean value theorem, we have
lluy — u”L°°(H~‘—2)nXl S llox — @ll s + 11 @) — f(”)llLy’(BS,—Z)
P
S llex = @ll gz + Ul Vv llull ) g — ully,
S o = @llgez + R Nluy — ully,-

If R is small enough, the second term in the right-hand side is absorbed into the left-hand
side. Since ||@, — @|| .- = 0, we obtain (3.22).
Step 4. We shall next show

]}i_{l;lo ||L'lk - ulle(Hs—Z)nXl = 0- (3-23)
Again by Lemma 2.1,
||L'tk - L"llLoc(l-]s—Z)nx1 S ”(Pk - ¢||Hs—2 + ”f,(uk)(uk - u)”y’(g;ﬂ)
+ ”(f,(uk) - f’(u))ll”L/(B;,—z). (3.24)

From (2.19), the second term in the right-hand side is bounded by R*[|i;, — it]| y , and hence
it is absorbed into the left-hand side provided that R is small enough. Therefore, to prove
(3.23), it suffices to show that the third term goes to zero. To this end, let y,(&) = y(£/2"),
where y is defined at the beginning of §2. We decompose u as

u=y(Du+{1- yD)u= ul +uf, (3.25)

The supports of .Zul and .Zu" are respectively contained in the region |&| < 2/ and |£| > 2.
Therefore, (1 — A)ul € X(I) for arbitrary /. For a while, we arbitrarily fix /. For the estimate
of the low frequency part, we take € > O satisfying s — 2 + € < min{s;a}. Then, from a
slight modification of the estimate (2.19) together with the mean value theorem, we see

”(f,(uk) - f,(u))uL”Lr’(B;;“E) S (lullx v ”ullx)a”aL”Lr(B;*“f) S R - A)uL”)(I'
Furthermore, by the Holder inequality, we obtain
. -1 .
”(f,(”k) - f,(”))“L”LV’(Lp’) S (gl v el ) [y — u”Lr(Lp)”uL”X] -0

as k — oo0. Hence, by interpolation, we have ||(f’(u,) — f’(u))L'lL”L,/(Bx/—z) — 0 for any /. On
the other hand, it follows from (2.19) that ’

”(f,(uk) - f,(u))qulLr’(B;72) S (lullx v ”ullx)a”aH”Lr(Bz—2) S Ra”uH”XI,
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and the right-hand side is independent of k. Thus, we obtain
Bim 11/ ) = 1 @il ey S RO (3.26)

Furthermore, by the Lebesgue convergence theorem, we see that ||uf |y, — 0as! — oo.
Therefore, the left-hand side of (3.26) must be zero.

Step 5. From (3.21)—(3.23), we obtain lim,_,  [lu, — u|l, = 0. Once this is proved,
from (3.20) we obtain |[|u, — ulle(le_z) — 0, which implies || f(u,) — f@ll w2y = 0
by Lemma 2.6 (i). Therefore, from (3.16), we obtain ||lu, — ul| ;«gs) — 0. U

We shall proceed to the case max{2; s—3} < a*(s) < s—2, which occurs only for N > 11.
As in the previous case, we shall separately prove the unique existence (Proposition 3.3), and
the continuous dependence on data (Proposition 3.4).

Proposition 3.3. Let N > 11,4 < s < N/2 and let a = a*(s) satisfy max{2;s — 3} <
a < s—2. Forany ¢ € H(RV), there exists T > 0 such that (1.2) has a unique solution
u € C(I; H(RN)), where I = [0,T). Furthermore, u € Lq(I;Bf([RN))for any admissible
pair (q,r).

Proof. For R > 0, we define the metric space
Bp={ueY{): u0)=q, u0)= ¢, |lully <R}

with metric d(u,u,) = ||u; — u,|| ,. We note that (B r»d) 1s again a complete metric space.
For suitable 7" and R to be specified later, we shall prove that the mapping @ is a contraction
mapping on By. We set

Ry =Ri(@:T) = [UOx VIO x, VIUOP,
4 ”f(U(')(P)”Ly(B;‘I*“) v ”f’(U(')CO)U(')Co||LY(B;*4)~ (3-27)

Then, we havelim;_, R,(¢;T) = 0. Foru € BR, we set v(t) = u(t)-U(t)p, and w(t) = u(t)—
U@y withy = ¢+ (=A)~' f(@). Then yw € H?, 1iN(t) = i(t) — U(t)¢ and v(0) = 1(0) = 0.
Like (3.5), we see ||v||Lw(B;Tz) < |lvlly and ||w||Lm(B;1_4) S (1l x, 10]] x,)'/?. Tt follows from
these estimates together with Lemma 2.1 that

lolly S lully v Ry, max 19]wlly, S max o/ully, v Ry, (3.28)

”u”Loc(Lu) S ”u”Loo(qu—2) S lully V@l gs- (3.29)
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Like (3.7) and (3.8), it follows from Lemmas 2.1 and 2.5 that
1Py, S NUO@Ix, + 1l S R+ lully llully, S R+ R (3.30)

102wl x, S NV, + ILF @il

S Ry +llullg, llillx, S Ry + R, (3.31)
107 @)y, S NUO@llx, + ILf Wi + f”(u)b‘mIILyf(B;,—ft)
S Ry + Nully llilly, + lullg ally, S Ry + R (3.32)

Especially, we have used (2.17) for (3.30), (2.21) for (3.31), and (2.21) together with (2.24)
for (3.32). Lemma 2.1 also shows that ®(u) € C(I; H*=?) n C*>(I; H*™*), with the estimate

”q)(u)”Loo(Hs—Z) \4 112211)2( ||0{(I)(u)||LOO(HS_4) S el g2 V@l gs-s V@1 s + R (3.33)

On the other hand, for the estimates of ®(u) in Y, and 9,® () in X, we use the equation (3.3)
with j =0, 1. We see

1Dy, ~ (1 = DDWIy, S 1DWIly, + 10,2Wlx, + /@Iy, (3.34)
19,2, ~ 11 = A)0, Dl ,
S 10,2W)llx, + 1020y, + I/ @yl . (3.35)

Here, we have used X, C Y. Hence, we need to estimate || f()lly, and || f ol x, As
in the proof of Proposition 3.1, we estimate || f ()| ;2(ps-+ and || f(W)|| 1, ps—sy Separately. In
I 1

L*(I; B;:4([R{N ), we directly estimate f(u) as before. Then, like (3.11), we have
1
1 @ 2gamsy S Clally V1@l )2 lully > S RV ll@ll )™ R,
1

On the other hand, taking account of the inequality || f(U ("))l 1, (ps-+) < R,, we estimate the
difference f(u) — f(U(-)@) in L"(I; B;:“([R{N )). It follows from Lemma 2.4 (ii) that

17 @) = FUOOI 5y

S (”ullLOO(LM) 4 ||U(')(P”Loo(u))a_l(||u||u(3;;4) N ”U(')(ﬂ“Lr(B;;4))||U||L°°(B;_1-2)

S (lully v llll )™ Alully, vV IUO@lx)lolly S RV @l ) (RV Ry
Combining these estimates, we obtain

1/@lly, S (RV [l@llz)* (R R + R,. (3.36)

We next estimate || f/(u)i]| x,- We use (2.22) to obtain

I @l agis) S Alully v ||cDIIHS)"’/ZIlullgzIIL'IIIY1 S RV 1@l )R
On the other hand, for the estimate in L”([; B;“‘([RN )), we write

fwi = f'ww+{f'w - fUO)IUOP+ f/UCO@U ().
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The last term is bounded by R, in L"(1; B;‘4([RN )), so it suffices to estimate the first two
terms. From Lemma 2.4 (iii)—(iv), we see

1" @]l rgys) S ||uII‘,i;1(LM)IIMIIU(B;I-z)IILbIILoo(B:_l—zt)
< Ulully v el 707 lully, (Ll 10l ,)> S (RV lloll 7" RR V R)),
I{f"w) - f’(U(-)ca)}U(-)('PIIU(B;—4>
S (||U||L°°(B§;4) \ ||U(')§0||Lw(3;;4))a_l ||U||L°°(B;;4)||U(')§'0||LY(B;1-4)-
S ully V@l g oly lUO@Nx, S RV llollg)* (RV R)R,.
Combining these estimates and taking @ > 2 into account, we obtain
1/ @i, S (RV @]l )" (RV R + R,. (3.37)
Collecting the estimates (3.30)—(3.32), (3.34), (3.35) and (3.37), we obtain
I0G)lly < CR, + CRV [|0ll ;)" (R V Ry)?
for some constant C > 1. Now, we choose R and T such that

2CR,(¢;T) < R < min{ (3.38)

—— oy,
2Cllell5;!

Then, ® is a contraction mapping from By, into itself, and hence there is a unique fixed point
uof ®@in ER, which gives a solution to (1.2). We shall show thatu € X, (/)N C(I; H(RM))
by a sort of bootstrap argument. It follows from (3.29) and Lemma 2.4 (i) that f'(u) € X,(I)N
L>(I; H*"%(RYN)). Then, from (3.34) with Y, and Y, respectively replaced with X, and X,
we find that u = ®(u) € X, (I). As mentioned above, we have u € C(I; H2(RM) n
C*(I; H"*(R")). Since X,(I)nY(I) C ﬂjz.zo Wi, B;_ZJ(IRN)), Lemma 2.7 (ii) shows
that f(u) € C'(I; H*=*(R")). Hence, using the equation (3.3) with j = 1, we obtain d,u €
C(I; H*"2(R")). Next, using the equation (3.3) with j = 0, we obtain u € L*(I; H*(RV)).
Once this is obtained, applying Lemma 2.7 (ii) again, we obtain f(u) € C(I; H**(RN)).
Then, we go back to the equation (3.3) with j = 0 and obtain u € C(1; H*(R")). The rest of
the proof is the same as that of Proposition 3.1. U

Proposition 3.4. Let N > 11,4 < s < N /2 and let a = a*(s) satisfy max{2;s — 3} < a <
s —2. Let o € H(RY) and let {9} C H*(R") satisfy ¢, — @ in H*(R"). Then there
exists T > 0 such that (1.2) has a unique solutionu € C(I; HS(RN)N X (1) with I = [0,T],
and that (1.2) with ¢ replaced by ¢, has a unique solution u, € C(I; H*(R™)) n X(I) for

sufficiently large k. Furthermore, u,, = u in C(1; H@RY)n X).

Proof. The proof of Proposition 3.4 is similar to that of Proposition 3.2.

Step 1. As in the previous case, there exist positive numbers R and T such that (1) the
equation (1.2) has a unique solution u € C(I; H*(R™)) n X,(I) n Y(I); (ii) for sufficiently
large k, (1.2) with ¢ replaced by ¢, has a unique solution u, € C(I; H*(R¥)n X (1NY (I);
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(ii1) ||lug|ly £ Rand ||uk||Loo(le_2) Vgl pogs—2y S RV ||@ll gs- Choosing T sufficiently small,
we may assume R to be arbitrarily small, so that R*~! < RY? « R < 1, for we have
a > 2 by assumption. From Lemmas 2.1 and 2.4, we see R,(¢,;T) — R,(@;T), where R,
is defined by (3.27).

Step 2. Like (3.34), (3.35), we have

lluy — ””YO S lluy — u”xl + [l — u”xl + [1f () = f(u)”Yl, (3.39)
lluy — M”X1 S lluy — u”X2 + [l — u”Xz + [1f () = f(u)”)(za (3.40)
Nl — ullxl < My — L'l||X2 + Il — ii”xz + 11 f )i — f/(uk)u”)(z- (3.41)

Like (3.19), we can obtain

IIf () — f(”)”y1 S R(||lu, — u||Loo(B;§]—2) + luy — u”U(B;TZ))’ (3.42)
| f (uy) — f(”)”xz S R(||uy — u”Loo(B’sq%) + [luy — u”LV(B;l*‘*))' (3.43)

Here, we have used Lemma 2.4 (i1)—(ii1) together with (2.22) and (2.23). On the other hand,
it follows from Lemma 2.4 (iii)—(iv) and (2.22), (2.25) that

L @i, = £ @il 1y gysy S W @ = D)l sy + 1 @) = @Ml gy
-1 . . .
S ”uk”im(B}zl_z)(”uk”LV(B;’TZ)”uk - u”LOO(BIA;I—At) + ”uk - u||Lco(B;;2)||u||U(B;,2))

||f’(uk)L'tk - f,(u)’;‘”y(gzj) S ||f’(uk)(L'tk - u)||L2(B;;4) + ”(f’(”k) - f,(”))’;‘”m(z;;j)
al2 af2 . .

(a—1)/2 (a—1)/2

+ (||Uk||L°°(B;1—2) v ||u||L°°(B;;1—2))

1/2 1/2 .
X Nt = ull /2 g Moty = ll g Ml
K1 ’1

(”uk”LV(Bgl—Z) v ||u||Ly(BI§1—2))

S R(||uy — u”Loo(B;]%) + iy — ullLoo(Bi;t) + [luy — u||Lr(B;1—2) + [lay, — u”u(gz—z))'
Therefore, we obtain
”f,(”k)uk - f,(”)u”x2 S R(||iy, — L"”LOO(B;;“) + [luy — ulle(le—Z) + [luy — ully). (3.44)
Collecting the estimates (3.39)—(3.44), we obtain

g —ully S lluy, = u”xz + lliy — u”xz + |l — ii”xz

+ Ry = ill oty + Nt = ul gy + Nl = ully). (3.45)

If R > 0 is small enough, then the last term in the right-hand side is absorbed into the left-
hand side. Like (3.20), we can obtain

llety, — a”Lw(B;I“) + [luy — u”Lm(B;I?) Sl —ully + llog — @lly: + llo — @l gea. (3.46)
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Substituting (3.46) into (3.45), we obtain
e, = ully < Ny =l + iy, = 2l , + Il = iill .,
+ lor — @llgs + lor — @l goa- (3.47)

Step 3. We shall show lim,_,, [lu, — ull jo(yys-s)nx, = 0, analogous to the previous case
a > s — 2. Indeed, we have only to replace the index (s — 2) with (s — 4) and the space X,
with X, in the proof of (3.22). From Lemma 2.1 and the estimate (2.21), we have

[|u; — ulle(Hs—4)nX2 S e — @l gs—a + 11 f () — f(u)”U’(B;,—‘*)
N ”(Pk - (P”Hs—4 + (”“klly \ ||u||Y)“||uk - ””)(2
S ek — @l go-s + R luy —ull y, -

If R is small enough, the second term in the right-hand side is absorbed into the left-hand
side. Hence [luy — ull joops-synx, S l@g — @l grs-s = 0.

Step 4. We next estimate ||it, — tt| oo(pys-3ynx, and [|ii = @il poo(pys-4ynx,- From Lemma 2.1
and the estimates (2.21), (2.24), we obtain

||L2k - ulle(HA'-4)nX2
S ”(Pk - C.DHHS*4 + ||f,(uk)(dk - u)”y’(}g;;“) + ” {f,(uk) - f,(u)}allLy’(B;‘;“)
S 1k = @ll s+ N i =l
—1 .
+ (||”k||Lr(B;;2) \4 ”u”LV(B;l*Z))a lluy — u”Lr(B;ﬁ)”u”Lr(B;*Z)
S g = @ll s + RN, — ully, + Rl — il ..
Using (3.47) and choosing R sufficiently small, we obtain
||L'£k - ulcho(Hs—4)nX2 S ||§0k - (P”Hs + ”Cok - ¢||Hs—2 + R”uk - u||X2 + R”ljk - ﬁllxz- (3.48)
Similarly,
lléd, — u||L°°(Hs-4)nX2
S ”(Pk - é’”HS*4 + ”f/(”k)(iik - ii)”u’(}g;;“) + ”{f,(uk) - f/(”)}ullLr’(B;j‘)
+ ”f”(uk)(ukuk - uu)”u’(gs,—“) + || {f,’(uk) - f"(u)}uullLy’(BS,-“)
» »
=@ — @llys—s + T+ T+ T+ IV.

As before, the terms I, II and III are estimated by the Leibniz rule. Namely, from (2.21)
and (2.24),

I's ”ukHZy(B;Iz)”uk - i’l”LV(B;*“)’
-1 .
I (”uk”Lr(le—z) \Y ”u"LV(B;]—Z))a [[u, — ””Lr(le—2)7 ||u||U(B;_4),

LS oty V] ) ™ il oy V1l o) i, = il ey
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so that I + IT + III < R*||lu; — ul|,. Therefore

lléi;, — il||Loo(Hs-4)nX2 S @y — @l gs—a + R*[Juy, — ully + IV. (3.49)
The term IV = [|[{ /" (u,) — /" (w) }uit]| 17 -+ is estimated as in Step 4 of the proof of Propo-
sition 3.2. Namely, we further decomposep
IV < ||{f”(”k) - f’/(u)}auLllLr’(B;;‘*) + ”{f”(uk) - f”(”)}uaH”LV’(BS;‘*)
=1V, +1V,.

Recall that the decomposition u = u® + u'! is defined by (3.25), so that the supports of .7 ul

/

and .Zu' are respectively contained in the region |&| < 2! and |£] > 2'. For arbitrarily

fixed /, we can show IV, — 0 as k — oo. Indeed, it follows from the relation 1/ ,o’2 =
(a=2)/v+1/p+2(1/p—(s—2)/N) together with the Holder and the Sobolev inequalities
that

”{f”(uk) - f”(u)}l;tllL||Ly/(B74) S ”{f”(uk) - f”(u)}uuL”U/(Lp;)
p
)
S (el ey v Mlull )My = u”LY(Lﬂ)”u”L,(Bs 2 S R|luy —ullx, = 0.

We take £ > O satisfying s —4 + & <min{s —2;a — 1}. Let 1/p,, = 1/p, +€/N, j = 1,2.
From the Sobolev inequality, we have B;~*** c B3~**_ It follows from a slight modification
of (2.24) that

”f”(”k)uaL||Lr’(B;/-4+f) S luyl Ly(Lv)”“k”Lr(BS 4+f)||u||Lr(BS 4+f)”” ||LY(BS_4+5)
~ ””k”U(Bs)”””Lr(Bs 2)||uL||Lr(BS 24ey < Ra”uL”Lr(BS 2+,

and || f7 yiid™ ||  go-svey S R“||L'¢L||L,(B;-z+a). Hence, we see that || { /" (u,)— f" () it || 7 ge-sse
o o

is bounded for arbitrarily fixed /. Therefore, we obtain IV, — 0 as k — oo by interpolation.

On the other hand, we have

1 H -H
IV, 5 (””k”Lr(Bs 2V ”u”L/(BS 2))a ||”||LV(BS 2)”” ”LY(BS 2) S S R*|a ||Lr(B,§—2),

which goes to zero as / — oo, uniformly with respect to k. Therefore, we see IV — 0. Now,
collecting the estimates (3.47), (3.48) and (3.49), we have

lu, — ully S oy — @llgs + l@x — @ll goz + |0 — @l -
+ lluy — 1/‘”)(2 + {7 () = f”(u)}b‘tll||L,/(Bs74).
P

This estimate shows that lim, _,  ||#, — u||,, = 0. Going back to (3.46), (3.48) and (3.49), we
also obtain

]}Lrg{ﬂuk — u||Loo(qu_z) Vi, — ulle(BiI“nHS“‘) v ||iy, — a”Lw(HS“‘)} =0.
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Step 5. We shall finally show that lim, _,  [[u) —ul| « g+, = O. It follows from the equations
for u, and u that

llu, — ””Loo(Hs) S luy — u”Leo(LZ) + [lay, — u||Lm(HS—2) + 11/ () — f(u)”Loo(Hs—Q),
||L'lk - u”Loo(Hs—2) S ”uk - ulle(LZ) + ”uk - i’i”Lm(HS—“) + ||f’(uk)L'tk - f,(u)ullLoo(Hs—4)’

so that

Nl — ull pooprsy + Mt = Wl poo o2y
+ 1f @) = F@ ooy + 1 @ity — f @il o gomsy-

By Steps 3—4, the first three terms in the right-hand side converge to zero. Furthermore, it
follows from Lemma 2.6 (ii)—(iii) that the last two terms converge to zero. This completes
the proof. U
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