1 Title Page

2	Title: Frequency of alcohol drinking modifies the association between salt intake and
3	albuminuria: A 1-year observational study
4	Authors: Ryuichi Yoshimura, ^{1,2} Ryohei Yamamoto, ^{1,3,4} Maki Shinzawa, ¹ Ryohei Tomi, ¹
5	Shingo Ozaki, ¹ Yoshiyuki Fujii, ¹ Takafumi Ito, ² Kazuaki Tanabe, ⁵ Yasuaki Moriguchi, ⁶
6	Yoshitaka Isaka, ¹ and Toshiki Moriyama ^{1,3,4}
7	Affiliations: ¹ Department of Nephrology, Osaka University Graduate School of
8	Medicine, Suita, Japan; ² Division of Nephrology, Shimane University Hospital, Izumo,
9	Japan; ³ Health and Counseling Center, Osaka University, Toyonaka, Japan; ⁴ Heatlth
10	promotion and regulation, Department of Health Promotion Medicine, Osaka University
11	Graduate School of Medicine, Toyonaka, Japan; ⁵ Department of Internal Medicine IV,
12	Shimane University Faculty of Medicine, Izumo, Japan; ⁶ Shionogi Health Insurance
13	Association, Osaka, Japan
14	Corresponding author: Ryohei Yamamoto, MD, PhD
15	Affiliation: Health and Counseling Center, Osaka University
16	Address: 1-17 Machikaneyama-cho, Toyonaka, 560-0043 Japan
17	E-mail: yamamoto@hacc.osaka-u.ac.jp
18	Tel: +81-6-6850-6002

- 1 Fax: +81-6-6850-6005
- 2 **Funding:** The present study was funded by Shionogi & Co., Ltd.

1 Abstract and key words

 $\mathbf{2}$ Abstract: Albuminuria is an important risk factor for end-stage kidney disease and cardiovascular mortality. This 1-year observational study aimed to assess the effect 3 4 modification of alcohol drinking on the association between salt intake and albuminuria. Overall, 448 employees at a pharmaceutical company in Japan who underwent annual $\mathbf{5}$ 6 health checkups in both 2017 and 2018 were evaluated. The main exposure of interest $\overline{7}$ was drinking frequency at their first checkups categorized as rarely, occasionally, and daily. To assess the association between the changes in salt intake and albuminuria, the 8 differences in salt intake estimated from single-spot urine specimens and the urinary 9 10 albumin-to-creatinine ratio (UACR) between 2017 and 2018 were calculated for each 11 subject. A multivariable-adjusted linear regression model showed a significant 12association between Δ salt intake and Δ Log UACR (per 1 g/day of Δ salt intake, adjusted ß 0.16 [95% confidence interval 0.14, 0.19]) and an effect modification between 13drinking frequency and Δ salt intake (P for interaction = 0.088). The association between 14 Δ salt intake and Δ Log UACR was enhanced by drinking frequency in a dose-dependent 15manner (per 1 g/day of Δ salt intake, adjusted β 0.13 [0.06, 0.19], 0.16 [0.12, 0.20], and 16170.20 [0.13, 0.27] in rare, occasional, and daily drinkers, respectively). In conclusion, the results of the present study indicated that salt-induced albuminuria was enhanced in 18

- 1 subjects with higher drinking frequency, suggesting that salt restriction may have a
- 2 stronger renoprotective effect in subjects with higher drinking frequency.
- 3 Keywords: alcohol drinking, albuminuria, salt intake

1 Introduction

2	Albuminuria, one of the essential characteristics of chronic kidney disease
3	(CKD), ^{1, 2} is a strong prognostic factor for cardiometabolic diseases, including
4	hypertension, ³ diabetes, ⁴ and cardiovascular diseases (CVDs); ^{5, 6} end-stage kidney
5	disease (ESKD); ^{7, 8} and mortality. ^{9, 10} Even urinary albumin levels within the upper limit
6	of normal are associated with CKD ¹¹ and cardiometabolic diseases. ^{12, 13} Because
7	reduction in urinary albumin is associated with a lower risk of ESKD ^{14, 15} and
8	cardiovascular mortality, ¹⁶ urinary albumin is a valid surrogate endpoint for CKD in
9	addition to glomerular filtration rate (GFR). ¹⁷ Thus, albuminuria is one of the pivotal
10	therapeutic targets for preventing the incidence of ESKD ¹⁸ and CVDs. ¹⁹
11	Among dietary factors, including salt, protein, ²⁰ fat, ²¹ and sugar, ²² salt plays a
12	pivotal role in the incidence of albuminuria. ^{23, 24} Interestingly, previous cross-sectional
13	studies suggested that the association between salt intake and albuminuria was enhanced
14	in those with hypertension ²⁵ and obesity, ²⁶ suggesting that salt restriction may be more
15	renoprotective in these subjects. Aside from hypertensive and obese subjects, drinkers
16	may be potential candidates to benefit from salt restriction, as indicated by an enhanced
17	association between salt intake and stroke mortality in drinkers. ²⁷ Although alcohol
18	drinking was identified as a risk factor for albuminuria in a large prospective cohort

 $\mathbf{5}$

1	study (i.e., the Australian Diabetes, Obesity, and Lifestyle (AusDiab) study),28 few
2	studies have assessed the effect modification of alcohol drinking on the association
3	between salt intake and albuminuria.
4	The aim of the present 1-year observational study was to evaluate the clinical
5	impact of drinking frequency on the association between salt intake and albuminuria in
6	448 employees of a pharmaceutical company in Japan. The present study provides deep
7	insight into the mechanism of the deleterious effect of alcohol drinking on the kidney
8	and stresses the clinical value of salt restriction in drinkers.
9	

1 Methods

2 Study Design and Participants

3	This 1-year observational study included 507 employees at a pharmaceutical
4	company who underwent annual health checkups in both 2017 and 2018 and gave
5	informed consent to participate in the present study. We excluded 55 (10.8%) employees
6	who had a positive answer to the question "Do you take antihypertensive medications
7	now?", regardless of blood pressure levels; 3 (0.6%) employees with self-reported
8	kidney disease, who answered "I have been diagnosed with kidney disease"; and 1
9	(0.2%) female who was pregnant in either 2017 or 2018. The present study finally
10	included 448 (88.4%) employees without current use of antihypertensive drugs or a
11	history of kidney disease. Because of the prospective nature of the present study, the
12	sample size was dependent on the number of employees of the company.
13	The study protocol was approved by the ethics committees of SHIONOGI &
14	CO., LTD., Health and Counseling Center, Osaka University and Osaka University
15	Hospital.
16	Measurements
17	Baseline demographic, physical, and laboratory data in 2017 included age; sex;
18	drinking frequency; smoking status; current treatment for hypertension, dyslipidemia,

 $\overline{7}$

1	and diabetes; history of kidney disease; body mass index (= body weight [kg]/height
2	[m] ²); systolic and diastolic blood pressure (SBP and DBP); hemoglobin A1c; serum
3	concentration of total cholesterol, triglycerides, and creatinine; and urine concentration
4	of albumin, sodium, and creatinine. Urinary levels of albumin, sodium, and creatinine
5	were measured using single-spot urine specimens. Albuminuria was assessed using the
6	urinary albumin-to-creatinine ratio (UACR), which was calculated as follows: UACR
7	$(mg/gCr) = (urinary albumin [mg/dL]/urinary creatinine [mg/dL]) \times 1000$. Tanaka's
8	equation ²⁹ was used to estimate the 24-hour sodium excretion: estimated 24-hour
9	sodium excretion $[mEq/day] = 21.98 \times (urinary sodium [mEq/L]/[urinary creatinine])$
10	$[mg/dL] \times 10] \times 14.89 \times body weight [kg] + 16.14 \times height [cm] - 2.04 \times age [year] - 2.04 \times age [year]$
11	2244.45) ^{0.392} . Salt intake (g/day) was calculated by multiplying the 24-hour sodium
12	excretion (mEq/day) by 0.0585. Estimated GFR (eGFR) was calculated using a three-
13	variable equation modified for Japanese patients: eGFR (mL/min/1.73 m ²) = $194 \times age$
14	(year) ^{-0.287} × serum creatinine (mg/dL) ^{-1.094} × 0.739 (if female). ³⁰
15	Drinking frequency, smoking status, and current treatment for dyslipidemia and
16	diabetes were assessed using self-reported standard questionnaires. Drinking frequency
17	was determined by the question "How often do you drink alcoholic beverages?" with
18	responses of rarely, occasionally, or daily. Smoking status was classified into non-

1	smokers, past smokers, and current smokers, according to the question "Do you
2	smoke?" with possible answers "I do not smoke," "I quit smoking," or "I smoke".
3	Current treatments for dyslipidemia and diabetes were assessed based on positive
4	answers to the question, "Do you take a lipid-lowering drug now?" and "Do you take an
5	antidiabetic drug now?"
6	The outcome measures of the present study were the differences in UACR
7	between 2017 and 2018. We calculated $\Delta UACR$ and ΔLog UACR as follows:
8	$\Delta UACR [mg/gCr] = UACR in 2018 - UACR in 2017$
9	Δ Log UACR [log mg/gCr] = Log UACR in 2018 - Log UACR in 2017
10	To evaluate the association between the changes in salt intake and albuminuria, we
11	calculated the difference in salt intake between 2017 and 2018 as follows:
12	Δ Salt intake (g/day) = salt intake in 2018 - salt intake in 2017
13	In addition, the participants were divided into tertile groups according to Δ salt intake.
14	Drinking frequency was also ascertained in 2018 to assess how the baseline drinking
15	frequency reflected the drinking frequency during the follow-up period.
16	Statistical Analysis
17	The baseline characteristics, Δ salt intake, and Δ UACR of the participants were
18	compared according to drinking frequency (rare, occasional, and daily) and tertiles of

1	Δ salt intake (first, second, and third) using ANOVA, the Kruskal-Wallis test, or the chi-
2	square test, as appropriate. Reproducibility of the baseline drinking frequency 1 year
3	after the baseline visit was evaluated using weighted Cohen's kappa statistics. Kappa
4	statistics of <0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00 indicated fair, moderate,
5	substantial, and almost perfect reproducibility, respectively. ³¹
6	The association between Δ salt intake and Δ Log UACR was evaluated using
7	simple linear regression models and multivariable linear regression models adjusted for
8	the conventional risk factors for albuminuria at the baseline checkup, including age, sex,
9	smoking status, drinking frequency, current treatment for dyslipidemia and diabetes,
10	body mass index, systolic blood pressure, total cholesterol, triglycerides, hemoglobin
11	A1c, eGFR, UACR, and salt intake. Effect modification between Δ salt intake and the
12	baseline drinking frequency was evaluated by incorporating their interaction term into
13	the multivariable-adjusted model. P for interaction <0.10 was regarded as statistically
14	significant. To clarify the interaction between Δ salt intake and drinking frequency, the
15	association of Δ salt intake (a continuous variable [per 1 g/day] or a categorical variable
16	of first [T1], second [T2], and third [T3] tertiles) and Δ Log UACR was assessed in 3
17	subgroups stratified according to drinking frequency using multivariable-adjusted linear
18	regression models.

1	Continuous variables are expressed as the mean \pm standard deviation or median
2	(interquartile range), as appropriate, and categorical variables as number (proportion).
3	Statistical significance was set at $P < 0.05$, unless otherwise specified. All statistical
4	analyses were performed using Stata, version 16.1 (Stata Corp, www.stata.com).

Results

2	The baseline characteristics of the 448 participants stratified by the 3 categories
3	of drinking frequency are shown in Table 1. Rare drinkers had lower body mass index,
4	whereas daily drinkers were likely to be older and have higher levels of blood pressure
5	and UACR. Compared with rare drinkers, the prevalence of current smokers was higher
6	among those who drank more frequently. With respect to the reproducibility of the
7	drinking frequency in 2017 and 2018, the weighted kappa statistic was 0.88, suggesting
8	that the baseline drinking frequency in 2017 reflected the drinking frequency in 2018.
9	Regarding the 1-year changes in salt intake and albuminuria, Δ salt intake and Δ UACR
10	were 0.1 \pm 2.0 g/day and 1 (-9, 14) mg/gCr, respectively. Drinking frequency was not
11	associated with either Δ salt intake or Δ UACR.
12	Differences in the baseline characteristics according to the tertiles of Δ salt
13	intake are listed in Table 2. Those in the first tertile were more likely to have higher
14	eGFR. Compared with those in the first tertile, those in the second and third tertiles had
15	lower levels of baseline UACR and salt intake.
16	Unadjusted linear regression models showed a significant association between
17	Δ salt intake and Δ Log UACR (Table 3). After adjusting for clinically relevant factors,
18	Δ salt intake was still significantly associated with Δ Log UACR (per 1 g/day of Δ salt

1	intake, adjusted ß 0.16 [95% confidence interval 0.14, 0.19], P < 0.001), indicating that a
2	1 g/day increase in salt intake resulted in an $e^{0.16} = 1.17$ times increase in UACR.
3	Because of a significant interaction between drinking frequency and Δ salt
4	intake in an adjusted model including $\Delta Log UACR$ as a dependent variable (P for
5	interaction = 0.088 in Table 3), we evaluated the association between Δ salt intake and
6	Δ Log UACR according to the category of drinking frequency separately. The significant
7	association between Δ salt intake and Δ Log UACR increased in drinkers with higher
8	frequency (per 1 g/day of Δ salt intake, adjusted β 0.13 [0.06, 0.19], P <0.001 in rare
9	drinkers; 0.16 [0.12, 0.20], P < 0.001 in occasional drinkers; 0.20 [0.13, 0.27], P < 0.001
10	in daily drinkers) (Table 3).
10 11	in daily drinkers) (Table 3). To clarify any dose-dependent association between Δ salt intake and Δ Log
11	To clarify any dose-dependent association between Δ salt intake and Δ Log
11 12	To clarify any dose-dependent association between Δ salt intake and Δ Log UACR, we calculated the multivariable-adjusted β of tertiles (T1, T2, and T3) of Δ salt
11 12 13	To clarify any dose-dependent association between Δ salt intake and Δ Log UACR, we calculated the multivariable-adjusted β of tertiles (T1, T2, and T3) of Δ salt intake in each category of drinking frequency (Figure 1). With reference to the first
11 12 13 14	To clarify any dose-dependent association between Δ salt intake and Δ Log UACR, we calculated the multivariable-adjusted β of tertiles (T1, T2, and T3) of Δ salt intake in each category of drinking frequency (Figure 1). With reference to the first tertile of Δ salt intake, the adjusted β for the third tertile was 0.51 [0.21, 0.80] (P =
 11 12 13 14 15 	To clarify any dose-dependent association between Δ salt intake and Δ Log UACR, we calculated the multivariable-adjusted β of tertiles (T1, T2, and T3) of Δ salt intake in each category of drinking frequency (Figure 1). With reference to the first tertile of Δ salt intake, the adjusted β for the third tertile was 0.51 [0.21, 0.80] (P = 0.001) in rare drinkers, 0.60 [0.39, 0.80] (P < 0.001) in occasional drinkers, and 0.88

2.40 in rare, occasional, and daily drinkers, respectively. These results suggested that
 compared with rare drinkers, the association between Δsalt intake and ΔLog UACR was
 enhanced by approximately 1.5 times in daily drinkers (multivariable-adjusted ß of
 Δsalt intake [per Δ1 g/day], 0.20/0.13 = 1.5 in Table 3; multivariable-adjusted ß of T3
 vs. T1, 2.40/1.66 = 1.4 in Figure 1).

Discussion

2	Few studies have assessed the effect modification of alcohol drinking on the
3	association between salt intake and albuminuria. The present study showed that drinking
4	frequency enhanced the association between salt intake and albuminuria, suggesting that
5	salt restriction may be more effective in reducing albuminuria in drinkers than non-
6	drinkers. One of the advantages of the present study was its longitudinal study design,
7	in contrast to the previous cross-sectional studies suggesting the enhanced association
8	between salt intake and albuminuria in subjects with hypertension ²⁵ and obesity. ²⁶ The
9	results of the present study provided clinically useful evidence to identify the subjects
10	vulnerable to salt-induced albuminuria, which is one of the risk factors for
11	cardiometabolic disease, ^{3, 4} ESKD, ^{7, 8} and cardiovascular mortality. ^{9, 10}
12	The AusDiab study, a prospective study with a 5-year follow-up, reported that
13	alcohol drinking was a modifiable risk factor for albuminuria, ²⁸ but evidence on the
14	clinical impact of alcohol drinking on the association between salt intake and
15	albuminuria remains limited. The effect modification of alcohol drinking on the
16	association between salt intake and albuminuria in the present study may be explained
17	by the deleterious effect of alcohol drinking on the kidney. ^{28, 32} One of the potential
18	mechanisms by which alcohol drinking enhanced the association between salt intake

1	and albuminuria may be salt sensitivity. In our previous study that used the same cohort
2	as the present study, drinking frequency modified the association of salt intake and
3	blood pressure, suggesting that alcohol drinking enhanced salt sensitivity. ³³ An Italian
4	trial reported that urinary albumin levels significantly increased after salt loading in salt-
5	sensitive subjects but not in salt-resistant subjects. ³⁴ The results of these studies might
6	suggest that subjects with alcohol-induced salt sensitivity were more vulnerable to
7	albuminuria. A similar modification between alcohol drinking and salt intake was
8	reported in a large Japanese cohort study that showed an enhanced association between
9	salt intake and stroke mortality in heavy drinkers. ²⁷ Alcohol drinking may be one of the
10	key predictors of salt-induced noncommunicable diseases.
10 11	key predictors of salt-induced noncommunicable diseases. One of the major pathophysiologies of salt sensitivity is the impairment of NO-
11	One of the major pathophysiologies of salt sensitivity is the impairment of NO-
11 12	One of the major pathophysiologies of salt sensitivity is the impairment of NO- dependent vascular relaxation by decreasing NO in the vascular endothelium due to the
11 12 13	One of the major pathophysiologies of salt sensitivity is the impairment of NO- dependent vascular relaxation by decreasing NO in the vascular endothelium due to the suppression of endothelial nitric oxide synthase (eNOS). ³⁵ Alcohol suppresses the
11 12 13 14	One of the major pathophysiologies of salt sensitivity is the impairment of NO- dependent vascular relaxation by decreasing NO in the vascular endothelium due to the suppression of endothelial nitric oxide synthase (eNOS). ³⁵ Alcohol suppresses the expression of eNOS ³⁶ and impairs endothelial function, ³⁷ leading to salt sensitivity. ³³ An
 11 12 13 14 15 	One of the major pathophysiologies of salt sensitivity is the impairment of NO- dependent vascular relaxation by decreasing NO in the vascular endothelium due to the suppression of endothelial nitric oxide synthase (eNOS). ³⁵ Alcohol suppresses the expression of eNOS ³⁶ and impairs endothelial function, ³⁷ leading to salt sensitivity. ³³ An interesting association between salt sensitivity and salt-induced albuminuria was

1	salt sensitivity enhanced the association between salt intake and albuminuria. ³⁴
2	Collectively, these results indicate that alcohol-enhanced salt sensitivity possibly
3	augments salt-induced albuminuria. Further studies are essential to clarify the
4	association between alcohol consumption and albuminuria.
5	The present study has several limitations. First, only a single spot urine
6	specimen was measured in 2017 and 2018 in the present study; therefore, the estimation
7	of salt intake in each subject was less accurate than those based on multiple
8	measurements of 24-hour urine specimens. To evaluate Δ salt intake and Δ UACR more
9	precisely, multiple measurements of 24-hour urine specimens are necessary. Second, the
10	association between salt intake and albuminuria was not strictly measured in each
11	subject using an interventional method of salt loading. ³⁴ Because the present study
12	assessed the association between changes in salt intake and albuminuria in a certain
13	group of subjects, not in each subject, the results of the present study might be biased.
14	The effect modification of drinking frequency on the association between salt intake and
15	albuminuria should be assessed in detail using the interventional method of salt loading.
16	Third, the generalizability of the results of the present study should be verified in
17	different cohorts. In this study, the mean estimated salt intake at the baseline visit was
18	8.4 g/day, which was lower than that identified in previous studies. ^{38, 39} A Japanese

1	study of 2,073 healthy adults reported an average salt intake of 10.6 g/day estimated
2	using spot urine specimens. ⁴⁰ Fourth, self-reported drinking frequency might be biased.
3	Several studies have shown that alcohol consumption was likely to be underreported. ^{41,}
4	⁴² Given that daily drinkers who underreported their drinking frequency were
5	misclassified as occasional or rare drinkers, the association between Δ salt intake and
6	Δ UACR in occasional and rare drinkers was potentially enhanced, and therefore, the
7	interaction between drinking frequency and Δ salt intake was attenuated, leading to no
8	significant P value for the interaction. If we could control this underreporting bias, the
9	association between Δ salt intake and Δ UACR in daily drinkers would be stronger than
10	that in rare drinkers, leading to a smaller P value for the interaction between drinking
11	frequency and Δ salt intake compared with the P value for the interaction observed in the
12	present study. Fifth, lifestyle modification during the follow-up period might affect the
13	effect of drinking frequency on salt-induced albuminuria, leading to biased results in the
14	present study. If some daily drinkers switched to occasional or rare drinkers during the
15	observational period, therefore attenuating the association between Δ salt intake and
16	Δ UACR, the difference in the association between Δ salt intake and Δ UACR among
17	rare, occasional, and daily drinkers at the baseline checkup would be reduced, resulting
18	in a weaker interaction between drinking frequency and Δ salt intake. Similar to the

1	fourth limitation described above, if we could control for lifestyle modification during
2	the follow-up period, the interaction between drinking frequency and Δ salt intake would
3	be stronger. Sixth, regression to the mean phenomenon might affect the results of the
4	present study. Because baseline salt intake and Δ salt intake were comparable among
5	rare, occasional, and daily drinkers (Table 1), regression to the mean phenomenon had
6	little influence on the difference in Δ salt intake among the 3 groups. Although there was
7	a statistically significant difference in baseline UACR among the 3 groups, the
8	difference in Δ UACR among the 3 groups was not significantly different, suggesting
9	that regression to the mean phenomenon due to the difference in baseline UACR among
10	the 3 groups did not affect Δ UACR. Accordingly, regression to the mean phenomenon
11	in Δ salt intake and Δ UACR did not seem to result in a critical bias in the present study.
12	In conclusion, the findings of the present study showed that a higher frequency
13	of alcohol drinking enhanced the effect of salt intake on albuminuria. These results
14	indicate that drinkers would obtain a higher benefit from salt restriction in regard to
15	reducing albuminuria. Well-designed randomized controlled trials are needed to validate
16	our findings.

1 Acknowledgments: None.

- 2 Conflict of Interest: TM and YI are employed as occupational physicians by Shionogi
- 3 & Co., Ltd.; YM is an employee of Shionogi & Co., Ltd. and acts as a managing
- 4 director of Shionogi Health Insurance Association; and the other authors declare no
- 5 conflict of interest.

1 References

2	1.	Japanese Society of Nephrology. Essential points from Evidence-based Clinical
3		Practice Guidelines for Chronic Kidney Disease 2018. Clin Exp Nephrol 2019;
4		23 : 1–15.
5	2.	Ashitani A, Ueno T, Nakashima A, Doi S, Yamane K, Masaki T. High-normal
6		albuminuria and incident chronic kidney disease in a male nondiabetic
7		population. Clin Exp Nephrol 2018; 22: 835–842.
8	3.	Brantsma AH, Bakker SJ, de Zeeuw D, de Jong PE, Gansevoort RT. Urinary
9		albumin excretion as a predictor of the development of hypertension in the
10		general population. J Am Soc Nephrol 2006; 17: 331-335.
11	4.	Halimi JM, Bonnet F, Lange C, Balkau B, Tichet J, Marre M. Urinary albumin
12		excretion is a risk factor for diabetes mellitus in men, independently of initial
13		metabolic profile and development of insulin resistance. The DESIR study. J
14		Hypertens 2008; 26: 2198–2206.
15	5.	Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, et al. Estimated
16		glomerular filtration rate and albuminuria for prediction of cardiovascular
17		outcomes: a collaborative meta-analysis of individual participant data. Lancet
18		<i>Diabetes Endocrinol</i> 2015; 3 : 514–525.
19	6.	Matsushita K, Ballew SH, Coresh J, Arima H, Ärnlöv J, Cirillo M, et al.
20		Measures of chronic kidney disease and risk of incident peripheral artery disease:
21		a collaborative meta-analysis of individual participant data. Lancet Diabetes
22		<i>Endocrinol</i> 2017; 5 : 718–728.
23	7.	Carrero JJ, Grams ME, Sang Y, Ärnlöv J, Gasparini A, Matsushita K, et al.
24		Albuminuria changes are associated with subsequent risk of end-stage renal
25		disease and mortality. Kidney Int 2017; 91: 244–251.
26	8.	Inaguma D, Imai E, Takeuchi A, Ohashi Y, Watanabe T, Nitta K, et al. Risk
27		factors for CKD progression in Japanese patients: findings from the Chronic
28		Kidney Disease Japan Cohort (CKD-JAC) study. Clin Exp Nephrol 2017; 21:
29		446–456.
30	9.	Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong
31		PE, et al. Association of estimated glomerular filtration rate and albuminuria with
32		all-cause and cardiovascular mortality in general population cohorts: a
33		collaborative meta-analysis. Lancet 2010; 375: 2073–2081.
34	10.	Konta T, Kudo K, Sato H, Ichikawa K, Ikeda A, Suzuki K, et al. Albuminuria is
35		an independent predictor of all-cause and cardiovascular mortality in the

1		Japanese population: the Takahata study. Clin Exp Nephrol 2013; 17: 805-810.
2	11.	Okubo A, Nakashima A, Doi S, Doi T, Ueno T, Maeda K, et al. High-normal
3		albuminuria is strongly associated with incident chronic kidney disease in a
4		nondiabetic population with normal range of albuminuria and normal kidney
5		function. Clin Exp Nephrol 2020; 24: 435–443.
6	12.	Munakata M, Hattori T, Konno S. Relationship between subtle urinary albumin
7		excretion and risk of incident hypertension: modification by glomerular filtration
8		rate. Hypertens Res 2017; 40 : 994–998.
9	13.	Park SK, Seo MH, Ryoo JH, Kim MG, Choi JM, Shin H, et al. Urinary albumin
10		excretion within the normal range predicts the development of diabetes in Korean
11		men. Diabetes Res Clin Pract 2015; 109: 427-433.
12	14.	Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, et
13		al. Change in albuminuria as a surrogate endpoint for progression of kidney
14		disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet
15		Diabetes Endocrinol 2019; 7: 128–139.
16	15.	Coresh J, Heerspink HJL, Sang Y, Matsushita K, Arnlov J, Astor BC, et al.
17		Change in albuminuria and subsequent risk of end-stage kidney disease: an
18		individual participant-level consortium meta-analysis of observational studies.
19		Lancet Diabetes Endocrinol 2019; 7: 115–127.
20	16.	Schmieder RE, Schutte R, Schumacher H, Böhm M, Mancia G, Weber MA, et al.
21		Mortality and morbidity in relation to changes in albuminuria, glucose status and
22		systolic blood pressure: an analysis of the ONTARGET and TRANSCEND
23		studies. Diabetologia 2014; 57: 2019–2029.
24	17.	Levey AS, Gansevoort RT, Coresh J, Inker LA, Heerspink HL, Grams ME, et al.
25		Change in albuminuria and GFR as end points for clinical trials in early stages of
26		CKD: A scientific workshop sponsored by the National Kidney Foundation in
27		collaboration with the US Food and Drug Administration and European
28		Medicines Agency. Am J Kidney Dis 2020; 75: 84-104.
29	18.	Lambers Heerspink HJ, Gansevoort RT. Albuminuria is an appropriate
30		therapeutic target in patients with CKD: The Pro View. Clin J Am Soc Nephrol
31		2015; 10 : 1079–1088.
32	19.	Parving HH, Persson F, Rossing P. Microalbuminuria: a parameter that has
33		changed diabetes care. Diabetes Res Clin Pract 2015; 107: 1-8.
34	20.	Lin J, Hu FB, Curhan GC. Associations of diet with albuminuria and kidney
35		function decline. Clin J Am Soc Nephrol 2010; 5: 836–843.
36	21.	Lin J, Judd S, Le A, Ard J, Newsome BB, Howard G, et al. Associations of

1		dietary fat with albuminuria and kidney dysfunction. Am J Clin Nutr 2010; 92:
2		897–904.
3	22.	Lin J, Curhan GC. Associations of sugar and artificially sweetened soda with
4		albuminuria and kidney function decline in women. Clin J Am Soc Nephrol 2011;
5		6 : 160–166.
6	23.	Forman JP, Scheven L, de Jong PE, Bakker SJ, Curhan GC, Gansevoort RT.
7		Association between sodium intake and change in uric acid, urine albumin
8		excretion, and the risk of developing hypertension. Circulation 2012; 125: 3108-
9		3116.
10	24.	He FJ, Marciniak M, Visagie E, Markandu ND, Anand V, Dalton RN, et al.
11		Effect of modest salt reduction on blood pressure, urinary albumin, and pulse
12		wave velocity in white, black, and Asian mild hypertensives. Hypertension 2009;
13		54 : 482–488.
14	25.	du Cailar G, Ribstein J, Mimran A. Dietary sodium and target organ damage in
15		essential hypertension. Am J Hypertens 2002; 15: 222-229.
16	26.	Verhave JC, Hillege HL, Burgerhof JG, Janssen WM, Gansevoort RT, Navis GJ,
17		et al. Sodium intake affects urinary albumin excretion especially in overweight
18		subjects. J Intern Med 2004; 256: 324-330.
19	27.	Ikehara S, Iso H, Date C, Kikuchi S, Watanabe Y, Inaba Y, et al. Salt preference
20		and mortality from stroke and coronary heart disease for Japanese men and
21		women: the JACC study. <i>Prev Med</i> 2012; 54 : 32–37.
22	28.	White SL, Polkinghorne KR, Cass A, Shaw JE, Atkins RC, Chadban SJ. Alcohol
23		consumption and 5-year onset of chronic kidney disease: the AusDiab study.
24		Nephrol Dial Transplant 2009; 24 : 2464–2472.
25	29.	Tanaka T, Okamura T, Miura K, Kadowaki T, Ueshima H, Nakagawa H, et al. A
26		simple method to estimate populational 24-h urinary sodium and potassium
27		excretion using a casual urine specimen. J Hum Hypertens 2002; 16: 97–103.
28	30.	Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised
29		equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis
30		2009; 53 : 982–992.
31	31.	Kundel HL, Polansky M. Measurement of observer agreement. <i>Radiology</i> 2003;
32		228 : 303–308.
33	32.	Kimura Y, Yamamoto R, Shinzawa M, Isaka Y, Iseki K, Yamagata K, et al.
34		Alcohol consumption and incidence of proteinuria: a retrospective cohort study.
35		<i>Clin Exp Nephrol</i> 2018; 22 : 1133–1142.
36	33.	Yoshimura R, Yamamoto R, Shinzawa M, Tomi R, Ozaki S, Fujii Y, et al.
		, , ,

1		Drinking frequency modifies an association between salt intake and blood
2		pressure: A cohort study. <i>J Clin Hypertens</i> 2020; 22 : 649–655.
-3	34.	Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM.
4	0.11	Microalbuminuria in salt-sensitive patients. A marker for renal and
5		cardiovascular risk factors. <i>Hypertension</i> 1994; 23 : 195–199.
6	35.	Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the
7		common physiologic abnormality that mediates salt sensitivity and initiation of
8		salt-induced hypertension: Japanese research underpinning the vasodysfunction
9		theory of salt sensitivity. <i>Hypertens Res</i> 2019; 42 : 6–18.
10	36.	Husain K, Ferder L, Ansari RA, Lalla J. Chronic ethanol ingestion induces aortic
11		inflammation/oxidative endothelial injury and hypertension in rats. <i>Hum Exp</i>
12		<i>Toxicol</i> 2011; 30 : 930–939.
13	37.	Oda N, Kajikawa M, Maruhashi T, Iwamoto Y, Kishimoto S, Matsui S, et al.
14		Endothelial function is impaired in relation to alcohol intake even in the case of
15		light alcohol consumption in Asian men; Flow-mediated Dilation Japan (FMD-J)
16		Study. Int J Cardiol 2017; 230: 523–528.
17	38.	Takimoto H, Saito A, Htun NC, Abe K. Food items contributing to high dietary
18		salt intake among Japanese adults in the 2012 National Health and Nutrition
19		Survey. <i>Hypertens Res</i> 2018; 41 : 209–212.
20	39.	Takahashi N, Tanabe K, Adachi T, Nakashima R, Sugamori T, Endo A, et al.
21		Awareness of salt restriction is not reflected in the actual salt intake in Japanese
22		hypertensive patients. Clin Exp Hypertens 2015; 37: 388-392.
23	40.	Uechi K, Asakura K, Masayasu S, Sasaki S. Within-country variation of salt
24		intake assessed via urinary excretion in Japan: a multilevel analysis in all 47
25		prefectures. Hypertens Res 2017; 40: 598-605.
26	41.	Stockwell T, Zhao J, Sherk A, Rehm J, Shield K, Naimi T. Underestimation of
27		alcohol consumption in cohort studies and implications for alcohol's contribution
28		to the global burden of disease. Addiction 2018; 113: 2245-2249.
29	42.	Garnett C, Crane D, West R, Michie S, Brown J, Winstock A. Normative
30		misperceptions about alcohol use in the general population of drinkers: a cross-
31		sectional survey. Addict Behav 2015; 42: 203-206.
32		
33		

Clinical characteristics	Drinking frequency at baseline visit			Р
	Rare	Occasional	Daily	_
Number	91	235	122	
Baseline characteristics				
Age (year) [*]	44 (38, 51)	43 (39, 49)	50 (41, 54)	< 0.001
Male (n [%])	57 (62.6)	166 (70.6)	92 (75.4)	0.129
Smoking status (n [%])*				
Non-smoker	81 (89.0)	183 (77.9)	68 (55.7)	< 0.001
Past smoker	7 (7.7)	33 (14.0)	38 (31.1)	
Current smoker	3 (3.3)	19 (8.1)	16 (13.1)	
Current treatment for				
Dyslipidemia (n [%])	2 (2.2)	6 (2.6)	3 (2.5)	0.983
Diabetes mellitus (n [%])	0 (0.0)	2 (0.9)	0 (0.0)	0.402
Body mass index (kg/m ²)*	21.5 ± 2.5	22.4 ± 2.9	22.2 ± 2.7	0.033
Systolic blood pressure (mmHg)*	116 ± 11	117 ± 11	121 ± 12	0.008
Diastolic blood pressure (mmHg)*	73 ± 9	74 ± 9	78 ± 10	< 0.001
Total cholesterol (mg/dL)	202 ± 30	203 ± 31	204 ± 35	0.893
Triglyceride (mg/dL)	69 (48, 94)	69 (53, 100)	70 (50, 104)	0.484
Hemoglobin A1c (%)	5.3 ± 0.2	5.3 ± 0.3	5.3 ± 0.3	0.124
eGFR (mL/min/1.73 m ²)	79 ± 12	79 ± 11	77 ± 11	0.365
UACR (mg/gCr)*	29 (19, 49)	25 (18, 49)	36 (24, 64)	0.001
Salt intake (g/day)	8.1 ± 1.7	8.3 ± 1.9	8.6 ± 1.7	0.106
Drinking frequency 1 year after the	baseline visit [†]			
Rare (n [%])	83 (91.2)	6 (2.6)	1 (0.8)	
Occasional	8 (8.8)	220 (93.6)	14 (11.5)	
Daily	0 (0.0)	9 (3.8)	107 (87.7)	
Changes in salt intake and albuminu	ria over a 1-ye	ear period		
∆Salt intake (g/day)	0.1 ± 1.8	0.0 ± 2.1	$\textbf{-}0.4\pm2.0$	0.206
$\Delta UACR (mg/gCr)$	-1 (-12, 14)	2 (-6, 14)	-1 (-16, 12)	0.104

Table 1. Clinical characteristics of 448 participants stratified by drinking frequency

Data are presented as mean \pm standard deviation, median (25%, 75%), or n (%) $^*P\!<\!0.05$

[†]The weighted kappa statistics was 0.88 for reproducibility of drinking frequency at the baseline visit and 1 year after the baseline visit.

Abbreviations: eGFR, estimated glomerular filtration rate; UACR, urinary albumin-tocreatinine ratio

Clinical characteristics	Δ Salt intake (g/day)			
	First tertile	Second tertile	Third tertile	_
	-1.9 (-2.8, -1.4)	-0.1 (-0.5, +0.3)	+1.9 (+1.4, +2.8)	
Number	150	149	149	
Baseline characteristics				
Age (year)	46 (39, 52)	46 (40, 52)	44 (38, 50)	0.067
Male (n [%])	112 (74.7)	103 (69.1)	100 (67.1)	0.334
Drinking frequency (n [%])				
Rare	27 (18.0)	29 (19.5)	35 (23.5)	0.324
Occasional	74 (49.3)	80 (53.7)	81 (54.4)	
Daily	49 (32.7)	40 (26.8)	33 (22.1)	
Smoking status (n [%])				
Non-smoker	106 (70.7)	109 (73.2)	117 (78.5)	0.555
Past smoker	31 (20.7)	27 (18.1)	20 (13.4)	
Current smoker	13 (8.7)	13 (8.7)	12 (8.1)	
Current treatment for				
Dyslipidemia (n [%])	2 (1.3)	6 (4.0)	3 (2.0)	0.294
Diabetes mellitus (n [%])	1 (0.7)	0 (0.0)	1 (0.7)	0.606
Body mass index (kg/m ²)	22.2 ± 2.7	21.9 ± 2.8	22.3 ± 2.8	0.445
Systolic blood pressure (mmHg)	119 ± 12	117 ± 11	118 ± 11	0.192
Diastolic blood pressure (mmHg)	76 ± 10	74 ± 9	74 ± 9	0.286
Total cholesterol (mg/dL)	201 ± 32	205 ± 33	203 ± 29	0.472
Triglyceride (mg/dL)	74 (54, 101)	65 (49, 93)	70 (52, 102)	0.105
Hemoglobin A1c (%)	5.3 ± 0.3	5.3 ± 0.3	5.3 ± 0.3	0.643
eGFR (mL/min/1.73 m ²)*	81 ± 11	77 ± 12	77 ± 11	0.002
UACR (mg/gCr)*	39 (22, 73)	29 (21, 49)	22 (15, 39)	0.001
Salt intake (g/day)*	9.5 ± 1.6	8.2 ± 1.5	7.4 ± 1.5	< 0.001

Table 2. Clinical characteristics of 448 participants stratified by tertiles of changes in salt intake (Δ salt intake)

Data are presented as mean \pm standard deviation, median (25%, 75%), or n (%)

*P < 0.05

Abbreviations: eGFR, estimated glomerular filtration rate; UACR, urinary albumin-tocreatinine ratio

	Ν	Unadjusted model		Adjusted model*		P for
		β (95% CI)	Р	β (95% CI)	Р	interaction [†]
Overall	448	0.18 (0.15, 0.20)	< 0.001	0.16 (0.14, 0.19)	< 0.001	0.088
Drinking frequency						
Rare	91	0.13 (0.07, 0.20)	< 0.001	0.13 (0.06, 0.19)	< 0.001	
Occasional	235	0.18 (0.14, 0.21)	< 0.001	0.16 (0.12, 0.20)	< 0.001	
Daily	122	0.20 (0.14, 0.26)	< 0.001	0.20 (0.13, 0.27)	< 0.001	

Table 3. Changes in salt intake (Δ salt intake [per 1 g/day]) and changes in urinary albumin-to-creatinine ratio (Δ Log UACR [log mg/gCr])

^{*}Adjusted for age (year), sex, smoking status (non-, past, vs current smoking), drinking frequency (rare, occasional, vs daily), current treatment for dyslipidemia and diabetes, body mass index (kg/m²), systolic blood pressure (mmHg), total cholesterol (mg/dL), triglyceride (log mg/dL), hemoglobin A1c (%), estimated glomerular filtration rate (mL/min/1.73 m²), UACR (log mg/gCr) and salt intake (g/day) at the baseline visit [†]P for interaction between Δ salt intake and drinking frequency in the adjusted model Abbreviations: CI, confidence interval; UACR, urinary albumin-to-creatinine ratio

Figure legends

Figure 1. Drinking frequency modifies the association between changes in salt intake (Δ salt intake) and the urinary albumin-to-creatinine ratio (Δ Log UACR). Adjusted β values were calculated using a linear regression model adjusted for age (year), sex, smoking status (non-smoking, past smoking, vs current smoking), current treatment for dyslipidemia and diabetes, body mass index (kg/m²), systolic blood pressure (mmHg), total cholesterol (mg/dL), triglycerides (log mg/dL), hemoglobin A1c (%), estimated glomerular filtration rate (mL/min/1.73 m²), UACR (log mg/gCr) and salt intake (g/day) at the baseline visit. Abbreviations: CI, confidence interval; IQR, interquartile range

Figure 1

