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Abstract: Metallic yielding dampers are damaged early before the main frame during earthquakes
and take over the damage of the main frame. Under the assumption of the main frame elasticity, both
maximum and residual deformation are expected to be reduced. However, the main frame may be
damaged, and the assumption of the main frame elasticity may not hold under major earthquakes.
However, large deformable elastic plates have larger yielding deformation than standard steel core
plates of the damper and can be used as braces to reduce the seismic response of buildings. This study
presents a simple definition of design variables for a topology optimization problem involving large
deformable elastic plates with rectangular shapes. As bi-objective functions, yielding deformation
and yielding force capacity maximization were used. The optimization results were compared with
the findings of a previous study. Finally, the efficacy of the braces was verified by experimental tensile
tests. The obtained results are as follows. (1) A distinct trade-off relationship was obtained between
tensile yielding deformation and tensile yielding load through muti-objective optimizations using the
proposed formulation. (2) The Pareto fronts using the proposed formulation were almost identical
to the findings of the previous study. (3) While the experimental test results of yielding tensile load
are overestimated by the analysis results by the 10 mm rough grid elements, the test results almost
correspond to reanalysis results with the 2.5 mm fine grid elements.

Keywords: multi-objective optimization; large deformable elastic plates; experimental tensile tests

1. Introduction

Brace structures have been used in many steel buildings because they provide excellent
stiffness and strength to buildings at a low cost [1]. However, there are possibilities that
buckling will occur at an early stage during major earthquakes [1]. Therefore, several stud-
ies have been conducted to enhance the hysteresis properties of braces, including metallic
yielding dampers [2–6], buckling restrained braces [7,8], non-compression braces [9,10], and
hybrid damper braces [11]. There are also review papers on this area [12–14]. The above
metallic yielding dampers are damaged early before the main frame during earthquakes
and take over the damage of the main frame. Under the assumption of the main frame
elasticity, both maximum and residual deformation are anticipated to be reduced. However,
the main frame may be damaged, and the assumption of the main frame elasticity may not
hold under major earthquakes.

We have studied large deformable elastic braces (LDEBs), which can realize elastic
response even during major earthquakes. From our previous studies, the tensile testing
showed a substantial deformable elastic performance of the bracing, and time history
analyses revealed a reduction in story drift’s maximum and residual response [15]. LDEBs
have been involved in the evaluation of optimum topologies on large deformable elastic
plates (LDEPs) as steel core plates [16,17].

Intermediate types between metallic yielding dampers and LDEBs can achieve various
yield strengths, yield displacements, and energy dissipation capacities. We can develop the
hybrid types with metallic yielding damper, LDEBs, and the intermediate types. Since these
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mechanisms are essentially different, the hybrid type is expected to achieve both residual
deformation reduction and maximum response reduction synergistically. By installing the
LDEBs with different elastic limits, we can develop a resilient function against multi-stage
unexpected seismic motion levels.

There are few studies on optimum topologies of LDEBs and optimum structures
with LDEBs and the intermediate and hybrid types, while there are several studies on
optimization with metallic yielding dampers [18,19]. This study proposes a formulation
for optimizing the topology of LDEPs with rectangular shapes. A four-column method is
presented as a new topology formulation. In the formulation, the design variables become
simpler than those in Ref. [17]. One of the multi-objective optimization methods, NSGA-II,
proposed by Deb et al. [20,21] solves the optimization problem by maximizing the tensile
yielding load and tensile yielding deformation. Furthermore, the trade-off relationship be-
tween the yielding load and the yielding deformation of LDEBs is explored using the Pareto
solutions and compared with the previous studies. Finally, the optimization results are
compared with experimental tensile tests. The study aims to present possible combinations
of yield strength and yield deformation, including LDEBs and their intermediate types.
This study is useful as a foundational resource for clarifying the method and characteristics
of the optimum solution for determining the stiffness and yield strength of LDEBs and
their intermediate and hybrid types.

2. Features of LDEPs and LDEBs

As described above, LDEPs are soft steel plates formed by laser cutting that show
elastic behavior even if a large deformation occurs due to a major earthquake [1,15–17].
There is a study on folded braces by Hada et al. [22] as an earlier investigation into braces
that aimed to increase the elastic limit. However, the elastic limit of the target brace was set
to 1/200 of the story drift angle. The study by Hada et al. differs from our study in terms
of the composition and manufacturing method. In this study, it is assumed that an LDEP is
sandwiched by steel channels and bolts as shown in Figure 1 to prevent buckling of the plate
and to function effectively as an LDEB. Since a building frame with LDEPs as braces exerts
an elastic restoring force even after the beam–column plasticization in a major earthquake,
it is expected that the response of maximum deformation and residual deformation will
be reduced. According to the seismic response analysis of the portal frame [15], even with
the addition of large deformation elastic knee braces of axial stiffness of only 500 N/mm, a
maximum response reduction of around 20% and an extreme reduction in large residual
deformation response were confirmed. This study investigates the relationship between
yielding load and yielding deformation that can be realized by morphological creation
from a 9 mm thick steel plate using a multi-objective optimization method.
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3. Formulations
3.1. Topology Formulation of LDEPs with Rough Rectangular Element Shapes

Here, to reduce computational requirements for optimization, plates are divided
into rough rectangular element shapes and optimized with topological patterns based on
rectangular shapes.

The following two approaches are introduced for the topology formulation of LDEPs.

3.2. Inverse Fourier Formulation

There is a common method of topology optimization of continuum structures that
involves expression as solid or void, and research has been conducted. In early studies,
many challenges were identified, including the checkerboard patterns in which solid and
void occur alternately [23], and different computational enhancements [24] were proposed.
To prevent the checkerboard patterns, the topology formulation uses a function comparable
to the inverse Fourier transform, as shown in Appendix A.

3.3. Four-Column Formulation

To obtain optimal solutions efficiently and simply, consider the following topology
representation named the four-column formulation.
[Fourcolumn formulation]

If MOD(i/4) = 0, then zij = 1 (j ≤ x1 or j ≥ ny − 2 − x1); zij = 0 (ny − 2 − x1 > j > x1).
If MOD(i/4) = 1, then zij = 1.
If MOD(i/4) = 2, then zij = 0 (j ≤ x2 or j ≥ ny − 2 − x2); zij = 1 (ny − 2 − x2 > j > x2).
If MOD(i/4) = 3, then zij = 1;
x1, x2: integer design variables;
i: column number of finite element (i,j) (i = 0, 1, 2, . . . nx − 1);
j: row number of finite element (i,j) (j = 0, 1, 2, . . . ny − 1);
MOD(i/4): the remainder of i divided by 4;
zij: zij = 1 represents that element (i,j) is solid, and zij = 0 represents that element (i,j)

is void.

3.4. Multi-Objective Optimization Problem Based on Four-Column Formulation

In the past consideration of topology optimization of LDEPs that maximize yielding
deformation as a single objective function, the trade-off relationship between yielding
deformation and yielding load was identified. However, few studies have investigated this
tendency. Here, tensile yielding deformation, Uy, and tensile yielding load, Py, are used
as bi-objective functions, and the following optimization problems are specified for the
four-column formulation.

Find integer design variables, x1 and x2, which maximize

f1 = Uy = U
σ0

σMmax
and f2 = Py = P

σ0

σMmax
,

where
U is the maximum tensile displacement in all nodes;
P is the total tensile load in all nodes;
σ0 is the tensile yield strength of steel plate material;
σMmax is the maximum value of von Mises stress in all nodes.

4. Numerical Results

This section describes the results of the morphological creation of LDEPs for bracing
structures. A plate is prepared, in which the total lengths in the x-direction and y-direction
are fixed to 660 mm and 200 mm, respectively, as shown in Figure 2. For linear elastic
analysis by finite element method (FEM) software, LISA [25], the plate is divided into
a total of 1320 (66 × 20, 10 mm grid) elements. The plane stress conditioned elements
with quadratic nodes, Young’s modulus of 205,000 (MPa), Poisson’s ratio of 0.3, and plate
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thickness of 9 mm are used. Table 1 shows non-dominated final solutions (σ0 = 325 MPa)
by multi-objective optimization (NSGA-II) [20,21] based on the four-column formulation.
Due to the small design region, only 500 function evaluations (50 individuals) converged to
constant solutions. In the process of optimization, the nodes surrounded by void elements
and the void elements themselves are completely removed from the computer program, and
the node numbers and element numbers are automatically revised. For comparison, single
optimum solutions by strain energy maximization using the inverse Fourier formulation
(Appendix A) are also shown in Table 2. Due to a very large design region, 15,000 function
evaluations (50 individuals) were needed to obtain the results. Figure 3 shows the distinct
trade-off relationship between tensile yielding deformation and tensile yielding load for
the four-column formulation. Additionally, the figure shows that Pareto fronts of the two
formulations almost correspond to each other. Figure 3 also shows topology patterns for
several solutions. The yellow color represents a solid, while the brown represents a void.
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Table 1. Non-dominated final solutions by NSGA-II with the four-column formulation.

Solution x1 x2 Uy Py

[Unit] [-] [-] [mm] [N]
F-0 5 7 1.563 16,049
F-1 4 7 2.295 11,247
F-2 3 7 3.097 8271
F-3 2 7 4.070 6525
F-4 1 6 4.072 6482
F-5 1 7 5.246 5384
F-6 1 8 6.097 4380
F-7 0 7 6.256 3779
F-8 0 8 7.517 3341
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Table 2. Single optimum solutions by strain energy maximization using inverse Fourier formulation
(Appendix A).

Solution γ1 γ2 W Uy Py

[Unit] [-] [-] [N/mm] [mm] [N]
I-0 44 1 31.5 1.267 5986
I-1 55 1 31.5 2.712 6162
I-2 66 1 31.5 3.514 6297
I-3 44 1 21 1.404 4238
I-4 55 1 21 3.556 4180
I-5 66 1 21 6.711 3981
I-6 44 1 10.5 1.254 2983
I-7 55 1 10.5 5.594 1940
I-8 66 1 10.5 6.158 2079
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5. Experimental Tensile Tests of the Two Optimized Specimens

The two optimized specimens, F-7 and F-8, shown in Figures 4 and 5, were laser cut
from 9 mm thick steel plates (SM490) using a laser cutting machine. According to a mill
sheet, the yield strength of the steel plates is 407 MPa. Experimental tensile tests were
performed on the specimens by a universal testing machine at Shimane University, as
shown in Scheme 1. Figures 6 and 7 show the relationship between tensile deformation and
load of specimens with the computational results from Table 1. As shown in blue circles in
Figures 6 and 7, there exists around 400 (N) of initial load. The reason is that from the initial
stage to exceeding around 1000 (N), we used the total weight of ourselves to apply gripping
force not only to handle B but also to handle A in Scheme 1. The test load was applied to
the limit of displacement transducers and then unloaded. The computational results from
Table 1 do not correspond to the test results because of rough element division. However,
the reanalysis results by 2.5 mm grid elements with σ0 = 407 MPa almost correspond to the
test results. As a result, a 10 mm rough grid element overestimates the yielding load and
requires a reanalysis of the 2.5 mm fine grid elements after optimization by the 10 mm grid
elements. Figures 8 and 9 show the von Mises stress distribution for F-7 and F-8 using finite
element analysis with 2.5 mm grid elements. It is observed that relatively high bending
stress is widely distributed.
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6. Relationship between Yielding Deformation and Yielding Load of LDEPs

Since the tensile yielding load is overestimated by the 10 mm rough grid elements
according to experimental tests, a reanalysis with the 2.5 mm fine grid elements is required
after rough optimization. Table 3 shows the reanalysis results with the 2.5 mm grid elements
for the solutions in Table 1. Here, yield strength of materials is 325 (MPa). Figure 10 shows
the relationship between tensile yielding deformation and tensile yielding load for the
reanalysis results. One can select the bracing devices for structural design from a variety of
LDEPs also containing conventional steel dampers.

Table 3. Reanalysis results with the 2.5 mm grid elements for the solutions in Table 1.

Solution x1 x2 Uy Py

[Unit] [-] [-] [mm] [N]
F-0 5 7 1.103 7814
F-1 4 7 1.697 5730
F-2 3 7 2.447 4507
F-3 2 7 3.350 3708
F-4 1 6 3.334 3648
F-5 1 7 4.399 3113
F-6 1 8 5.391 2673
F-7 0 7 5.325 2200
F-8 0 8 6.416 1954
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7. Conclusions

This study has proposed a formulation, that is, the four-column method, for topology
optimization of LDEPs with rectangular shapes. The multi-objective optimization problems
that maximized tensile yielding load and tensile yielding deformation were solved by the
multi-objective genetic algorithm NSGA-II. In addition, the trade-off relationship between
yielding load and yielding deformation of LDEPs has been investigated and compared
using the obtained Pareto solutions. Finally, experimental tensile tests were performed.
Concluding remarks are as follows.

(1) A distinct trade-off relationship was obtained between tensile yielding deforma-
tion and tensile yielding load through muti-objective optimizations using the four-
column formulation.

(2) The Pareto fronts using the inverse Fourier formulation and the four-column formula-
tion are almost identical based on optimum computation.

(3) While the test results of yielding tensile load are overestimated by the 10 mm rough
grid elements, the test results almost correspond to reanalysis results with the 2.5 mm
fine grid elements.
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Appendix A. (Revised from [16,17])

A topology optimization problem for a plane stress two-dimensional plate is consid-
ered. A function similar to the inverse Fourier transform function is defined to represent
the topological patterns of the plate as follows.

F(xk, yk) =
NFX

∑
u=−NFX

NFY

∑
v=−NFY

(au,v + bu,vi)e
iπ(

γ1u·xk
Lk

+γ2v· yk
Lk

)
, (A1)

where u = −NFX, . . . , −3, −2, −1, 1, 2, 3, . . . , NFX, v = −NFY, . . . , −3, −2, −1, 1, 2, 3, . . . ,
NFY, i represents an imaginary unit, e represents the Naperian base, and au,v and bu,v are
real-valued parameters to be computed in the optimization process, which are greater than
–1 and less than 1. xk and yk represent x- and y-coordinates of the center of the element k. In
this study, NFX = 2 and NFY = 2 are adopted.

Since F should be a real function, the following complex conjugate conditions can
be used.

au,v = a −u,−v ; bu,v = −b−u,−v (A2)

Each element is distinguished as either a solid or a void according to the value of F. If
the value of F corresponding to the element k satisfies the following equation, the element k
is a solid, otherwise it is a void.

Fmax + Fmin
2

+ β · Fmax − Fmin
2

≤ F(xk, yk), (A3)
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where Fmax and Fmin represent the maximum and minimum values of F, respectively,
over all the elements. β (−1 ≤ β ≤ 1) represents a parameter to be computed in the
optimization process.

The topology optimization problem of LDEPs can be formulated as follows.
Find au,v, bu,v, and β which minimize

Z = E1
PE · S1

PS

S1 = max(S1max, 1/S1max, S0max),
(A4)

where E1 represents total strain energy over all the solid elements, S1max represents the
maximum value of von Mises stress over all the Gaussian integration points of all the solid
elements, and S0max represents that of all the void elements. In this study, PE = −1 and
PS = 4 are adopted.
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