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ABSTRACT 

NURBS can create free-form shells by specifying a number of control points and their weights. However, it is 
challenging to create a form that strictly passes through all the specified control points even with increased 
weights. This paper proposes an initial-morphogenesis technique of free-form shell roofing using a Fourier 
Transform. The technique can create forms that strictly pass through all the specified control points. The 
comparison between the proposed technique and NURBS is discussed and three examples are demonstrated. 
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1. INTRODUCTION 

Starting with The Guggenheim Museum of Frank O. 
Gehry in Bilbao, various free-form shells have been 
designed and constructed worldwide in the last 30 
years [1-3]. Many of them seem to start from 
designer’s preferred initial shape and subsequent 
engineering process. Interpolation by NURBS [4,5] 
is one of the effective digital tools for representing 
designer’s shapes. NURBS can create free-form 
shells by specifying a number of control points and 
their weights. Moreover, various optimization 
algorithms are applied to a structural morphogenesis 
for free-form shells using NURBS [6,7]. However, it 
is challenging to create a form that strictly passes 
through all the specified control points even with 
increased weights, using NURBS. In this work, we 
propose an initial-morphogenesis technique for free-
form shell roofing using a discrete Fourier 
Transform (DFT) [8,9]. The technique can create 
forms that strictly pass through all the specified 
control points. Previous studies demonstrated an 
application to cyclic structures using Fourier series 
[10] and topology optimization by inverse Fourier 
transform [11-13]. The DFT-based technique 
proposed in this work is different from previous 
studies in that the initial preferred form can be 
generated with a relatively low-order DFT and 
inverse transform. The outline of the article is as 
follows: Section 2 gives the procedure of the DFT-

based technique; Section 3 discusses the 
comparisons between the technique and NURBS; 
Section4 provides three examples; Section 5 gives 
the concluding remarks.  

2. PROCEDURE OF THE DFT-BASED 
TECHNIQUE FOR MORPHOGENESIS 

Figure1 shows the procedure of a morphogenesis 
technique using DFT. After specifying the control 
points’ coordinate values or control magnification, 
DFT is performed on the sequence or matrix of the 
control point information, and zero values are added 
as higher-order components to the generated DFT  

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Procedure of a morphogenesis technique 

Specify the control points’ coordinate values. 

DFT on the sequence or matrix of control 
points. 

Add the zero values as higher-order 
components to the generated DFT sequence 
or matrix. 

Inverse transform on the DFT sequence or 
matrix added the zero values. 
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sequence or matrix. Finally, by inverse transform, 
morphological creation can be synthesized with 
relatively low-order sine waves. 

3. COMPARISON BETWEEN DFT BASED 
TECHNIQUE AND NURBS 

3.1. Comparison of mathematical formulas and 
one-dimensional numerical sequences  

It is obvious from the definition [9] that Fourier 
transform can generate the data sequence passing 
through the specified control points. The essential 
meaning of the Fourier transform is to find the 
amplitudes of sine waves of various frequencies 
passing through all given points (here, control 
points). In addition, a data string passing through 
designated control points is generated by summing 
sine waves (inverse Fourier transform) of various 
frequencies having the obtained amplitudes. For 
example, z=[28.001+0.0j, -1.652-1.460j, -1.652 
+1.460j] can be obtained by substituting the one- 
dimensional numerical sequence of height 
coordinates of three control points (nfx=3), that is, 
Z=[8.232, 10.728, 9.041] into the following DFT 
formula [9]. 

𝑧𝑧𝐼𝐼 = � 𝑍𝑍𝐾𝐾𝑒𝑒−2𝜋𝜋𝜋𝜋(𝐼𝐼∙𝐾𝐾/𝑛𝑛𝑓𝑓𝑓𝑓)

𝑛𝑛𝑓𝑓𝑓𝑓−1

𝐾𝐾=0

 

(I=0,…nfx-1)    (1) 

Here, the number of data strings to be generated, nx, 
is set to 21. 21 data strings passing through all three 
control points, Z=[8.232, 8.222, 8.499, 9.019, 9.658, 
10.250, 10.639, 10.728, 10.513, 10.079, 9.568, 
9.136, 8.895, 8.880, 9.041, 9.267, 9.424, 9.414, 
9.207, 8.856, 8.483] can be obtained as shown in 
fig.2 by substituting the resulting z into the inverse 
transform formula below. 

𝑍𝑍𝐾𝐾 =
1
𝑛𝑛𝑓𝑓𝑓𝑓

� 𝑧𝑧𝐼𝐼𝑒𝑒2𝜋𝜋𝜋𝜋(𝐼𝐼∙𝐾𝐾/𝑛𝑛𝑓𝑓)

𝑛𝑛𝑓𝑓−1

𝐼𝐼=0

 

(K=0,…nx-1)   (2) 

However, the x-coordinate of the last control point 
(relative position in the 21 data strings) is not the 
final end point, but the position obtained by 
multiplying the difference between the minimum 
and maximum values of the x-coordinate by r0x 
(=0.7) according to the following equation. 

                                𝑟𝑟0𝑓𝑓 = 𝑛𝑛𝑓𝑓𝑓𝑓−1

𝑛𝑛𝑓𝑓𝑓𝑓
∙ 𝑛𝑛𝑓𝑓
𝑛𝑛𝑓𝑓−1

                         (3) 

 

 
 
 

Figure 2: Obtained 21 data strings (red circles) and 
control points (blue circles) by Eqs.(1) and (2) 

 
If it is desired to set the control point to the endpoints 
at both ends and the midpoint equally spaced, it is 
necessary to expand the wavelength by 1/r0x times 
for inverse transform as the following equation. 

𝑍𝑍𝐾𝐾 =
1
𝑛𝑛𝑓𝑓𝑓𝑓

� 𝑧𝑧𝐼𝐼𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟0𝑓𝑓∙𝐼𝐼∙𝐾𝐾/𝑛𝑛𝑓𝑓)

𝑛𝑛𝑓𝑓−1

𝐼𝐼=0

 

(K=0,…nx-1)    (4) 

Using Eq.(3) and Eq.(4) for the above problem, the 
following data sequence can be obtained as shown in 
fig.3. 

Z = [8.232, 8.195, 8.298, 8.541, 8.900, 9.334, 9.786, 
10.198, 10.516, 10.699, 10.728, 10.606, 10.358, 
10.028, 9.669, 9.334, 9.070, 8.909, 8.860, 8.914, 
9.041] 

 

 

 

 

 

 

 

 

 
 

Figure 3: Obtained 21 data strings (red circles) and 
control points (blue circles) by Eqs.(1) and (4) 
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Appendix A shows the Python program for the above 
computation. 

According to [5], A NURBS curve C(u) is a vector 
valued piecewise rational polynomial function of the 
form  

𝐶𝐶(𝑢𝑢) =  ∑ 𝑅𝑅𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=0               (5) 

where 

𝑅𝑅𝑖𝑖,𝑝𝑝(𝑢𝑢) =  𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)
∑ 𝑁𝑁𝑗𝑗,𝑝𝑝(𝑢𝑢)𝑤𝑤𝑗𝑗
𝑛𝑛
𝑗𝑗=0

             (6) 

where Pi are the control points forming a control 
polygon, wi are the weights and Ri,p(u) are the pth 
degree rational basis functions defined over a non-
uniform knot vector 𝑢𝑢 ∈ [0 1]  with u as non-
dimensional curve parameter [5]. 

Equation (5) shows that the NURBS curve is in the 
form of a coefficient sum of control point coordinate 
vectors. Therefore, it is difficult to realize a curve 
passing through all control points unless each 
coefficient, Ri,p(u)  is unrelated to other coefficients. 

Figure 4 shows the obtained 21 data one-dimensional 
strings (red circles) and control points (blue circles) 
by Eqs.(5) and (6). The given control points, [8.232, 
10.728, 9.041] are same with the above example by 
DFT based technique. The weights, wi are all 1.0. 
The knot vector u is [0, 0, 0, 1, 1, 1]. The numerical 
values of 21 data strings are [8.232, 8.471, 8.690, 
8.887, 9.063, 9.219, 9.353, 9.467, 9.560, 9.631, 
9.682, 9.712, 9.721, 9.710, 9.677, 9.623, 9.549, 
9.453, 9.337, 9.200, 9.041]. The obtained data 
strings pass through the end control points but not 
pass through the middle control point. 

 

 

 

 

 

 

 

 

 

 
Figure 4: Obtained 21 data strings (red circles) and 

control points (blue circles) by Eqs.(5) and (6) 

 

3.2. Comparison of generated surfaces 

Figures 5-7 show curved surfaces with height 
coordinates (red circles) on the XY plane over a 20 
× 20 grid, generated by the DFT based technique. 
The number of control points is set to nfx = 3 in the 
X direction and nfy = 3 in the Y direction, for 9 

 
 

 

 

 

 

 

 
 

Figure 5: Generated surface (DFT based technique, 
nfx=3, nfy=3, random sequence#0) 

 

 

 

 

 

 

 

 

 
Figure 6: Generated surface (DFT based technique, 

nfx=3, nfy=3, random sequence#1) 

 

 

 

 

 

 

 

 
Figure 7: Generated surface (DFT based technique, 

nfx=3, nfy=3, random sequence#2) 
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Figure 8: Generated surface (DFT based technique, 

nfx=4, nfy=4, random sequence#0) 

 

 

 

 

 

 

 

 

 

 
Figure 9: Generated surface (DFT based technique, 

nfx=4, nfy=4, random sequence#1) 

 

 

 

 

 

 

 

 

 

 
Figure 10: Generated surface (DFT based technique, 

nfx=4, nfy=4, random sequence#2) 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 11: Generated surface (NURBS, nfx=4, nfy=4, 

weighting factors=1.0,  random sequence#0) 

 

 

 

 

 

 

 

 

 

 
Figure 12: Generated surface (NURBS, nfx=4, nfy=4, 

weighting factors=1.0, random sequence#1) 

 

 

 

 

 

 

 

 

 

 
Figure 13: Generated surface (NURBS, nfx=4, nfy=4, 

weighting factors = 1.0, random sequence#2) 
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Figure 14: Generated surface (NURBS, nfx=4, nfy=4, 
weighting factors=5.0, random sequence#0) 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Generated surface (NURBS, nfx=4, nfy=4, 

weighting factors=5.0, random sequence#1) 

 

 

 

 

 

 

 

 

 
 

Figure 16: Generated surface (NURBS, nfx=4, nfy=4, 
weighting factors=5.0, random sequence#2) 

points (blue circles), which are generated by using 
pseudo random numbers from 0.0 to 15.0 to validate 
on geometrical and structural (section 3.3) aspects 
against any combination. Figures 8 to 10 also show 
curved surfaces generated by the DFT based 
technique. The conditions are the same as those 
shown in Figures 5 to 7, except that nfx = 4 and nfy 
= 4. However, in the discrete inverse transform in the 
procedure in Section 2, in order to make the outer 
control point position correspond to the grid 
endpoint of the outermost edge, the following 
inverse transform equation with the correction 
coefficient r0x and r0y is used. 

𝑍𝑍𝐾𝐾𝐾𝐾 =
1

𝑛𝑛𝑓𝑓𝑓𝑓 ∙ 𝑛𝑛𝑓𝑓𝑓𝑓
∙ � � 𝑧𝑧𝐼𝐼𝐼𝐼𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟0𝑓𝑓∙𝐼𝐼∙𝐾𝐾/𝑛𝑛𝑓𝑓+𝑟𝑟0𝑦𝑦∙𝐼𝐼∙𝐾𝐾/𝑛𝑛𝑓𝑓)

𝑛𝑛𝑦𝑦−1

𝐼𝐼=0

𝑛𝑛𝑓𝑓−1

𝐼𝐼=0

 

(K=0,…nx-1,  L=0,…,ny-1) 

                                                                                         (7) 

                                𝑟𝑟0𝑓𝑓 = 𝑛𝑛𝑓𝑓𝑓𝑓−1

𝑛𝑛𝑓𝑓𝑓𝑓
∙ 𝑛𝑛𝑓𝑓
𝑛𝑛𝑓𝑓−1

                          (8) 

 
                                𝑟𝑟0𝑓𝑓 = 𝑛𝑛𝑓𝑓𝑦𝑦−1

𝑛𝑛𝑓𝑓𝑦𝑦
∙ 𝑛𝑛𝑦𝑦
𝑛𝑛𝑦𝑦−1

                          (9) 

 
Here, nfx is total number of control points in the X 
direction, nfy is total number of control points in the 
Y direction, nx is total number of grid nodes in the X 
direction, and ny is total number of grid nodes in the 
Y direction.  

The results showed that created surfaces pass 
through all the specified control points.  

Figures 11-13 show the curved surfaces generated by 
NURBS [4]. The number of control points are set to 
nfx=4 in the X direction and nfy=4 in the Y direction, 
for 16 points, also generated using the pseudo 
random numbers. Degrees and knot vectors of each 
direction are respectively 3 and [0,0,0,0,1,1,1,1]. The 
weighting factors are 1.0 in both the corners and the 
middle. Comparing figures 8-10 with figures 11-13, 
it is visually observed that DFT based technique 
gives a larger curvature than NURBS. Figures 14 to 
16 also show curved surfaces generated by NURBS. 
Conditions are the same as those in Figures 8-10 
except that weighting factors are 5.0 in the middle 
control points. The control points are some distance 
away from the generated surface even for higher 
weighting factors. Moreover, as the weighting 
factors increase, the grid points appear to deviate 
from the even arrangement while the generated 
curved surface approach the control points. 
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3.3. Comparison of structural performance 

Figures 17-20 show average vertical displacements 
over all the nodes of curved surfaces generated by 
random control points. They have same condition 
with section 3.2. The displacements are obtained by 
FEM analysis software Lisa 8.0 [14]. Four nodes 
shell element is adopted. Assuming concrete 
material, Young’s modulus of 20000 MPa, 
Poisson’s ratio of 0.2, and the density of 2400 kg/m3 
are used. The edge nodes (X=-30(m) or X=30(m)) 
are fixed in all the direction. The shell thickness is 
300 mm, and the load condition is the weight of the 
concrete. The horizontal axes in the Figures 19 and  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 17: The relationship between average of vertical 
displacement and average of Z coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: The relationship between average of vertical 
displacement and standard deviation of Z coordinates 

20 are maximum or minimum of Gauss curvatures of 
the shell surfaces. The Gauss curvatures of the shell 
surfaces are calculated by Rhinoceros ver.7 software 
after fitting the discrete nodal coordinates to NURBS 
functions on the software. It seems from the figures 
that the DFT surfaces have smaller vertical 
displacements than the NURBS surfaces. However, 
for both the surfaces, larger the number of control 
points given, smaller the vertical displacements 
obtained as well as higher the Gauss curvatures. 
Especially for NURBS, it seems that larger number 
of control points is needed to obtain higher 
curvatures of surfaces or smaller vertical 
displacements than DFT based technique.  
 
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 19: The relationship between average of vertical 
displacement and Maximum Gauss curvature 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: The relationship between average of vertical 
displacement and Minimum Gauss curvature 
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4. EXAMPLES FOR MORHPOGENESIS OF 
FREE-FORM SHELL ROOFING 

4.1. Example 1 

(1) Basic circular grid plane 

In the X–Y plane, a polar coordinate is set with the 
distance R from the origin and the rotation angle P, 
as shown in Figure 21, and a basic circular grid with 
an inner radius (l0 = 5 (m)) and an outer radius (l1 = 
20 (m)) is generated. The grid has 72 nodes in the 
angular direction and 11 nodes in the radial direction, 
as shown in Figure 22.  

 

 

 

 

 

 

 

 
Figure 21: Coordinate system (X-Y plane and R-P polar 

system)  

 

 

 

 

 

 

 

 
Figure 22: Basic circular grid plane (Example 1) 

 

(2) Conversion to arbitrary shaped plane 

The control magnifications are set in each angle 
direction on the basic circular plane, and conversion 
to an arbitrary shaped plane is conducted by the 
procedure in Section 2 as shown in Figure 23. In the 
calculation example here, control is performed in 
four directions of P = 0°, 90°, 180°, and 270°, and 
the control magnification in each direction is 4.0, 2.0, 
2.5, 1.0.  

 

 

 

 

 

 

 

 

 
Figure 23: Conversion to arbitrary shaped plane 

(Example1) 

 

(3) Morphogenesis of free-form shell roofing 

The height coordinate control values are set in each 
angular direction in the arbitrary plane, and a free-
form surface shell can be generated using the 
procedure in Section 2, as shown in Figure 24. In the 
example, the control height at the center side is 10 m, 
the height at the intermediate position is 15 m, and 
the height at the outside is 3 m in each direction (0°, 
90°, 180°, and 270°).  

 

 

 

 

 

 

 

 
Figure 24: Free form shell roofing (Example 1) 

To make the outer control point position correspond 
to the grid endpoint of the outermost edge, the 
inverse transform equation with the correction 
coefficient r0 is used: 

𝑍𝑍𝐾𝐾𝐾𝐾 =
1

𝑛𝑛𝑓𝑓𝑓𝑓 ∙ 𝑛𝑛𝑓𝑓𝑟𝑟
∙ � � 𝑧𝑧𝐼𝐼𝐼𝐼𝑒𝑒2𝜋𝜋𝜋𝜋(𝐼𝐼∙𝐾𝐾/𝑛𝑛𝑓𝑓+𝑟𝑟0∙𝐼𝐼∙𝐾𝐾/𝑛𝑛𝑟𝑟)

𝑛𝑛𝑟𝑟−1

𝐼𝐼=0

𝑛𝑛𝑡𝑡−1

𝐼𝐼=0

 

(K=0,…nt-1,  L=0,…,nr-1) 
                                                                                        (4) 

                                𝑟𝑟0 = 𝑛𝑛𝑓𝑓𝑟𝑟−1

𝑛𝑛𝑓𝑓𝑟𝑟
∙ 𝑛𝑛𝑟𝑟
𝑛𝑛𝑟𝑟−1

                          (5) 
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where, nft is total number of control points in the 
angular direction, nfr is total number of control points 
in the radial direction, nt is total number of grid nodes 
in the angular direction, and nr is total number of grid 
nodes in the radial direction  

The following sequence shows the generated height 
coordinate values of each grid node (11 nodes) from 
the center side to the outside in the 0° direction. 

10.0, 8.69554, 8.65074, 10.4251, 13.1378, 15.0, 
14.4974, 11.441, 7.18259, 3.83596, 3.0 

The same height coordinate sequence as above was 
obtained in all angular directions. It is observed that 
the coordinate height values of the center side, the 
outer endpoints and the middle exactly correspond to 
the heights of the specified control point.  

(4) FEM analysis of the generated shell roofing 

Figures 25 and 26 show the displacement magnitude 
and maximum principal stress on bottom surface. 
These are obtained by FEM analysis software Lisa 
8.0 [14]. Eight nodes solid element is adopted. 
Assuming concrete material, Young’s modulus of 
20000 MPa, Poisson’s ratio of 0.2, and the density 
of 2400 kg/m3 are used. The nodes on the outer 
circumference are fixed in all the direction. The shell 
thickness is 300 mm, and the load condition is the 
weight of the concrete. The large displacement or 
stress are locally observed in the red element  

 

 

 

 

 

 

 
 Figure 25: Displacement magnitude (Example 1) 

 

 

 

 

 

 
Figure 26: Maximum principal stress viewed from bottom 

surface (Example 1) 

(low curvature areas) indicated by the black arrows 
in the figures. 

4.2. Example 2 

Concerning the same basic circular plane as in 
Example 1, the control is performed in eight 
directions (0°, 45°, 90°, 135°… 270°, 315°), and the 
control magnification in each direction ( 2.0, 4.0, 2.0, 
4.0, 2.0, 4.0, 2.0, 4.0) is set and converted to the 
arbitrary shaped plane shown in Figure 27 using the 
procedure in Section 2. Next, the height coordinate 
control values are set in each angular direction in the 
plane, and the free-form surface shell shown in 
Fig.28 is generated by the procedure in Section 2. In 
the calculation example here, in the directions of 0°, 
90°, 180°, and 270°, the height on the center side 
edge is set to 20 m and height on the outside edge is 
set to 0 m. On the other hand, in the directions of 45 
°, 135°, 225° and 315°, the height on the center side 
is set to 20 m, the height on the outside is set to 30 
m. Figures 29 and 30 show the displacement 
magnitude and maximum principal stress on upper 
surface over all the  element of the generated shell 
roof structure. The same concrete material is 
assumed as Example 1. Fixed nodes are indicated by 
triangular marks in the figures. The shell thickness is 
300 mm and the load condition is the same as the 
weight of the concrete used in Example 1.   

 

 

 

 

 

 

 
Figure 27: Conversion to arbitrary shaped plane  

(Example 2) 

 

 

 

 

 

 
 

Figure 28: Free form shell roofing (Example 2) 

Unit : m 

Unit : Pa 
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Since the shell morphology does not have 
symmetrical axis but tilts like a propeller, the stress 
and displacement distribution also does not have 
symmetrical axis. The large displacement or stress 
are locally observed in the red region indicated by 
the black arrows in the figures. 

 

 

 

 

 

 

 

 
Figure 29: Displacement magnitude (Example 2) 

 

 

 

 

 

 

 

 
Figure 30: Maximum principal stress on upper surface 

 (Example 2) 

4.3. Example 3 

Also, concerning the same basic circular plane as 
Example 1 and 2, the control is performed in 3 
directions (0°, 120°, and 240°), and the control 
magnification in each direction is 2.0,3.0, and 2.0 are 
set and converted to the arbitrary shaped plane 
shown in Figure 31 by the procedure in Section 2. 
Next, the height coordinate control values are set in 
each angular direction in the plane, and the free-form 
surface shell shown in Figure 32 is generated. In this 
example, in the direction of 0°, the height on the 
center side is set to 5 m, the height on the outside is 
set to 3 m, and the height in the middle is set to 10m. 
In the direction of 120°, the height on the center side 
is set to 10 m, the height on the outside is set to 3 m 
and the height on the middle is set to 15m. In the 
direction of 240°, the height on the center side is set 
to 15 m, the height on the outside is set to 3 m and 

the height on the middle is set to 5m. Figures 33 and 
34 show the displacement magnitude and the 
maximum principal stress on bottom surface over all 
the elements of the generated shell roof structure. 
The same concrete material is assumed as Examples  

 

 

 

 

 

 
Figure 31: Conversion to arbitrary shaped plane  

(Example 3) 

 

 

 

 

 

 

 
Figure 32: Free form shell roofing (Example 3) 

 

 

 

 

 

 

 
Figure 33: Displacement magnitude (Example 3) 

 

 

 

 

 

 
 

Figure 34: Maximum principal stress viewed from bottom 
surface (Example 3) 
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1 and 2. The nodes on the outer circumference are 
fixed. The shell thickness is 300 mm and the load 
condition equals the weight of the concrete used in 
Examples 1 and 2. The large displacement or stress 
is locally observed in the comparatively low 
curvature area (the red region indicated by the black 
arrows in the figures). 

5. CONCLUSIONS 

An initial-morphogenesis technique is proposed for 
free-form shell roofing with DFT. Concluding 
remarks can be summarized as follows.  

(1) The control points are some distance away from 
the NURBS’s surface even for weighting factor of 
5.0. Moreover, as the weighting factor increases, the 
grid points appear to deviate from the even 
arrangement while the NURBS’s surface approaches 
the control points. 

(2) Contrary to NURBS surface, the surfaces created 
by DFT based technique pass through all the 
specified control points.  

(3) The control points must be evenly distributed in 
the DFT-based technique, while, in NURBS, the 
control points are not necessarily evenly distributed. 

(4) The DFT based technique can generate high 
curvatures or expressive surfaces with simple 
parameter settings. 

(5) For both the surfaces, larger the number of 
control points given, smaller the vertical 
displacements obtained as well as higher the Gauss 
curvatures. 

(6) The initial morphology of the shell roofs 
obtained in the three examples is not ideal from the 
structural aspect because of the large local stress 
and deformation on the low curvature areas in FEM 
analyses. Therefore, a comprehensive design 
method, which can consider not only the initial 
form requirements but also other requirements such 
as structural performance, is required. Multi-
objective optimization using these requirements as 
objective functions is envisioned.  

(7) In the examples of section 4, the load condition 
of the weight of the concrete was just considered. 
However, it should be noted that a significant 
proportion of the prime cause of failures is 
improper loading conditions [1]. Moreover, it is 
interesting subject that the DFT based technique 
and NURBS are compared on the aspect of 
structural performance. Reliability analyses under 

various loadings is also envisioned for the shells by 
the two techniques. 
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APPDENDIX A: PYTHON PROGRAMMING 
CODE-SECTION 3.1 

The following script is a Python programming code 
created by the author for DFT based technique 
described in Section 3.1. 

 

""" 

DFT curve @author: kiichiro sawada 

""" 

import matplotlib.pyplot as plt 

import numpy as np 

 

i_seed = 0 ; nx = 21 ; nfx = 3 

a = np.linspace(0,nx-1,nx) 

ia = np.int16(a[:]) 

a_c = np.linspace(0,nx-1,nfx) 

 

# generate the control points’ coordinate values by 

# random generator. 

np.random.seed(i_seed) 

r = 15.0*np.random.random([nfx]) 

Z_c = r[:] 

zf0 = r[:] 

 

# DFT on the sequence of the control points 

zf1 = np.fft.fftn(zf0) 

 

# Add the zero values as higher-order components to 

# the generated DFT sequence. 

zfa = np.array([zf1[i] if i<nfx else 0.0 for i in 
range(nx)]) 

 

def ifftcon(zfa): 

    r0x = (nfx-1)/nfx*nx/(nx-1) 

    izfs = np.zeros([nx],dtype='complex128') 

    for i in range(nx): 

        izfs = izfs + zfa[i]*np.exp(2.0j*np.pi*\ 

            (i*ia[:]/nx*r0x)) 

    izfs = izfs/nfx 

    izfsr = izfs.real 

    return izfsr 

 
# Inverse transform on the DFT sequence 

Z = ifftcon(zfa) 

 
# Plot figures 

fig = plt.figure(dpi=400) 

plt.scatter(a,Z, color='red') 

plt.scatter(a_c,Z_c, color='blue') 

plt.show() 
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APPDENDIX B: PYTHON PROGRAMMING 
CODE-SECTION 3.2 

The following script is a Python programming code 
created by the author for DFT based technique 
described in Section 3.2. 

 

""" 

DFT Surface @author: kiichiro sawada 

""" 

import matplotlib.pyplot as plt 

import numpy as np 

 

i_seed = 0 

nx = 20 ; ny = 20 

nfx = 3 ; nfy = 3 

lx = 30.0 ; ly = 30.0 

a = np.linspace(0,nx-1,nx) 

b = np.linspace(0,ny-1,ny) 

ia = np.int16(a[:]) 

ib = np.int16(b[:]) 

iaa,ibb = np.meshgrid(ia,ib) 

x = np.linspace(-lx, lx, nx) 

y = np.linspace(-ly, ly, ny) 

x_c = np.linspace(-lx, lx, nfx) 

y_c = np.linspace(-ly, ly, nfy) 

X, Y = np.meshgrid(x, y) 

X_c, Y_c = np.meshgrid(x_c, y_c) 

 

# Generate the height coordinates for control points 
# by pseudo random numbers 

 

np.random.seed(i_seed) 

r = 15.0*np.random.random([nfx*nfy]) 

Z_c = r.reshape(nfy,nfx) 

zf0 = r.reshape(nfy,nfx) 

#DFT on the matrix of the control points information 

zf1 = np.fft.fftn(zf0) 

 

# Add the zero values as higher-order components to  

# the generated DFT matrix 

zfa = np.array([[zf1[i,j] if j<nfx and i<nfy else 0.0 \ 

for j in range(nx)] for i in range(ny)]) 

 

# Inverse transform on the DFT matrix added the 

# zero values 

def ifftcon(zfa): 

    r0x = (nfx-1)/nfx*nx/(nx-1) 

    r0y = (nfy-1)/nfy*ny/(ny-1) 

    izfs = np.zeros([ny,nx],dtype='complex128') 

    for i in range(ny): 

        for j in range(nx): 

            izfs = izfs + zfa[i,j]*np.exp(2.0j*np.pi*\ 

            (i*ibb[:,:]/ny*r0y+j*iaa[:,:]/nx*r0x)) 

    izfs = izfs/nfx/nfy 

    izfsr = izfs.real 

    return izfsr 

Z = ifftcon(zfa) 

 
# 3D plots by Matplotlib 

ix = int(np.amax(X)-np.amin(X)) 

iy = int(np.amax(Y)-np.amin(Y)) 

iz = int(np.amax(Z_c)-np.amin(Z_c)) 

fig,ax= plt.subplots(subplot_kw={'projection': '3d'}) 

ax.set_box_aspect((ix,iy,iz*2)) 

ax.scatter(X,Y,Z, color='red') 

ax.scatter(X_c,Y_c,Z_c, color='blue') 

plt.show()

 


