1 Title Page

2	Title: Drinking frequency modifies an association between salt intake and blood
3	pressure: a cohort study.
4	Authors: Ryuichi Yoshimura, MD, ^{1,2} Ryohei Yamamoto, MD, PhD, ^{1,3,4} Maki Shinzawa,
5	MD, PhD, ¹ Ryohei Tomi, MD, ¹ Shingo Ozaki, MD, ¹ Yoshiyuki Fujii, MD, ¹ Takafumi
6	Ito, MD, PhD, ² Kazuaki Tanabe, MD, PhD, ⁵ Yasuaki Moriguchi, ⁶ Yoshitaka Isaka, MD,
7	PhD, ¹ and Toshiki Moriyama, MD, PhD ^{1,3,4}
8	Affiliation:
9	¹ Department of Nephrology, Osaka University Graduate School of Medicine, Suita,
10	Japan
11	² Division of Nephrology, Shimane University Hospital, Izumo, Japan
12	³ Health and Counseling Center, Osaka University, Toyonaka, Japan
13	⁴ Heatlth promotion and regulation, Department of Health Promotion Medicine, Osaka
14	University Graduate School of Medicine, Toyonaka, Japan
15	⁵ Department of Internal Medicine IV, Shimane University Faculty of Medicine, Izumo,
16	Japan
17	⁶ Shionogi Health Insurance Association, Osaka, Japan
18	Grants covering the research: The present study was funded by Shionogi & Co., Ltd.

1 Corresponding author: Ryohei Yamamoto, MD, PhD

- 2 Affiliation: Health and Counseling Center, Osaka University
- 3 Address: 1-17 Machikaneyama-cho, Toyonaka, 560-0043 JAPAN
- 4 E-mail: yamamoto@hacc.osaka-u.ac.jp
- 5 TEL: +81-6-6850-6002
- 6 FAX: +81-6-6850-6005
- $\overline{7}$

1 Abstract and Keywords

2	Abstract: Salt sensitivity is one of the crucial risk factors of hypertension. The aim of
3	the present prospective cohort study was to assess the clinical impact of alcohol
4	drinking on an association between salt intake and blood pressure. The present study
5	included 451 employees at a pharmaceutical company in Japan who underwent annual
6	health checkups in both 2017 and 2018. The main exposure of interest was self-reported
7	drinking frequency at their first checkups: rarely, occasionally, and daily. To assess the
8	association between the change of salt intake estimated from single-spot urine
9	specimens and that of blood pressure, the differences of systolic/diastolic blood pressure
10	and salt intake between 2017 and 2018 were calculated for each subject. Multivariable-
11	adjusted linear regression models adjusting for clinically relevant factors clarified a
12	drinking frequency-dependent association between Δ salt intake and Δ systolic blood
13	pressure (per 1 g/day of Δ salt intake adjusted β [95% confidence interval] 0.19 [-0.73,
14	1.12], 0.84 [0.14, 1.53], and 1.78 [0.86, 2.69] in rare, occasional, and daily drinkers). A
15	similar association between Δ salt intake and Δ diastolic blood pressure was also
16	observed (-0.24 [-1.02, 0.54], 0.67 (0.18, 1.16), 0.95 [0.38, 1.51], in rare, occasional,
17	and daily drinkers). The interactions between drinking frequency and Δ salt intake were
18	found to be statistically significant (P for interaction = 0.028 and 0.006 for Δ systolic

5	Keywords: alcohol drinking, salt sensitivity, cohort study
4	drinkers.
3	the reduction of alcohol consumption may improve salt sensitivity in higher frequency
2	enhanced salt sensitivity in the subjects who drink at a higher frequency, suggesting that
1	blood pressure and Δ diastolic blood pressure, respectively). The present study identified

1 Introduction

2	The salt sensitivity of blood pressure is characterized by the blood pressure
3	(BP) response to salt intake. The salt sensitive subjects will sustain an increase in BP
4	with salt loading and a decrease in BP with salt depletion, whereas the salt resistant
5	subjects will not.1 In the United States, 26% of normotensive subjects were salt
6	sensitive. ² Compared with the Caucasian population, salt sensitivity may be more
7	common in the Japanese population. ³ A prospective cohort study reported that the
8	incidence of hypertension is higher in salt sensitive subjects than in salt resistant
9	subjects during approximately 15 years of the follow-up period. ⁴ Several observational
10	studies identified salt sensitivity as a risk factor of cardiovascular mortality and
11	morbidity, ^{5,6} independent of blood pressure. Modifiable lifestyle factors affecting salt
12	sensitivity should be identified, because high BP and high salt intake are the leading
13	causes of the global burden of disease, especially in east Asia, including Japan. ⁷
14	Besides physiological, ^{8,9} genetic, ^{10–12} demographic, ^{13,14} and environmental
15	factors, ^{15,16} dietary factors play a pivotal role in salt sensitivity. ^{17,18} Interestingly, an
16	Italian study reported that salt sensitivity was more common in heavy alcoholics than in
17	non-drinkers, ¹⁹ suggesting that chronic heavy drinkers were more prone to enhanced salt
18	sensitivity. In the general population, the effect of drinking alcohol on salt sensitivity

1	remains unclear, although drinking alcohol is one of the major risk factors of
2	hypertension. ^{20,21}
3	The aim of the present prospective cohort study was to assess the clinical
4	impact of drinking frequency on the association between salt intake and blood pressure
5	in 451 employees of a pharmaceutical company in Japan. The present study provides a
6	deep insight into alcohol drinking as a potential enhancer of salt sensitivity in the
7	general population.
8	

1 Methods

2 Participants

3	Eligible participants in the present prospective cohort study were 507
4	employees of a pharmaceutical company, Shionogi & Co., Ltd., who underwent annual
5	health checkups in both 2017 and 2018, and gave informed consent to their participation
6	in the present study. After excluding 55 (10.8%) employees with self-reported
7	hypertension, who had a positive answer to the question "Do you take antihypertensive
8	medications now?," and 1 (0.2%) pregnant female, the present study finally included
9	451 (89.0%) employees without current use of antihypertensive drugs. Because of the
10	prospective nature of the present study, the sample size was dependent on the number of
11	the company's employees. The study protocol was approved by the ethics committees of
12	Shionogi Pharmaceutical Research Center, the Health and Counseling Center, Osaka
13	University, and Osaka University Hospital.
14	Measurements
15	The baseline variables measured in 2017 included age, sex, drinking frequency,
16	smoking status, current treatment for hypertension, dyslipidemia, diabetes, body mass
17	index (= body weight [kg]/height [m] ²), systolic and diastolic blood pressure (SBP and
18	DBP), hemoglobin A1c, serum concentration of total cholesterol, triglyceride, and

1	creatinine, and urine concentration of sodium and creatinine. BP was measured using an
2	oscillometric device (Omron HBP 1300), after participants were relaxed a few minutes,
3	and seated with legs uncrossed, and back and arm supported. The middle of the cuff on
4	the upper arm was set at the level of the heart. The BP measurement methods in 2017
5	and 2018 were identical. Urinary sodium and creatinine were measured using single-
6	spot urine specimens. To estimate 24-hour sodium excretion, Tanaka's equation ²² was
7	used; estimated 24-hour sodium excretion $[mEq/day] = 21.98 \times (urinary sodium)$
8	$[mEq/L]/[urinary creatinine [mg/dL] \times 10] \times 14.89 \times body weight [kg] + 16.14 \times height$
9	$[cm] - 2.04 \times age [year] - 2244.45)^{0.392}$. Salt intake (g/day) was calculated by
10	multiplying 24-hour sodium excretion (mEq/day) by 0.0585. Estimated glomerular
11	filtration rate (eGFR) was calculated using a three variable equation modified for
12	Japanese patients; eGFR (mL/min/1.73m ²) = $194 \times age$ (year) ^{-0.287} × serum creatinine
13	$(mg/dL)^{-1.094} \times 0.739$ (if female). ²³
14	Drinking frequency, smoking status, current treatment for dyslipidemia and
15	diabetes were obtained self-reported standard questionnaires. Drinking frequency was
16	classified by the question "How often do you drink alcoholic beverages?" with
17	responses of rarely, occasionally, or daily. Smoking status was categorized into non-,

18 past, and current smokers, according to the question; "Do you smoke?" with possible

1	answers "I do not smoke", "I quit smoking", or "I smoke." Current treatment for
2	dyslipidemia and diabetes was determined based on positive answers to the question,
3	"Do you take a lipid-lowering drug now?" and "Do you take an antidiabetic drug now?"
4	The outcome measures of the present study were the change of SBP and DBP
5	between 2017 and 2018 (Δ SBP = SBP in 2018 – SBP in 2017; Δ DBP = DBP in 2018 –
6	DBP in 2017). To assess an association between the change of salt intake and that of
7	blood pressure, we calculated the difference of salt intake between 2017 and 2018: Δ salt
8	intake = salt intake in 2018 (g/day) - salt intake in 2017 (g/day). Drinking frequency
9	was also collected in 2018 to evaluate how the baseline drinking frequency reflected the
10	drinking frequency during the follow-up period.
10 11	drinking frequency during the follow-up period. Statistical Analysis
11	Statistical Analysis
11 12	Statistical Analysis Baseline characteristics stratified on drinking frequency (rarely, occasionally,
11 12 13	Statistical Analysis Baseline characteristics stratified on drinking frequency (rarely, occasionally, daily) were compared using ANOVA, the Kruskal-Wallis test, or χ^2 test, as appropriate.
11 12 13 14	Statistical Analysis Baseline characteristics stratified on drinking frequency (rarely, occasionally, daily) were compared using ANOVA, the Kruskal-Wallis test, or χ ² test, as appropriate. Reproducibility of the drinking frequency at the baseline visit and one year after at the
 11 12 13 14 15 	 Statistical Analysis Baseline characteristics stratified on drinking frequency (rarely, occasionally, daily) were compared using ANOVA, the Kruskal-Wallis test, or χ² test, as appropriate. Reproducibility of the drinking frequency at the baseline visit and one year after at the baseline visit was assessed using the weighted Cohen's kappa statistics.

1	plots were used. The associations of drinking frequency with Δ salt intake, Δ SBP, and
2	Δ DBP were compared using ANOVA. The associations of Δ salt intake with Δ SBP and
3	ΔDBP were assessed using simple linear regression models and multivariable linear
4	regression models adjusting for the baseline variables, including age, sex, smoking
5	status, drinking frequency, current treatment for dyslipidemia and diabetes, body mass
6	index, systolic blood pressure (if Δ SBP), diastolic blood pressure (if Δ DBP), total
7	cholesterol, triglyceride, hemoglobin A1c, eGFR, and salt intake. Effect modification
8	between Δ salt intake and the baseline drinking frequency was assessed by incorporating
9	their interaction term into the multivariable-adjusted model. To clarify their interaction,
10	the associations of Δ salt intake with Δ SBP and Δ DBP were assessed in three subgroups
11	stratified on drinking frequency.
12	Continuous variables were expressed as mean \pm standard deviation or median
13	(interquartile range), as appropriate, and categorical variables as number (proportion).
14	Statistical significance was set at $P < 0.05$. Statistical analyses were performed using
15	Stata, version 15.1 (Stata Corp, www.stata.com).
16	

Results

2	The baseline characteristics of 451 participants, stratified on three categories of
3	drinking frequency, are shown in Table1. Daily drinkers were likely to be older and
4	have higher levels of systolic and diastolic blood pressure, whereas rare drinkers had
5	lower body mass index. Compared with rare drinkers, those who drank more frequently
6	were likely to have a higher prevalence of current smokers. Reproducibility of the
7	drinking frequency in 2017 and 2018 was 0.88 of weighted kappa statistics, suggesting
8	that the baseline drinking frequency in 2017 reflected the drinking frequency during the
9	follow-up period.
10	Because of the similar distribution of salt intake between 2017 and 2018, Δ salt
11	intake was -0.1 \pm 2.0 g/day (Figure 1). The association between drinking frequency and
12	Δ salt intake was not statistically significant (0.1 ± 1.8, 0.0 ± 2.0, and -0.3 ± 2.0 g/day, in
13	rare, occasional, and daily drinkers, respectively; $P = 0.202$). Regarding the change of
14	blood pressure over the one year, Δ SBP and Δ DBP were 0 ± 9 mmHg and 0 ± 6 mmHg,
15	respectively (Figure 1). Drinking frequency was not associated with either Δ SBP (-1 ±
16	7, 1 ± 10 , and 0 ± 8 mmHg, in rare, occasional, and daily drinkers, respectively; P =
17	0.164) or $\Delta DBP (0 \pm 6, 1 \pm 6, \text{ and } 0 \pm 5 \text{ mmHg}, \text{ in rare, occasional, and daily drinkers,}$
18	respectively; $P = 0.095$).

1	Unadjusted linear regression models showed significant associations of Δ salt
2	intake with both Δ SBP and Δ DBP (Δ salt intake [per 1 g/day], β 0.75 [95% confidence
3	interval 0.34, 1.16], P < 0.001 for \triangle SBP; 0.44 [0.16, 0.72], P = 0.002 for \triangle DBP) (Table
4	2). Even after adjusting for clinically relevant factors, Δ salt intake was significantly
5	associated with Δ SBP and Δ DBP (Δ salt intake [per 1 g/day], adjusted β 0.92 [0.46,
6	1.39], P < 0.001 for \triangle SBP; 0.50 [0.17, 0.83], P = 0.003 for \triangle DBP), indicating that 1
7	g/day of an increase in salt intake resulted in 0.92 and 0.50 mmHg of increases of SBP
8	and DBP, respectively.
9	Because of a significant interaction between drinking frequency and Δ salt
10	intake in an adjusted model including Δ SBP as an independent variable (P for
11	interaction = 0.028 in Table 2), we assessed the association between Δ salt intake and
12	Δ SBP in subjects within each category of drinking frequency, separately. In rare
13	drinkers, no significant association between Δ salt intake and Δ SBP was observed,
14	whereas Δ salt intake was significantly associated with Δ SBP in occasional drinkers and
15	their association was much stronger in daily drinkers (Δ salt intake [per 1 g/day],
16	adjusted β 0.19 [-0.73, 1.12], P = 0.677 in rare drinkers; 0.84 [0.14, 1.53], P = 0.018 in
17	occasional drinkers; 1.78 [0.86, 2.69], P < 0.001 in daily drinkers) (Figure 2). Similar
18	drinking frequency-dependent associations were also observed in ΔDBP ($\Delta salt$ intake

- 1 [per 1 g/day], adjusted β -0.24 [-1.02, 0.54], P = 0.544 in rare drinkers; 0.67 (0.18,
- 2 1.16), P = 0.007 in occasional drinkers; 0.95 [0.38, 1.51], P = 0.001 in daily drinkers).
- 3 These results suggested that blood pressure was more sensitive to salt intake in drinkers
- 4 in a dose-dependent manner.
- $\mathbf{5}$

Discussion

2	The present study revealed that drinking frequency modified salt sensitivity,
3	which was the association between the change of salt intake and that of blood pressure.
4	These results suggested that alcohol reduction might be effective in improving salt
5	sensitivity. One of the advantages of the present study was the inclusion of Japanese
6	subjects, who are at a high risk of salt sensitivity. ³ The results of the present study might
7	provide clinically useful evidence to identify the subjects with enhanced salt sensitivity,
8	which is one of the risk factors of hypertension ⁴ and cardiovascular disease. ^{5,6}
9	Although large cohort studies clarified that alcohol consumption is one of the
10	most critical factors for hypertension, ^{20,21} few studies assessed a clinical impact of
11	alcohol on salt sensitivity. Di Gennaro et al. examined salt sensitivity in 30 non-drinkers
12	and 30 heavy alcoholics at 6–12 months after the treatment of in-hospital
13	detoxification. ¹⁹ Heavy alcoholics exhibited significant BP changes in response to salt
14	intake. Furthermore, salt sensitivity seemed more prevalent in heavy alcoholics than in
15	non-drinkers. Similar to these results in the heavy drinkers, the present study showed
16	that drinking frequency modified the association of the change of salt intake and the
17	change of SBP and DBP in 451 employees in a pharmaceutical company, suggesting
18	that drinking alcohol enhanced salt sensitivity in normal drinkers.

1	The mechanism of salt sensitivity enhanced by alcohol remains to be
2	elucidated. As recent studies have reported that alcohol suppressed the expression of
3	endothelial nitric oxide synthase (eNOS), ²⁵ one of the main mechanisms of alcohol-
4	induced hypertension is the impairment of NO-dependent vascular relaxation by
5	decreasing nitric oxide (NO) in the vascular endothelium due to the suppression of
6	eNOS or oxidative injury to the endothelium. ²⁶ Regarding salt sensitivity, Kurtz et al.
7	suggested that the similar vasodysfunction, a failure to reduce peripheral resistance to
8	accommodate the increased volume, is the major pathophysiology of salt sensitivity.9
9	The disturbances in the NO activity are highlighted as one of the causes of
10	vasodysfunction. Thus, alcohol-induced vasodysfunction mediated by the suppression
11	of NO activity may contribute to enhanced salt sensitivity. Further studies are essential
12	to clarify the association between alcohol consumption and salt sensitivity.
13	The present study has several limitations. First, the salt sensitivity was not
14	strictly measured in each subject using an interventional method of salt load and
15	depletion. Because the present study assessed the association between the change of salt
16	intake and that of blood pressure in a certain group of subjects, not individually, the
17	results of the present study might be biased. The effect of modifying drinking frequency
18	on salt sensitivity should be assessed in details after the salt sensitivity of each subject is

1	measured using the interventional method of salt load and depletion. Second, the
2	generalizability of the results of the present study should be examined in different
3	cohorts. In this study, the mean estimated salt intake at baseline visit was 8.4 g/day,
4	which was lower than in the previous studies, ^{27,28} including the National Health and
5	Nutrition Survey Japan in 2012 (the average salt intake of 10.4 g/day). ²⁹ Another
6	characteristic of the participants of the present study was the low prevalence of diabetes
7	(0.4%) and dyslipidemia $(2.4%)$. The results of the present study should be confirmed in
8	the general population with higher salt intake and the patients with cardiometabolic
9	disease, including diabetes and dyslipidemia. Third, information of drinking frequency
10	was based on a simple self-reported questionnaire, in which never drinkers and past
11	drinkers were categorized into rare drinkers. Given that past drinkers, including sick
12	quitters, were more salt sensitive than never drinkers, the association between Δ salt
13	intake and Δ SBP (or Δ DBP) in rare drinkers overestimated that in never drinkers,
14	suggesting that the difference in salt sensitivity among rare, occasional, and daily
15	drinkers in this study were underestimated, compared with the difference in salt
16	sensitivity among never occasional, and daily drinkers. Fourth, self-reported drinking
17	frequency might be biased. Several studies reported that alcohol drinking was likely to
18	be underreported. ^{30,31}

1	In conclusion, the present study identified enhanced salt sensitivity in the
2	subjects with higher frequency of drinking. These results strongly suggest that the
3	reduction of alcohol consumption may be more effective for improvement of salt
4	sensitivity in higher frequency drinkers. Its efficacy should be evaluated in well-
5	designed randomized controlled trials.

- 1 **Funding:** The present study was funded by Shionogi & Co., Ltd.
- 2 Conflict of Interest: TM and YI are employed as occupational physicians by Shionogi
- 3 & Co., Ltd.; YM is an employee of Shionogi & Co., Ltd. as a managing director of
- 4 Shionogi Health Insurance Association; other authors declare no conflict of interest.
- 5 Acknowledgements: None.

References

T	ittit	
2	1	Elijovich F, Weinberger MH, Anderson CAM, et al. Salt Sensitivity of Blood
3		Pressure : A Scientific Statement From the American Heart Association.
4		Hypertension. 2016;68:e7–e46.
5	2	Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and
6		Characteristics of Sodium Sensitivity and Blood Pressure Resistance.
7		Hypertension. 1986;8:II127–134.
8	3	Katsuya T, Ishikawa K, Sugimoto K, Rakugi H, Ogihara T. Salt Sensitivity of
9		Japanese from the Viewpoint of Gene Polymorphism. Hypertens Res.
10		2003;26:521–525.
11	4	Barba G, Galletti F, Cappuccio FP, et al. Incidence of hypertension in individuals
12		with different blood pressure salt-sensitivity: results of a 15-year follow-up study.
13		J Hypertens. 2007;25:1465–1471.
14	5	Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt Sensitivity,
15		Pulse Pressure, and Death in Normal and Hypertensive Humans. Hypertension.
16		2001;37:429–432.
17	6	Morimoto A, Uzu T, Fujii T, et al. Sodium sensitivity and cardiovascular events
18		in patients with essential hypertension. Lancet. 1997;350:1734-1737.
19	7	Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national
20		comparative risk assessment of 84 behavioural, environmental and occupational,
21		and metabolic risks or clusters of risks for 195 countries and territories, 1990-
22		2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet.
23		2018;392:1923–1994.
24	8	Hall JE. Renal Dysfunction, Rather Than Nonrenal Vascular Dysfunction,
25		Mediates Salt-Induced Hypertension. Circulation. 2016;133:894–906.
26	9	Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the
27		common physiologic abnormality that mediates salt sensitivity and initiation of
28		salt-induced hypertension: Japanese research underpinning the vasodysfunction
29		theory of salt sensitivity. Hypertens Res. 2019;42:6-18.
30	10	Kelly TN, He J. Genomic epidemiology of blood pressure salt sensitivity. J
31		Hypertens. 2012;30:861-873.
32	11	Imaizumi T, Ando M, Nakatochi M, et al. Association of interactions between
33		dietary salt consumption and hypertension-susceptibility genetic polymorphisms
34		with blood pressure among Japanese male workers. Clin Exp Nephrol.
35		2017;21:457–464.
36	12	Liu Z, Qi H, Liu B, et al. Genetic susceptibility to salt-sensitive hypertension in a

1		Han Chinese population: a validation study of candidate genes. Hypertens Res.
2		2017;40:876–884.
3	13	He J, Gu D, Chen J, et al. Gender difference in blood pressure responses to
4		dietary sodium intervention in the GenSalt study. J Hypertens. 2009;27:48-54.
5	14	Vollmer WM, Sacks FM, Ard J, et al. Effects of Diet and Sodium Intake on
6		Blood Pressure: Subgroup Analysis of the DASH-Sodium Trial. Ann Intern Med.
7		2001;135:1019–1028.
8	15	Rebholz CM, Gu D, Chen J, et al. Physical Activity Reduces Salt Sensitivity of
9		Blood Pressure: The Genetic Epidemiology Network of Salt Sensitivity Study.
10		Am J Epidemiol. 2012;176(suppl 7):106–113.
11	16	Stewart DL, Harshfield GA, Zhu H, Hanevold CD. Stress and Salt Sensitivity in
12		Primary Hypertension. Curr Hypertens Rep. 2015;17:2.
13	17	Nagae AI, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T. Effect of High
14		Fat Loading in Dahl Salt-Sensitive Rats. Clin Exp Hypertens. 2009;31:451-461.
15	18	Cabral PD, Hong NJ, Abdul Hye Khan M, et al. Fructose Stimulates Na/H
16		Exchange Activity and Sensitizes the Proximal Tubule to Angiotensin II.
17		Hypertension. 2014;63:e68–73.
18	19	Di Gennaro C, Barilli A, Giuffredi C, Gatti C, Montanari A, Vescovi PP. Sodium
19		Sensitivity of Blood Pressure in Long-Term Detoxified Alcoholics.
20		Hypertension. 2000;35:869–874.
21	20	Sesso HD, Cook NR, Buring JE, Manson JE, Michael Gaziano JM. Alcohol
22		Consumption and the Risk of Hypertension in Women and Men. Hypertension.
23		2008;51:1080–1087.
24	21	Briasoulis A, Agarwal V, Messerli FH. Alcohol Consumption and the Risk of
25		Hypertension in Men and Women: A Systematic Review and Meta-Analysis. J
26		Clin Hypertens. 2012;14:792–798.
27	22	Tanaka T, Okamura T, Miura K, et al. A simple method to estimate populational
28		24-h urinary sodium and potassium excretion using a casual urine specimen. J
29		Hum Hypertens. 2002;16:97–103.
30	23	Matsuo S, Imai E, Horio M, et al. Revised Equations for Estimated GFR From
31		Serum Creatinine in Japan. Am J Kidney Dis. 2009;53:982–992.
32	24	Kundel HL, Polansky M. Measurement of Observer Agreement. Radiology.
33		2003;228:303–308.
34	25	Husain K, Ferder L, Ansari RA, Lalla J. Chronic ethanol ingestion induces aortic
35		inflammation/oxidative endothelial injury and hypertension in rats. Hum Exp
36		Toxicol. 2011;30:930–939.

1	26	Husain K, Ansari RA, Ferder L. Alcohol-induced hypertension: Mechanism and
2		prevention. World J Cardiol. 2014;6:245-252.
3	27	Takahashi N, Tanabe K, Adachi T, et al. Awareness of salt restriction is not
4		reflected in the actual salt intake in Japanese hypertensive patients. Clin Exp
5		Hypertens. 2015;37:388–392.
6	28	Uechi K, Asakura K, Masayasu S, Sasaki S. Within-country variation of salt
7		intake assessed via urinary excretion in Japan: a multilevel analysis in all 47
8		prefectures. Hypertens Res. 2017;40:598–605.
9	29	Takimoto H, Saito A, Htun NC, Abe K. Food items contributing to high dietary
10		salt intake among Japanese adults in the 2012 National Health and Nutrition
11		Survey. Hypertens Res. 2018;41:209–212.
12	30	Stockwell T, Zhao J, Sherk A, Rehm J, Shield K, Naimi T. Underestimation of
13		alcohol consumption in cohort studies and implications for alcohol's contribution
14		to the global burden of disease. Addiction. 2018;113:2245-2249.
15	31	Garnett C, Crane D, West R, Michie S, Brown J, Winstock A. Normative
16		misperceptions about alcohol use in the general population of drinkers: A cross-
17		sectional survey. Addict Behav. 2015;42:203-206.
18		

Clinical characteristics	Drinking freq	Р		
	Rare	Occasional	Daily	_
Number	91	237	123	
Baseline characteristics				
Age (year)*	44 (38–51)	43 (39–49)	50 (41–54)	< 0.001
Male (n [%])	57 (62.6)	166 (70.0)	93 (75.6)	0.123
Smoking status (n [%])*				
Non-smoker	81 (89.0)	185 (78.1)	68 (55.3)	< 0.001
Past smoker	7 (7.7)	33 (13.9)	39 (31.7)	
Current smoker	3 (3.3)	19 (8.0)	16 (13.0)	
Current treatment for				
Dyslipidemia (n [%])	2 (2.2)	6 (2.5)	3 (2.4)	0.985
Diabetes mellitus (n [%])	0 (0.0)	2 (0.8)	0 (0.0)	0.404
Body mass index (kg/m ²)*	21.5 ± 2.5	22.3 ± 2.9	22.2 ± 2.7	0.042
Systolic blood pressure (mmHg)*	116 ± 11	117 ± 11	121 ± 12	0.008
Diastolic blood pressure (mmHg)*	73 ± 9	74 ± 9	78 ± 10	< 0.001
Total cholesterol (mg/dL)	202 ± 30	203 ± 31	204 ± 35	0.933
Triglyceride (mg/dL)	69 (48–94)	69 (53–100)	70 (50–104)	0.494
Hemoglobin A1c (%)	5.3 ± 0.2	5.3 ± 0.3	5.3 ± 0.3	0.088
eGFR (mL/min/1.73 m ²)	79 ± 12	79 ± 11	77 ± 11	0.351
Salt intake (g/day)	8.1 ± 1.7	8.3 ± 1.9	8.7 ± 1.7	0.088
Drinking frequency 1 year after the baseline visit [†]				
Rare (n [%])	83 (91.2)	6 (2.5)	1 (0.8)	
Occasional	8 (8.8)	222 (93.7)	14 (11.4)	
Daily	0 (0.0)	9 (3.8)	108 (87.8)	

Table 1. Clinical characteristics of 451 participants stratified on drinking frequency

Mean \pm standard deviation; median (25%–75%)

eGFR, estimated glomerular filtration rate

*P < 0.05

[†]Reproducibility of drinking frequency at the baseline visit and 1 year after the baseline visit was 0.88 of the weighted kappa statistics.

	Drinking	Ν	Unadjusted model		Adjusted model*		P for
	frequency		β (95% CI)	Р	β (95% CI)	Р	interaction [†]
ΔSBP	Overall	451	0.75 (0.34, 1.16)	< 0.001	0.92 (0.46, 1.39)	< 0.001	0.028
(mmHg)	Rare	91	0.00 (-0.84, 0.84)	0.998	0.19 (-0.73, 1.12)	0.677	
	Occasional	237	0.76 (0.17, 1.36)	0.012	0.84 (0.14, 1.53)	0.018	
	Daily	123	1.23 (0.50, 1.96)	0.001	1.78 (0.86, 2.69)	< 0.001	
ΔDBP	Overall	451	0.44 (0.16, 0.72)	0.002	0.50 (0.17, 0.83)	0.003	0.006
(mmHg)	Rare	91	-0.40 (-1.12, 0.32)	0.276	-0.24 (-1.02, 0.54)	0.544	
	Occasional	237	0.47 (0.07, 0.86)	0.021	0.67 (0.18, 1.16)	0.007	
	Daily	123	0.89 (0.44, 1.35)	< 0.001	0.95 (0.38, 1.51)	0.001	

Table 2. Changes of salt intake (Δ salt intake [per 1 g/day]) and changes of systolic and diastolic blood pressure (Δ SBP and Δ DBP [mmHg])

CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure *Adjusted for age (year), sex, smoking status (non-, past, vs. current smoking), drinking frequency (rare, occasional, vs. daily), current treatment for dyslipidemia and diabetes, body mass index (kg/m²), SBP (mmHg) (if Δ SBP), DBP (mmHg) (if Δ DBP), total cholesterol(mg/dL), triglyceride (log mg/dL), hemoglobin A1c (%), estimated glomerular filtration rate (mL/min/1.73 m²), and salt intake (g/day) at the baseline visit *P for interaction between Δ salt intake and drinking frequency in adjusted models with Δ SBP and Δ DBP as a dependent variable, respectively.

Figure Legends

Figure 1. Distributions of the change of salt intake (Δ salt intake), systolic blood pressure (Δ SBP), and diastolic blood pressure (Δ DBP) in total participants (n=451), rare drinkers (n=91), occasional drinkers (n=237), and daily drinkers (n=123).

Figure 2. Drinking frequency modifies an association of the change of salt intake (Δ salt intake) with the change of systolic and diastolic blood pressure (Δ SBP and Δ DBP). Adjusted β value were calculated using a linear regression model adjusting for age (year), sex, smoking status (non-, past, vs. current smoking), current treatment for dyslipidemia and diabetes, body mass index (kg/m²), SBP (if Δ SBP) (mmHg), DBP (if Δ DBP) (mmHg), total cholesterol (mg/dL), triglyceride (log mg/dL), hemoglobin A1c (%), estimated glomerular filtration rate (mL/min/1.73 m²), and salt intake (g/day) at the baseline visit.

Figure 1

A. Drinking frequency and Δ salt intake

B. Drinking frequency and $\Delta\!systolic$ blood pressure

C. Drinking frequency and $\Delta diastolic blood pressure$

Figure 2

