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Morphology-based noninvasive early 
prediction of serial-passage potency enhances 
the selection of clone-derived high-potency cell 
bank from mesenchymal stem cells
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Abstract 

Background: Rapidly expanding clones (RECs) are one of the single-cell-derived mesenchymal stem cell clones 
sorted from human bone marrow mononuclear cells (BMMCs), which possess advantageous features. The RECs 
exhibit long-lasting proliferation potency that allows more than 10 repeated serial passages in vitro, considerably 
benefiting the manufacturing process of allogenic MSC-based therapeutic products. Although RECs aid the prepara-
tion of large-variation clone libraries for a greedy selection of better-quality clones, such a selection is only possible by 
establishing multiple-candidate cell banks for quality comparisons. Thus, there is a high demand for a novel method 
that can predict “low-risk and high-potency clones” early and in a feasible manner given the excessive cost and effort 
required to maintain such an establishment.

Methods: LNGFR and Thy-1 co-positive cells from BMMCs were single-cell-sorted into 96-well plates, and only 
fast-growing clones that reached confluency in 2 weeks were picked up and passaged as RECs. Fifteen RECs were 
prepared as passage 3 (P3) cryostock as the primary cell bank. From this cryostock, RECs were passaged until their pro-
liferation limitation; their serial-passage limitation numbers were labeled as serial-passage potencies. At the P1 stage, 
phase-contrast microscopic images were obtained over 6–90 h to identify time-course changes of 24 morphological 
descriptors describing cell population information. Machine learning models were constructed using the morpho-
logical descriptors for predicting serial-passage potencies. The time window and field-of-view-number effects were 
evaluated to identify the most efficient image data usage condition for realizing high-performance serial-passage 
potency models.

Results: Serial-passage test results indicated variations of 7–13-repeated serial-passage potencies within RECs. Such 
potency values were predicted quantitatively with high performance (RMSE < 1.0) from P1 morphological profiles 
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Background
Mesenchymal stem cells (MSCs) are the most widely 
studied stem cells for cell-based therapeutic applica-
tions [1–3]. It is known that a variety of cell types exist 
in MSCs [4–7] because conventional MSC process-
ing simply collects the adherent cell fraction from a cell 
suspension mixture [8, 9]. LNGFR (CD271) and THY-1 
(CD90) co-positive cells (LT cells) are among the spe-
cific sub-population MSCs in the bone marrow, and 
they exhibit unique characteristics that help advance 
MSC-based cell therapy: (1) high proliferation potency, 
(2) multiple differentiation potencies (adipogenic, osteo-
genic, and chondrogenic differentiation), (3) low expres-
sion of senescence marker SA-beta-gal, and (4) uniform 
and small size, which allows them to avoid being trapped 
in the lung capillaries after intravenous administration 
in a mouse model [10]. Relatively rapidly proliferating 
clones were observed in single-cell sorted LT cells; they 
were named “rapidly expanding clones (RECs).” RECs 
are now expected to enhance the clinical trials for the 
treatment of hypophosphatasia and spinal canal stenosis 
[11], because their proliferative potency greatly assists in 
establishing a cell bank with less heterogeneity.

The expectations for the advancement of MSC-based 
therapeutic products have grown because MSCs are 
being used in leading translational studies for clinical 
applications [3, 12–14]. Thus, there is currently a great 
demand for the development of enabling technologies 
that can assist MSC manufacturing [15, 16]. The charac-
teristics of RECs can greatly benefit from reducing two 
major critical risks in the present MSC manufacturing 
process to ensure efficient and robust cell manufacturing:

(1) Difficulty in controlling quality variations among 
donors: MSCs have considerable donor variations 
[17–19], and it is practically impossible to examine 
sufficient variations in patient cells before develop-
ing a robust manufacturing process [20–22]. Thus, 
handling various unknown donor cells is a consider-
ably risky task in MSC manufacturing, and it is the 
major cause of unexpected errors that can be dif-

ficult to solve. Allogenic cell bank establishment is 
a practical approach to control starting cell quality, 
which enables efficient MSC manufacturing. The 
REC can greatly benefit the process of establishing 
an allogenic cell bank. RECs can be mass produced 
by cell sorting, compared to difficulties involved in 
running large-scale donor selection until an ideal 
cell bank is obtained; therefore, the selection of the 
REC is more feasible and efficient. Furthermore, the 
proliferation potency of RECs considerably assists 
the success rate of establishing a cell bank while 
maintaining the banked cells in the earlier culture 
period. Thus, REC-based cell manufacturing ena-
bles more feasible process development and stable 
quality management.

(2) Quality decay during cell expansion culture: MSCs 
lose their proliferation potency after several pas-
sages; in addition, other important quality attrib-
utes also degrade during expansion [23–31]. How-
ever, achieving a certain cell number is an essential 
quality criterion in the manufacturing of MSC-
based therapeutic products. From a therapeutic 
perspective, the common protocol of MSC-based 
therapy requires more than a billion cells per treat-
ment to ensure efficacy [32]. From a manufacturing 
aspect, the cells in the final cell bank must reach a 
large cell number to thoroughly test the final prod-
uct with multiple quality criteria because most tests 
are invasive and the cells are consumed for each test 
[33]. However, such a cell expansion process is an 
unpromised trial with a high risk of failure owing to 
the quality decay probability. As a fact, the failure 
of the cell bank establishment can only be found 
“as a fact” after all the work, and it is difficult to 
avoid such failure beforehand. Within this context, 
the high and long-lasting proliferation potency of 
REC, which enables more than 10 repeats of serial 
passage, can greatly minimize the risk of cell bank 
establishment failure and realize the maximum 
culture efficiency for establishing a rich number of 
stocks in the earlier passages.

using a LASSO model. The earliest and minimum effort predictions require 6–30 h with 40 FOVs and 6–90 h with 15 
FOVs, respectively.

Conclusion: We successfully developed a noninvasive morphology-based machine learning model to enhance 
the efficiency of establishing cell banks with single-cell-derived RECs for quantitatively predicting the future serial-
passage potencies of clones. Conventional methods that can make noninvasive and quantitative predictions without 
wasting precious cells in the early stage are lacking; the proposed method will provide a more efficient and robust 
cell bank establishment process for allogenic therapeutic product manufacturing.

Keywords: Morphological analysis, Mesenchymal stem cells, LNGFR, THY-1, Rapidly expanding clone (REC), Cell bank 
establishment, Serial-passage potency, Prediction model
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There is a dilemma in the establishment of cell banks 
for RECs despite the advantageous features of RECs that 
enable both the low-risk and high-efficiency manufac-
turing of allogenic therapeutic products. RECs can be 
produced effectively by cell sorting even from a small vol-
ume of cell source, and therefore, the staring clone varia-
tion can be greater than the conventional donor waiting 
for the allogenic cell banks. However, it is expensive to 
expand many RECs until the stage of the final cell bank; 
furthermore, final quality tests for assuring the estab-
lished cell bank can incur further cost and effort. The 
variation in the starting RECs can trigger the expectation 
of selecting “better RECs” during the establishment of the 
cell bank; such expectations can increase the number of 
multiple cell bank establishments, which are cost- and 
effort-intensive. In practice, RECs are screened from LT 
cells using their primary growth speed from a single clone 
in a 96-well plate; all candidates are further expanded to 
form multiple “candidate cell banks” to select “the better 
REC cell bank” with higher quality. Such greedy selection 
for the better-quality product (= final product with lower 
risk and higher potency) is possible with RECs; however, 
it can raise the cost of the total process. Therefore, it is 
necessary to determine such candidate RECs as early as 
possible to help minimize excessive work. However, it is 
extremely difficult to test early-stage cells in the cell bank 
establishment, especially with single-clone-derived RECs, 
using conventional cell evaluation methods because most 
of them are invasive and waste precious cell sources.

In this study, we develop a morphology-based noninva-
sive potency prediction method for selecting “the better 
RECs” in the early stage of cell bank establishment where 
the cell number is extremely limited. Based on our pre-
vious findings on morphology-based early prediction for 
MSC quality decay [34–37], we attempt to predict the 
“further serial-passage potencies” using only their early 
morphological information to enhance the selection 
of the better RECs that form the better REC cell bank 
(Fig. 1). Furthermore, we expect that such potency pre-
diction can help aid the cell bank establishment process 
to balance the “bank size” and “potency of banked cells” 
because it is also a critical dilemma for processing the cell 
bank. Manufacturing efficiency can be increased if a cell 
bank is largely expanded; however, this increases the risk 
of losing the proliferation potency of the banked cells. 
Therefore, we hypothesized that if future serial-passage 
potencies can be predicted in advance, it will enable to 
design a low-risk timing to achieve the maximum-sized 
cell bank which has high potency.

For the training data to develop a prediction model, 
we established 15 RECs from the bone marrow and 
experimentally confirmed the serial passage num-
ber until passage limitation (defined as “serial-passage 

potencies”). Using the morphological descriptors in 
the stage of passage 1 (P1), we attempted to develop 
machine learning models to quantitatively predict such 
potency. During the development of prediction mod-
els, we conducted a detailed analysis of the data usage 
effect to obtain high-performance prediction models 
robustly. Thus, our data show the most effective time-
course data usage and the minimum number of images 
required to realize the prediction model in a practical 
manner. The future potency prediction concept of our 
morphology-based REC indicates the potential of an 
image-based data-driven cell bank construction process 
in MSC manufacturing that can achieve both efficiency 
and robustness.

Methods
Cells and culture
Bone marrow mononuclear cells were prepared from bone 
marrow aspirate (AllCells, Alameda, USA) collected from 
healthy donors using density gradient centrifugation with 
Ficoll (GE Healthcare, Chicago, USA) to obtain RECs. Bone 
marrow mononuclear cells were stained with anti-human 
rabbit anti-CD90 IgG (BD Biosciences, Cat#559,869, Flank-
lin Lakes, USA) and anti-human mouse anti-CD271 IgG 
(Thermo Fisher) for 1  h at 37  °C. Single-cell sorting was 
performed for CD90 and CD271 double-positive cells using 
the cell sorter (JSAN, BayBioscience, Kobe, Japan). The LT 
cells were sorted in 96-well plates (Thermo Fisher Scien-
tific, Waltham, USA) as single clones (passage count = P0); 
they were further cultured with a maintenance medium 
(low glucose Dulbecco’s modified Eagle’s medium [DMEM] 
(Wako, Osaka, Japan) containing 20% fetal bovine serum 
[FBS] (Cytiva HyClone, Marlborough, USA), 20  ng/ml 
basic fibroblast growth factor [bFGF] (KAKEN PHARMA-
CEUTICAL, Tokyo, Japan), 0.01  M 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid [HEPES] (Thermo Fisher 
Scientific, Waltham, USA), and 1% penicillin/streptomy-
cin (Meiji Seika Pharma, Tokyo, Japan)). After 2 weeks, the 
clones were sub-confluent in 96-well plates, harvested, sub-
cultured in a single well of a 6-well plate (Thermo Fisher 
Scientific) (passage count = P1), and set for image acqui-
sition. Image acquisition for the further morphological 
analysis is done at this stage. The cells were then harvested 
and sub-cultured in T75 flasks (Thermo Fisher Scientific) 
(passage count: P2) when cells reached sub-confluency in 
a 6-well plate (Thermo Fisher Scientific). The cells were 
harvested using TrypLE Select (Thermo Fisher Scientific) 
after incubation for 3–5 min at 37  °C. The P2 cells in the 
T75 flasks that reached sub-confluent status were cryo-
preserved with 1.0 ×  106 cells/ml with CP-1(KYOKUTO 
PHARMACEUTICAL, Tokyo, Japan) and 25% human 
serum albumin (CSL Behring, Tokyo, Japan); they were 
designated “primary cell bank (P3).” With the primary cell 
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bank, in vitro and in vivo tests for the multiple potencies 
were excluded to save cells for the serial-passage experi-
ments. For comparing the morphologies, convention-
ally processed bulk MSCs (BMMSCs: Lot 0,000,394,413, 
0,000,411,107, 0,000,413,042, 0,000,422,610, 0,000,423,370, 
0,000,429,365, 0,000,446,319, 0,000,451,491, 0,000,458,207) 
purchased from Lonza Japan, Ltd. (Tokyo, Japan) were cul-
tured to P3 in MSCGM (Lonza Japan, Ltd.) supplemented 
with BulletKit (Lonza Japan, Ltd.). All cell cultures were 
maintained at 37 °C and 5%  CO2; the medium was changed 
once every 3 days.

Serial‑passage potency test
The primary cell bank (P3) vial was thawed and seeded 
in a 100-mm dish (Thermo Fisher Scientific) with a den-
sity of 2.0 ×  105 cells/dish, which we named as P3 data. 
Cells were harvested from a 100-mm dish using a TrypLE 
Select (Thermo Fisher Scientific) and sub-cultured in the 
new 100-mm dish with the same seeding density when 
the cells reached sub-confluent status. This sub-culture 
process was repeated until the cell growth was arrested. 
We counted the passage numbers and designated the 
final passage number as a “serial-passage limitation 
number” that we defined as the “serial-passage potency” 

Fig. 1 Conceptual illustration of serial-passage potency prediction using a morphological profile for selecting a high-potency cell bank. The target 
RECs were sorted from the MSCs via the clone selection step (P1 and P2). At P3, cells were cryopreserved to form the primary cell bank for preparing 
early passage cells for further experiments. Serial-passage tests were examined from P3 till the limitation of the passage. For the practical cell-based 
therapeutic product manufacturing, the candidate cell bank is formed during such serial passages. However, there are risks; for example, cells show 
unexpected growth termination, which results in cell bank establishment failure. Furthermore, the formation of a better-quality candidate cell bank 
which possesses lower risks of having banked cells which loses further proliferation potency but has higher potency of further activity is expected. 
Such serial-passage potency was predicted from the morphological profile in the P2 stage cell images. The morphological profile comprises time 
course × 12 morphological descriptors × cell population information (mean and SD)
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(Fig. 1). At each passage, the harvested total cell number 
was counted using Cellometer Auto T4 (Nexcelom Bio-
science, Lawrence, USA), and the result was recorded as 
the total number of collected cells.

Image acquisition and processing
Phase-contrast microscopic images were acquired every 
6 h for P1 RECs in a 6-well plate (Thermo Fisher Scien-
tific) using the automatic image acquisition system Bio-
Station CT (Nikon Corporation, Tokyo, Japan) at × 4 
magnification (64 tiling per well, covering 16  mm2, 1000 
pixels/image). Each clone lot was imaged in one well; the 
cell number was extremely limited at this stage. For bulk 
MSCs, the MSCs were seeded into 6-well plates (Corn-
ing Incorporated, NY, USA) at 2000 cells/cm2 (n = 3 
wells per lot). The time points were designated as time 1 
(6  h after seeding) to 20 (120  h after seeding). Time 15 
was selected as the final time point for morphology and 
growth rate measurements because some lots reached 
more than the sub-confluent status; therefore, it was 
difficult to recognize individual cells in the image accu-
rately. Raw images were processed to measure individual 
cell morphologies for obtaining a summary of morpho-
logical profiles of the cell population (minimum of 300 
cells to a maximum of 100,000 cells collected per well 
covered by 64 images). Image processing was performed 
by original codes using Python version 3.7.3, with pack-
ages NumPy version 1.20.0 and OpenCV version 4.4.0. 
The image processing pipeline was designed with eight 
processes: (1) background adjustment, (2) enhancement 
of texture, (3) binarization, (4) removal of small objects, 
(5) erosion, (6) removal of small objects, (7) fill hole, and 
(8) removal of frame-touching objects (Supplementary 
Fig.  1). After image processing, 12 basic morphological 
descriptors (Supplementary Table 1) were measured per 
cell region in each image. The summary of cell popula-
tion was described by calculating “mean” and “standard 
deviation (SD)” using all single-cell-based morphologi-
cal descriptor data. This summary represented nearly 
1 ×  104 to 1 ×  105 cells from a single well covered by 64 
images. We accumulated this morphological descrip-
tor summary throughout the time course (6–90  h) and 
designated them as the “morphological profile” of the 
sample. The complete morphological profile for each 
condition (= 1 well) comprised 360 parameters (= 12 
descriptors × (mean and SD) × 15 time points). All data 
processing was conducted using the R version 4.0.2.

Visualization of morphological profiles
Gaussian kernel density estimation was calculated using 
single-cell data at each time point to visualize the cell 
population using a single morphological descriptor. The 
distribution was estimated using a kernel function in R. 

Raw data were transformed with log10 for distribution 
estimation to describe the “area.” Single-cell measure-
ment data that exceed area > 200 pixels were collected to 
allow a detailed “area” discussion between RECs and con-
ventionally processed bulk MSCs. Most objects smaller 
than 200 pixels were found in “round cells” during their 
proliferation, and therefore, it was considered difficult 
to discuss the size difference because the characteristics 
of expanding cells diminish in such data. The morpho-
logical profiles of all lots were analyzed using principal 
component analysis (PCA) to visualize the relative simi-
larities of clones using multiple descriptors. Dots were 
colored with clone labels (15 colors) and serial-passage 
limitation numbers (gradations of seven levels: 7 to 13) 
in the PCA that compares clone morphological profiles. 
All data with the same time-window size, including dif-
ferent FOV number usages, were merged and used to set 
the total principal components for covering total data 
diversity to visualize the data usage effect and change 
their time-window size and numbers of FOVs. Then, data 
using different FOV numbers were plotted individually 
in the fixed PCA axis. In the comparative PCAs for the 
data-usage effect, one plot indicates “one clone.” The total 
single-cell measurement data from each data size (vary-
ing the combination of different time-window size and 
FOV numbers) were resampled by bootstrap (50 repeats 
allowing overlaps) to visualize the explanatory power of 
different data usages; their new mean and SD were re-
obtained from each resampled data. A total of 50 plots 
per clone were plotted using PCA and such resampled 
data. Student’s t-test was used to test differences between 
the morphological descriptors and the population distri-
butions of morphological descriptors. All data processing 
was performed using R (version 4.0.2).

Construction of prediction models for serial‑passaging 
potency
Time-course morphological profiles were used as explan-
atory parameters, and an experimentally determined 
serial-passage limitation number was used as the objec-
tive parameter in the dataset for machine learning. Two 
types of machine learning models were examined—the 
linear regression model least absolute shrinkage and 
selection operator (LASSO) and the nonlinear machine 
learning model random forest (RF). With LASSO, param-
eter selection was performed using a mean decreas-
ing Gini index. Model performances were validated by 
leave-one-out cross-validations and compared by root-
mean-squared error (RMSE). The data usage effect in 
the morphological information was examined with an 
exhaustive combination of two parameters: length of 
time window (ranging from 6–90 h) and number of FOVs 
(ranging from 1 to 64). The total 6–90  h window was 
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shortened from the last time point (90  h) at each time 
point (6 h) to vary the length of the time window. Thus, 
the maximum total morphological descriptor comprises 
360 parameters, whereas the minimum comprises 24 
parameters. Images from 64 images were selected ran-
domly to vary the number of FOVs. The bootstrapping of 
50 repeated times of re-sampling FOVs from 64 images 
was introduced to increase the dataset size from 15 to 
750 samples for evaluating the data variation effect on 
selected data size conditions (6 h, 6–30 h, 6–60 h vs. 15, 
40, and 60 FOVs). All data processing and machine learn-
ing were performed using the R version 4.0.2.

Results
Collection and characterization of RECs for the training 
data
We started our work to achieve 15 clones of RECs 
from a single donor of bone marrow mononuclear cells 
(BMMCs) to develop a machine learning model for pre-
dicting “serial-passage potency” from the early-stage cell 

morphologies (Scheme in Fig. 1). Fifteen clones were col-
lected from the same donor sample and sorted according 
to the basic criteria for REC: (1) LNGFR and THY-1 dou-
ble-positive in cell sorting and (2) reaching sub-confluent 
status within 2 weeks after single-clone sorting in 96-well 
plates (P0 stage). Then, the clones expanded in a 6-well 
plate followed by a T-75 flask were cryopreserved as pri-
mary cell banks (P3), which is the bank for storing early 
passage cells.

We evaluated the serial-passage potencies of candi-
date clones in P2 to further select “the better RECs.” 
The cellular performance that enables several repeated 
rounds of passages can be considered an ideal crite-
rion for selecting “a better-quality cell bank” for further 
usage. The serial-passage potency test results indicated 
that our RECs retained high proliferation potencies, 
which marks 9.8 repeats of serial passage on average 
(Fig. 2a). Such a potency can be considered high com-
pared to that of commercially available MSCs pro-
cessed using conventional methods. However, some 

Fig. 2 Profile of 15 RECs. a Results of serial-passage tests of RECs. b Representative morphologies of RECs. c Growth profile of RECs. d Correlation of 
growth rate and serial-passage limitation number. R2 indicates the coefficient of determination
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clones lost their proliferation gradually, even among 
clones that passed the REC criteria and retained long 
serial-passage potencies (e.g., clone 11 or 13 in our 
data).

Next, we evaluated the morphological characteristics 
of the clones (Fig. 2b). At the P1 stage in 6-well plates, 
which is an extremely early stage, the morphology 
includes an important signature of the cells for their 
evaluation. However, manual morphological observa-
tion (without quantification) makes it difficult to dis-
criminate the differences between the RECs.

We analyzed the growth profiles of RECs at the P1 
stage using time-course images (Fig.  2c). Among the 
15 clones, 12 showed a growth rate over fourfold; this 
growth rate was significantly higher than that of sev-
eral conventionally processed bulk MSCs in our study 
(Supplementary Fig.  2). The clone with the lowest 
serial-passage potency (clone 13) showed a low growth 
rate; the highest serial-passage potency clone (clone 4) 
showed a high growth rate. However, the coefficient 
of determination between the “growth rate” and the 
“serial-passage limitation number” was low (R2 = 0.09) 
(Fig.  2d). Thus, the data indicate that the growth rate 
measurement at the P1 stage cannot predict future 
serial-passage potencies.

Morphological characterization of RECs
We attempted to characterize RECs (at P1) quantitatively 
via image-based morphological analysis according to our 
previously reported analysis concepts [33–36]. Com-
pared with conventionally processed bulk MSCs (cMSCs, 
nine lots), RECs were more homogeneous and remained 
smaller even after adhesion (Fig.  3a, b). Both RECs and 
cMSCs started from a similarly sized population (median 
area = 358 μm2, 335 μm2, respectively) at the very early 
adhesion stage (6  h, T-test p < 0.22); the median size of 
the RECs remained small (363 μm2) wherein the bulk 
cMSCs expanded during the culture after 30  h (median 
area = 473 μm2, T-test p < 0.000001). Furthermore, more 
proliferating cells that are visually white and round under 
phase-contrast microscopy were found in the RECs dur-
ing the same series of time-course images (Fig. 3b).

We found that the adherent cell population remained 
broad in clones with decreased serial-passage poten-
cies by visualizing the population change of such RECs 
during the time course at P1 stage (Fig. 3c). Thus, high-
potency cells can achieve a homogenous size population; 
however, such size data analysis was suggestive, and the 
coefficient of determination between the “SD of area” 
and the “serial-passage limitation number” remained low 

Fig. 3 Morphological characterization of 15 RECs. a Size distribution comparison between RECs (15 clones) and conventionally processed bulk 
MSCs (cMSCs, 9 lots) and their time-course changes. Only adherent and extending cells are counted. The dotted vertical line represents the average 
cell sizes. b Representative time-course images of REC and Bulk MSC. Yellow and blue arrows represent proliferating cells and proliferated cells in 
near time, respectively. c Size distribution and their time-course changes among 15 clones. d Correlation of “SD of area” and serial-passage limitation 
number. R2 indicates the coefficient of determination. e, f PCA plot of 15 RECs profiled by 24 morphological descriptors. PCA plot with clone color 
labels (e). PCA plot colored by the heatmap of their serial-passage potencies (f)
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(Fig.  3d). A single morphology descriptor analysis was 
not sufficiently efficient for a quantitative prediction.

We profiled clones using multiple morphological infor-
mation described with 24 descriptors  obtained from 
the basic descriptors (Supplementary Table  1) [33–36]. 
The morphological similarities of the RECs are visual-
ized using principal component analysis (PCA) (Fig.  3e 
is labeled by clone numbers, and Fig.  3f is labeled by 
the serial-passage-potency of each clone). These results 
indicate that there are certain clusters of clones with 
similar morphological profiles that slightly divide the 
low-and high-serial-passage potency clones. In prac-
tice, low serial-passage potency clones gather in the low 
PC2 axis, whereas the high serial-passage potency clones 
gather in the high PC2 axis and in the middle of the PC1 
axis. The contributing descriptors in the axes of the PCA 
map, especially in the most explanatory PC2 axis, can 
be interpreted as follows (Supplementary Table  2): The 
clone has a longer serial-passage potency when cells are 
more homogeneous and show a spindle shape during the 
24–30-h growth; however, their serial-passage potency 
is shorter when cellular morphological homogeneity is 
disturbed. Such an unsupervised model analysis suggests 
that a multiple-descriptor combination provides a better 
explanation to morphologically characterize potencies.

Morphology‑based machine learning for predicting 
serial‑passage potency
We next investigated the development of machine learn-
ing models with morphological information to enable the 
quantitative prediction of “serial-passage potencies” of 
RECs based only on morphological information (Fig. 1). 
We used morphological profiles (24 descriptors × 15 time 
points) to predict the serial-passage limitation numbers. 
Under this prediction model development, we attempted 
to understand the part or the extent to which the mor-
phological information effectively contributes to the 
development of the prediction model. Thus, we investi-
gated the effect of morphological data usage by changing 
two parameters: the time-window effect and the field-of-
view (FOV)-number effect. We investigated these param-
eters because we found that the image data collection 
effort can be effectively reduced via such detailed investi-
gation in our previous challenge involving the prediction 
of the growth rate and osteogenic differentiation rate of 
MSCs from morphological descriptors [33–36]. Shorten-
ing the time window and minimizing the FOV number 
can not only save time and effort for image data acquisi-
tion, but can also accelerate the prediction.

From the exhaustive examination of both the “time-
window effect” and the “FOV-number effect” with least 
absolute shrinkage and selection operator (LASSO), 
we found that high-performance prediction models 

(RMSE < 1.0 shown as green colored heatmap in Fig. 4a) 
can be obtained with several parameter combinations 
even with the morphological information in P1 stage 
cells. The data suggest that the prediction performance 
can be maintained even if the time window and FOV 
numbers are reduced. Furthermore, it was deduced that 
the effect of “FOV-numbers” is more important than that 
of the “time window” because the time window can be 
shortened without performance degradation when more 
than 15 FOVs are collected.

A scatter plot is plotted to further understand the 
model performance for predicting serial-passage poten-
cies for each clone (Fig.  4b). These data clearly show 
that our prediction models predict “quantitative values 
of serial-passage limitation numbers.” Many high-per-
formance prediction models have been developed using 
different sizes of training data (Fig.  4a, b). However, we 
suspected that all model structures were randomly dif-
ferent by lacking a common structure because LASSO is 
the algorithm that creates the best descriptor combina-
tion for each dataset; similar performance models with a 
completely different model structure can be obtained. If 
the model structure is different in each condition of the 
data, such modeling result is not robust, and therefore 
not practical. Thus, we compared all model structure cor-
relations (Fig. 4c) and confirmed that the top-performing 
models robustly share similar model structures. This 
result suggested that the relation between the morpho-
logical descriptor combination and serial-passage poten-
cies can be modeled with a certain universal combination 
of morphological descriptors.

A comparison between the highly contributing 
descriptors shared between different models, i.e., 
“Correlation_SD (18  h),” “Correlation_SD (6  h),” and 
“Energy_SD (18  h),” contributed positively to predict 
the long serial-passage potency clones; “Correlation_
mean (6  h),” “Length_SD (18  h),” and “Compactness_
SD (18  h)” contributed negatively to predict the short 
serial-passage potency clones (Supplementary Table 3). 
Both “correlation” and “energy” are texture descrip-
tors, and therefore, they commonly reflect the three-
dimensional pattern and complexity of cells because 
it changes the intensity profile under phase-contrast 
microscopy. In practice, the intensity profiles change 
drastically when cells change their three-dimensional 
roundness during cell division. Thus, an increase in the 
“SD of texture” indicates that there are more prolifer-
ating cell populations. Thus, the population becomes 
more homogeneous in texture when the “mean of 
texture” has a greater effect; this implies that there 
is a decrease in the number of cellular events that 
change texture. Length and compactness are shape-
related descriptors; therefore, they commonly reflect 
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two-dimensional responses such as elongation and 
expansion. If such a shape changes with few textural 
changes, it indicates that the cells use their activity 
for elongation more instead of for proliferation. Thus, 
such model structure-derived information suggests that 
the acquired serial-passage prediction models are not 

only useful for early detection of their future potency, 
but are also informative for the quantitative extrac-
tion of the morphological rule, which is descriptive and 
recordable. Thus, such a descriptive understanding of 
morphological profiles helps escape from the old habits 
of grasping morphological changes by feeling.

Fig. 4 Exhaustive evaluation of the data-usage effect and performances of serial-passage prediction models. a Evaluation of data-usage effect 
with LASSO. The row values represent the number of FOVs used, and the column values represent the time-window size used for training data. The 
heatmap indicates the RMSE. RMSE < 1.0 is considered a good performing model. b Scatter plots to visualize the serial-passage prediction model 
performances; each dot represents one clone. c Comparison of model structures between two pairs of constructed models in a. Time windows of 
6, 6–30, 6–60, and 6–90 h were selected. The heat map indicates the correlation coefficiencies between all weights on all selected morphological 
descriptors in the model. The correlation coefficiencies become high if the used descriptor combination is similar. d Evaluation of the data-usage 
effect with RF; the row indicates the number of FOVs used, and the column represents the time-window size used for training data. The heatmap 
indicates the RMSE. RMSE < 1.0 is considered a good performing model
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The model did not show a better performance than 
LASSO in any data usage conditions when we examined 
the same condition matrix with the nonlinear machine 
learning model RF (Fig.  4d). These data reflect that the 
serial-passage potency and morphological information 
are linearly related.

Finally, we attempted to confirm the predictive per-
formance of LASSO models in more detail because the 
model training was based on their raw sample data, 
which are relatively small in size compared to other 
fields’ machine learning applications, although we exam-
ined two parameter combinations (time window and 
FOV number). We introduced bootstrap to increase the 
variations of image-derived morphological profiles for 
evaluating the extent to which the prediction model can 
stand robustly to the effect from the data variation. We 
examine the performance of the prediction models by 
introducing 50 bootstraps to collect different FOV com-
binations from the 64-tiling images per sample (Fig.  5). 
The result indicates that such image-sampling bias intro-
duced by bootstrapping caused performance degradation 
in some prediction models. However, although the range 
of the “time-window effect” and “FOV-number effect” 
for achieving high-performance models (RMSE < 1.0) 
was narrowed by a more robust model compared to that 
in Fig.  4a–c, we can minimize the data collection size 

to 6–30 h with 40 FOVs for the earliest prediction, and 
6–90 h with 15 FOVs for the minimum effort prediction 
while keeping the prediction accuracy (RMSE < 1.0). The 
FOV number clearly improved the morphological profile 
robustness when we evaluated such a bootstrap effect on 
PCA; the accumulation of the morphological profile by a 
longer time window improved to discriminate between 
clone differences. Such data-size effect investigations 
will contribute to designing a more effective process of 
introducing an image-based quality check in cell bank 
establishment.

Discussions
RECs are clonal MSCs selected from human BMMCs, 
which not only retain the superior qualities of conven-
tionally processed MSCs, but also have characteristics 
that are advantageous for the practical cell manufacturing 
process for therapeutic products. In particular, the high 
proliferative potency of RECs provides a major advantage 
in developing efficient manufacturing processes for cell 
therapeutic products. Therefore, in this study, we inves-
tigated the possibility of predicting continuous passaging 
capacity from initial morphological information alone 
and its most practical construction method so that the 
capacity of RECs can be evaluated from the initial stage 
of cell bank construction.

Fig. 5 Evaluation of the robustness of serial-passage prediction models against data variation included by the bootstrap FOV selection (50 repeats) 
and its data-usage effect
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A long unsolved problem in any type of cell culture is 
determining “the best timing to make cryo-stocks” in 
the expansion culture. Since most normal cells lose their 
proliferation potency when cultured in  vitro [38, 39], 
one can only bet on which passage number to end with 
while making cryostocks. For establishing industrial cell 
banks, such a betting factor amounts to a significant risk: 
the low-success-rate expansion culture will incur signifi-
cant expenses if the cell does not proliferate as expected, 
and if the cells are cryopreserved too early, the stock will 
not profit production efficacy. In practice, the bottleneck 
in the practical cell bank establishment is the effort of 
recruiting precious donors, and not the effort of making 
greedy selection of candidate cell banks. However, with 
RECs, we expect a stricter and more selective process for 
finalizing the candidate cell bank as a “master cell bank.” 
Our investigation presents a new concept of using mor-
phological noninvasive analysis as an “in-process analysis 
tool” for enhancing and optimizing the cell bank estab-
lishment process. This concept will help set the best cry-
ostock production timing by balancing “the yield of cells” 
and “the remaining potency of banked cells” and predict-
ing the future serial-passage potency. Such an approach 
will help discard the present cell bank design concept, 
which restricts the passage number using data-less logic.

Although we investigated a method to predict the 
“serial-passage potency” of RECs, but the continuous pas-
sage potency in cMSCs may require some discussion. It 
is understood that for the induced pluripotent stem cells 
(iPSCs), the uncontrollable proliferation potency in iPSCs 
has a negative effect on clinical treatment, for example, 
the risk of teratoma formation [40, 41]. However, with 
MSCs, which are known to exhibit limited proliferation 
potency, their serial-passage potencies are considered 
with several aspects. If the “candidate cell bank” of this 
study is prepared as a master cell bank for the creation 
of further working cell banks, its serial-passage potency 
would be beneficial to the entire process. However, the 
serial-passage potency effect should be carefully exam-
ined if it is prepared as the final cell bank for implanta-
tion. If it profits the efficacy of the final product, it can 
be an advantage; however, if it negatively affects the effi-
cacy, it will be a risk. In any case, such future potency 
prediction from the earliest stage of the process will help 
optimize the final cell bank quality because it can only be 
evaluated by excessive continuous evaluations for futile 
REC candidates. Since REC is currently on the path to 
clinical trials, our next challenge is to validate the effec-
tiveness of such potency predictions and efficiently move 
forward with product manufacturing.

Finally, our morphology-based future potency pre-
diction on RECs triggers the discussion of whether this 
developed model can be applied to other MSC cell-bank 

establishment studies. Currently, we consider that our 
model is still limited to predicting and evaluating RECs. 
This interpretation is not attributed to the difference in 
potencies in RECs and bulk MSCs because we clearly 
found that the morphological distribution of RECs dif-
fers from that of bulk MSCs. Our image-based detailed 
morphology measurement indicated that the major pop-
ulation of RECs comprises nearly twofold smaller cells 
compared to the bulk MSCs. Such large size differences 
would make the prediction model structure, the combi-
nation of morphological descriptors, fit for RECs because 
we use “mean and SD” for reflecting the cell population 
distribution for our morphological profiles. Furthermore, 
it is practically difficult for bulk MSCs to conduct “serial-
passage tests” for as long as RECs. Such large differences 
between the native potencies of RECs and bulk MSCs 
can result in unexpected data bias that can unexpectedly 
develop serial-passage prediction models that discrimi-
nate “RECs or bulk MSCs” from biased data. Therefore, 
it is a future challenge to investigate such universal mor-
phological characteristics that can be reflected in other 
stem cells.

Conclusions
Although our findings are based on a limited number of 
clones, our investigation of image-based machine learn-
ing models was found to introduce a new concept of 
data-driven process management for a more effective cell 
bank establishment. Our next challenge will be to expand 
our morphology-based early cell potency predictions to 
obtain clones with higher differentiation potencies which 
closely relate to the therapeutic effects.

Abbreviation
MSC: Mesenchymal stem cell; BMMC: Bone marrow mononuclear cell; REC: 
Rapidly expanding MSC clone; P1: Passage number 1; P2: Passage number 
2; P3: Passage number 3; SD: Standard deviation; PCA: Principal component 
analysis; PC1: Principal component 1; PC2: Principal component 2; LASSO: 
Least absolute shrinkage and selection operator; RF: Random Forest; FOV: 
Field-of-view; RMSE: Root-mean-squared error; iPSC: Induced pluripotent stem 
cell.
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