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Abstract. Let H be a Hilbert space. In this paper we show among others that,
if the functions f and g are continous and positive on the interval I and such
that there exist the positive numbers m < M with

0 < m ≤ f (t)

g (t)
≤ M for all t ∈ I,

then, for the selfadjoint operators A, B with spectra Sp (A) , Sp (A) ⊂ I, we have
the tensorial inequalities

0 ≤ 1

M
ν (1− ν)

×

[(
f2 (A) g−1 (A)

)
⊗ g (B) + g (A)⊗

(
f2 (B) g−1 (B)

)
2

− f (A)⊗ f (B)

]
≤ (1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

−
(
f1−ν (A) gν (A)

)
⊗
(
fν (B) g1−ν (B)

)
≤ 1

m
ν (1− ν)

×

[(
f2 (A) g−1 (A)

)
⊗ g (B) + g (A)⊗

(
f2 (B) g−1 (B)

)
2

− f (A)⊗ f (B)

]
for all ν ∈ [0, 1] . Some similar inequalities for Hadamard product are also given.

1. Introduction

We have the following inequality that provides a refinement and a reverse for the
celebrated Young’s inequality

(1.1)
1

2
ν (1− ν)

(b− a)2

max {a, b}
≤ (1− ν) a+ νb− a1−νbν ≤ 1

2
ν (1− ν)

(b− a)2

min {a, b}
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66 S. S. DRAGOMIR

for any a, b > 0 and ν ∈ [0, 1] .
This result was obtained in 1978 by Cartwright and Field [4] who established

a more general result for n variables and gave an application for a probability
measure supported on a finite interval.

Since max {a, b}min {a, b} = ab for a, b > 0, then by (1.1) we get

1

2
ν (1− ν)min {a, b} (b− a)2

ab
≤ (1− ν) a+ νb− a1−νbν

≤ 1

2
ν (1− ν)max {a, b} (b− a)2

ab
,

namely

0 ≤ 1

2
ν (1− ν)min {a, b}

(
a

b
+

b

a
− 2

)
≤ (1− ν) a+ νb− a1−νbν(1.2)

≤ 1

2
ν (1− ν)max {a, b}

(
a

b
+

b

a
− 2

)
,

for any a, b > 0 and ν ∈ [0, 1] .
Let I1, ..., Ik be intervals from R and let f : I1 × ... × Ik → R be an essentially

bounded real function defined on the product of the intervals. Let A = (A1, ..., An)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1, ..., Hk such that
the spectrum of Ai is contained in Ii for i = 1, ..., k. We say that such a k-tuple is
in the domain of f . If

Ai =

∫
Ii

λidEi (λi)

is the spectral resolution of Ai for i = 1, ..., k; by following [2], we define

(1.3) f (A1, ..., Ak) :=

∫
I1

...

∫
Ik

f (λ1, ..., λk) dE1 (λ1)⊗ ...⊗ dEk (λk)

as a bounded selfadjoint operator on the tensorial product H1 ⊗ ...⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become

finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Korányi [5] for functions of two
variables and have the property that

f (A1, ..., Ak) = f1(A1)⊗ ...⊗ fk(Ak),

whenever f can be separated as a product f(t1, ..., tk) = f1(t1)...fk(tk) of k functions
each depending on only one variable.

It is known that, if f is super-multiplicative (sub-multiplicative) on [0,∞),
namely

f (st) ≥ (≤) f (s) f (t) for all s, t ∈ [0,∞)

and if f is continuous on [0,∞) , then [7, p. 173]

(1.4) f (A⊗B) ≥ (≤) f (A)⊗ f (B) for all A, B ≥ 0.
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This follows by observing that, if

A =

∫
[0,∞)

tdE (t) and B =

∫
[0,∞)

sdF (s)

are the spectral resolutions of A and B, then

(1.5) f (A⊗B) =

∫
[0,∞)

∫
[0,∞)

f (st) dE (t)⊗ dF (s)

for the continuous function f on [0,∞) .
Recall the geometric operator mean for the positive operators A, B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2,

where t ∈ [0, 1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.

By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B)# (B ⊗ A) .

In 2007, S. Wada [9] obtained the following Callebaut type inequalities for ten-
sorial product

(A#B)⊗ (A#B) ≤ 1

2
[(A#αB)⊗ (A#1−αB) + (A#1−αB)⊗ (A#αB)](1.6)

≤ 1

2
(A⊗B +B ⊗ A)

for A, B > 0 and α ∈ [0, 1] .
Recall that the Hadamard product of A and B in B(H) is defined to be the

operator A ◦B ∈ B(H) satisfying

⟨(A ◦B) ej, ej⟩ = ⟨Aej, ej⟩ ⟨Bej, ej⟩
for all j ∈ N, where {ej}j∈N is an orthonormal basis for the separable Hilbert space
H.

It is known that, see [6], we have the representation

(1.7) A ◦B = U∗ (A⊗B)U
where U : H → H ⊗H is the isometry defined by Uej = ej ⊗ ej for all j ∈ N.
If f is super-multiplicative operator concave (sub-multiplicative operator convex)

on [0,∞) , then also [7, p. 173]

(1.8) f (A ◦B) ≥ (≤) f (A) ◦ f (B) for all A, B ≥ 0.

We recall the following elementary inequalities for the Hadamard product

A1/2 ◦B1/2 ≤
(
A+B

2

)
◦ 1 for A, B ≥ 0

and Fiedler inequality

(1.9) A ◦ A−1 ≥ 1 for A > 0.
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As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that

A ◦B ≤
(
A2 ◦ 1

)1/2 (
B2 ◦ 1

)1/2
for A, B ≥ 0

and Aujla and Vasudeva [3] gave an alternative upper bound

A ◦B ≤
(
A2 ◦B2

)1/2
for A, B ≥ 0.

It has been shown in [8] that (A2 ◦ 1)1/2 (B2 ◦ 1)1/2 and (A2 ◦B2)
1/2

are incompa-
rable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we obtain some lower and upper
bounds for the quantities

(1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)−
(
f 1−ν (A) gν (A)

)
⊗
(
f ν (B) g1−ν (B)

)
and

(1− ν) f (A) ◦ g (B) + νg (A) ◦ f (B)−
(
f 1−ν (A) gν (A)

)
◦
(
f ν (B) g1−ν (B)

)
with ν ∈ [0, 1] , under the assumptions that the functions f and g are continuous
and positive on the interval I and such that there exists the positive numbers
m < M such that

0 < m ≤ f (t)

g (t)
≤ M for all t ∈ I,

while the selfadjoint operators A, B are with spectra Sp (A) , Sp (A) ⊂ I.

2. Main Results

We have the following main result:

Theorem 1. Assume that the functions f and g are continuous and positive on
the interval I and such that there exist the positive numbers m < M such that

0 < m ≤ f (t)

g (t)
≤ M for all t ∈ I,

then for the selfadjoint operators A, B with spectra Sp (A) , Sp (A) ⊂ I, we have
the tensorial inequalities

0 ≤ 1

M
ν (1− ν)(2.1)

×
[
(f 2 (A) g−1 (A))⊗ g (B) + g (A)⊗ (f 2 (B) g−1 (B))

2
− f (A)⊗ f (B)

]
≤ (1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

−
(
f 1−ν (A) gν (A)

)
⊗
(
f ν (B) g1−ν (B)

)
≤ 1

m
ν (1− ν)

×
[
(f 2 (A) g−1 (A))⊗ g (B) + g (A)⊗ (f 2 (B) g−1 (B))

2
− f (A)⊗ f (B)

]
for ν ∈ [0, 1] .
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Proof. Now if a, b ∈ [m,M ] ⊂ (0,∞) , then we have from (1.1) the following
inequalities

0 ≤ 1

2M
ν (1− ν)

(
a2 − 2ab+ b2

)
≤ (1− ν) a+ νb− a1−νbν(2.2)

≤ 1

2m
ν (1− ν)

(
a2 − 2ab+ b2

)
for ν ∈ [0, 1] .

Since

a =
f (t)

g (t)
, b =

f (s)

g (s)
∈ [m,M ] for all t, s ∈ I,

then by (2.2) we get

0 ≤ 1

2M
ν (1− ν)

((
f (t)

g (t)

)2

− 2
f (t)

g (t)

f (s)

g (s)
+

(
f (s)

g (s)

)2
)

(2.3)

≤ (1− ν)
f (t)

g (t)
+ ν

f (s)

g (s)
−
(
f (t)

g (t)

)1−ν (
f (s)

g (s)

)ν

≤ 1

2m
ν (1− ν)

((
f (t)

g (t)

)2

− 2
f (t)

g (t)

f (s)

g (s)
+

(
f (s)

g (s)

)2
)

for all t, s ∈ I and ν ∈ [0, 1] .
If we multiply the inequalities (2.3) by g (t) g (s) ≥ 0, then we get

0 ≤ 1

2M
ν (1− ν)

(
f 2 (t)

g (t)
g (s)− 2f (t) f (s) +

f 2 (s)

g (s)
g (t)

)
(2.4)

≤ (1− ν) f (t) g (s) + νg (t) f (s)− f 1−ν (t) gν (t) f ν (s) g1−ν (s)

≤ 1

2m
ν (1− ν)

(
f 2 (t)

g (t)
g (s)− 2f (t) f (s) +

f 2 (s)

g (s)
g (t)

)

for all t, s ∈ I and ν ∈ [0, 1] .
If

A =

∫
I

tdE (t) and B =

∫
I

sdF (s)
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are the spectral resolutions of A and B, then by taking the double integral
∫
I

∫
I

over dE (t)⊗ dF (s) in (2.4) we get

0 ≤ 1

2M
ν (1− ν)(2.5)

×
∫
I

∫
I

(
f 2 (t)

g (t)
g (s)− 2f (t) f (s) +

f 2 (s)

g (s)
g (t)

)
dE (t)⊗ dF (s)

≤
∫
I

∫
I

[
(1− ν) f (t) g (s) + νg (t) f (s)− f 1−ν (t) gν (t) f ν (s) g1−ν (s)

]
× dE (t)⊗ dF (s)

≤ 1

2m
ν (1− ν)

×
∫
I

∫
I

(
f 2 (t)

g (t)
g (s)− 2f (t) f (s) +

f 2 (s)

g (s)
g (t)

)
dE (t)⊗ dF (s)

for all ν ∈ [0, 1] .
Now, by (1.3) we get∫

I

∫
I

(
f 2 (t)

g (t)
g (s)− 2f (t) f (s) +

f 2 (s)

g (s)
g (t)

)
dE (t)⊗ dF (s)

=

∫
I

∫
I

f 2 (t)

g (t)
g (s) dE (t)⊗ dF (s) +

∫
I

∫
I

g (t)
f 2 (s)

g (s)
dE (t)⊗ dF (s)

− 2

∫
I

∫
I

f (t) f (s) dE (t)⊗ dF (s)

=
(
f 2 (A) g−1 (A)

)
⊗ g (B) + g (A)⊗

(
f 2 (B) g−1 (B)

)
− 2f (A)⊗ f (B) ,

and∫
I

∫
I

[
(1− ν) f (t) g (s) + νg (t) f (s)− f 1−ν (t) gν (t) f ν (s) g1−ν (s)

]
× dE (t)⊗ dF (s)

= (1− ν)

∫
I

∫
I

f (t) g (s) dE (t)⊗ dF (s) + ν

∫
I

∫
I

g (t) f (s) dE (t)⊗ dF (s)

−
∫
I

∫
I

f 1−ν (t) gν (t) f ν (s) g1−ν (s) dE (t)⊗ dF (s)

= (1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

−
(
f 1−ν (A) gν (A)

)
⊗
(
f ν (B) g1−ν (B)

)
.

Then by (2.5) we get (2.1).
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Remark 1. We observe that for ν = 1/2 we obtain the following inequalities

0 ≤ 1

4M

[
1

2

[(
f 2 (A) g−1 (A)

)
⊗ g (B) + g (A)⊗

(
f 2 (B) g−1 (B)

)]
(2.6)

−f (A)⊗ f (B)]

≤ f (A)⊗ g (B) + g (A)⊗ f (B)

2

−
(
f 1/2 (A) g1/2 (A)

)
⊗
(
f 1/2 (B) g1/2 (B)

)
≤ 1

4M

[
1

2

[(
f 2 (A) g−1 (A)

)
⊗ g (B) + g (A)⊗

(
f 2 (B) g−1 (B)

)]
−f (A)⊗ f (B)] .

Corollary 1. With the assumptions of Theorem 1 we have

0 ≤ 1

M
ν (1− ν)(2.7)

×
[
(f 2 (A) g−1 (A)) ◦ g (B) + g (A) ◦ (f 2 (B) g−1 (B))

2
− f (A) ◦ f (B)

]
≤ (1− ν) f (A) ◦ g (B) + νg (A) ◦ f (B)

−
(
f 1−ν (A) gν (A)

)
◦
(
f ν (B) g1−ν (B)

)
≤ 1

m
ν (1− ν)

×
[
(f 2 (A) g−1 (A)) ◦ g (B) + g (A) ◦ (f 2 (B) g−1 (B))

2
− f (A) ◦ f (B)

]
for all ν ∈ [0, 1] .

Proof. For X, Y ∈ B (H) , we have the representation

X ◦ Y = U∗ (X ⊗ Y )U

where U : H → H ⊗H is the isometry defined by Uej = ej ⊗ ej for all j ∈ N.
If we take U∗ at the left and U at the right in the inequality (2.1), then we get

0 ≤ 1

M
ν (1− ν)

× U∗
[
(f 2 (A) g−1 (A))⊗ g (B) + g (A)⊗ (f 2 (B) g−1 (B))

2
− f (A)⊗ f (B)

]
U

≤ U∗ [(1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

−
(
f 1−ν (A) gν (A)

)
⊗
(
f ν (B) g1−ν (B)

)]
U

≤ 1

m
ν (1− ν)

× U∗
[
(f 2 (A) g−1 (A))⊗ g (B) + g (A)⊗ (f 2 (B) g−1 (B))

2
− f (A)⊗ f (B)

]
U ,
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namely

0 ≤ 1

M
ν (1− ν)

×
[
U∗ [(f 2 (A) g−1 (A))⊗ g (B)]U + U∗ [g (A)⊗ (f 2 (B) g−1 (B))]U

2

−U∗ (f (A)⊗ f (B))U ]
≤ (1− ν)U∗ [f (A)⊗ g (B)]U + νU∗ (g (A)⊗ f (B))U
− U∗ [(f 1−ν (A) gν (A)

)
⊗
(
f ν (B) g1−ν (B)

)]
U

≤ 1

m
ν (1− ν)

×
[
U∗ [(f 2 (A) g−1 (A))⊗ g (B)]U + U∗ [g (A)⊗ (f 2 (B) g−1 (B))]U

2

−U∗ (f (A)⊗ f (B))U ] ,

which is equivalent to (2.7).

Remark 2. We observe that for ν = 1/2 we obtain the following inequalities

0 ≤ 1

4M

[
1

2

[(
f 2 (A) g−1 (A)

)
◦ g (B) + g (A) ◦

(
f 2 (B) g−1 (B)

)]
(2.8)

−f (A) ◦ f (B)]

≤ f (A) ◦ g (B) + g (A) ◦ f (B)

2

−
(
f 1/2 (A) g1/2 (A)

)
◦
(
f 1/2 (B) g1/2 (B)

)
≤ 1

4M

[
1

2

[(
f 2 (A) g−1 (A)

)
◦ g (B) + g (A) ◦

(
f 2 (B) g−1 (B)

)]
−f (A) ◦ f (B)] .

Now, if we take B = A in Corollary 1, then we get

0 ≤ 1

M
ν (1− ν)

[(
f 2 (A) g−1 (A)

)
◦ g (A)− f (A) ◦ f (A)

]
(2.9)

≤ f (A) ◦ g (A)−
(
f 1−ν (A) gν (A)

)
◦
(
f ν (A) g1−ν (A)

)
≤ 1

m
ν (1− ν)

[(
f 2 (A) g−1 (A)

)
◦ g (A)− f (A) ◦ f (A)

]
for all ν ∈ [0, 1] .

In particular, for ν = 1/2 we get

0 ≤ 1

4M

[(
f 2 (A) g−1 (A)

)
◦ g (A)− f (A) ◦ f (A)

]
(2.10)

≤ f (A) ◦ g (A)−
(
f 1/2 (A) g1/2 (A)

)
◦
(
f 1/2 (A) g1/2 (A)

)
≤ 1

4m

[(
f 2 (A) g−1 (A)

)
◦ g (A)− f (A) ◦ f (A)

]
.
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