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The class of semigroups satisfying the descending chain conditions on principal (left, right)
ideals has been studied by Green [2], Munn [4] and some other papers. In this paper, we shall
give a survey on the structure of the class of regular semigroups satisfying chain conditions.

Firstly, several kinds of both ascending chain conditions (a.c.c. for short) and descending
chain conditions (d.c.c. for short) on (left, right) ideals or on Green’s relations &, %, s are
introduced, and the regular semigroups with 0, each of which satisfies some of these chain
conditions, are studied. Secondly, the concepts of “£(#, or s)-bounded” and “locally
#(#, or £)-bounded” are also introduced, and the connection between these properties and
the chain conditions are discussed.

§0. Preliminary

Let S be a semigroup. Let &, #, ¢ be Green’s L-, R-, J-relations respectively,
and for any a of S, L,, R,, J, the #-class, %-class, #-class containing a. Further,
L(a), R(a), J(a) denote the principal left ideal, the principal right ideal and the principal
ideal generated by a respectively; thatis, L(a)=S'a, R(a)=aS?, J(a)=S'aS*, where §!
is the adjunction of an identity 1 to S.

The following results are well-known:

ResuLt 0.1. Let S be a semigroup, and I its ideal [left ideal, right ideal].
If InJ,#00nL,#0,InR,#0] then IoJ,[I>L,, IoR,]. Accordingly,I is a
union of g-classes [ L-classes, %-classes] of S.

ResuLT 0.2. Let S be a semigroup, and C,={J,;: e A}[Cox={L;: e A},
Cy={R;: AeA}] a collection of g-classes [L-classes, Z#-classes] of S. Then
I=u{J,: AeA}I=U{L,: Ae A}, I=U{R;: Ae A}] is an ideal [a left ideal, a right
ideal] of S if and only if the following (0.1) is satisfied:

(0.1) For any g-calss J [¥-class L, %-class R] with J<J,[L<L,, R<R;]V
for some Ae A, Je C [LeCg, ReCyl,

In particular, for principal (left, right) ideals

1) For the ordering <, see [3].
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J(a)= U {J: J is a g-class such that J<J,},
L(a)= U {L: L is an Z-class such that L<L,},
R(a)= U {R: R is an Z-class such that R<R,}.

It is well-known that d.c.c. and a.c.c. on ideals [left ideals, right ideals] are equi-
valent to the minimal condition and maximal condition on them respectively. In
particular, d.c.c. and a.c.c. on principal ideals [principal left ideals, principal right
ideals] are equivalent to d.c.c. and a.c.c. on #-classes [.#-classes, Z-classes] re-
spectively. That is,

ResuLt 0.3. Let T be one of J, L and R. _
a.c.c.: The following conditions (1), (2) are equivalent.

1)y If T(a)<=T(a)c - <T(a)=T(a; 1) - . then there exists m such that
T(am) T(am+1= """ ’
(2) If T, <T,,<--<T,<T,, < » then then there exists m such that T, =

d.c.c.: Thefollowing conditions (1), (2) are equivalnet.

(1) If T(a))>T(ay)>-oT(a)>T(a; 1) , then there exists m such that
T(an)=T(ap+1)="""" .

(2) If T,>T,>>T,>T,, > , then there exists m such that T, =

Let S be a semigroup. Let  be one of Green’s relations &, # and #. Let T
be a -class of S. A sequence of 7 -classes, Cy: T=T,>T;>--->T,, where ecah T,
is a J-class of S, is called a properly descending J -chain of T, or simply a proper

Z -chain of T. The number n is called the length of this chain, and denoted by n=

1(Cy). Put Sup {1(Cy): Cy is a proper I -chain of T}=r(T). This #(T) is called the
rank of T. If r(T)< oo for all 7 -classes T of S, then S is said to be locally F -bounded.
Further, if Sup {r(T): Tis a I -class of S}=n<oothen S is said to be 7 -bounded,
and n is called the J -dimension of S: dim, S=n.

From the definitions above, we have the following:

ResuLT 0.4. Let S be a semigroup, and 7 one of £, % and #. If S is locally
T -bounded, then S satisfies d.c.c. on T -classes. If S is T -bounded, then S satisfies
both d.c.c. and a.c.c. on T -classes.

§1. Regular semigroups satisfying d. c. c.

Hereafter, S will denote a non-trivial? regular semigroup with 0. It is easy to

2) If a semigroup S with O consists of a single element, that is, if S= {0}, then S is said to be
trivial.
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see that an [left, right] ideal of an ideal of S is an [left, right] ideal of S. Further,
we have the following:

LemMA 1.1. Let A be an ideal of S. For any ae A, the g-class [Z-class,
&-class] of S containing a coincides with the g-class [£-class, #-class] of A con-
taining a.

PrROOF. Let J, be the #-class of S containing a, and J; the #-class of 4 containing
a. Tt is obvious that J,cJ,. Conversely, let xeJ,. Then, there exist u, v, y and z
such that uxv=a and yaz=x. Hence, x € 4, (uxx*)x(x*xv)=a, (yaa*)a(a*az)=x,
uxx*, x*xv, yaa*, a*aze A for a* e V(a) and x* e V(x), where V(b) is the set of all
inverses of b. Hence, xeJ.. That is, J,=J,. For Z-classes and Z-rlasses, we
can easily prove the assertion in the same manner.

Let 7 be one of Green’s relations %, # and #. Let T be a J-class of S. If
there exists no 7 -class T, satisfying 0< T, <T, then T'is said to be O-minimal. Let
I be a non-trivial (that is, non-zero) [left, right] ideal of S. If there is no [left, right]
ideal I, satisfying 0% 1, &1, I is said to be 0-minimal.

The following results are easily obtained by §0 and [1]:

Lemma 1.2

(1) If S satisfies d.c.c. on Z-classes [#-classes, F-classes], then S contains at
least one O-minimal Z-class L [0-minimal #-class R, 0-minimal #-class J], and L°
(the adjunction of a zero element 0 to L) [R®, J°] is a O-minimal left ideal [0-minimal
right ideal, O-minimal ideal] of S. Accordingly, ae L [a€R, aeJ] implies L%=Sa
[R°=as, J°=SaS].

(2) For L[R®, J°T in (1), (L°)?=L° [(R%)?=R?, (J°)?=J°].

(3) Conversely, if I is a 0-minimal left ideal [0-minimal right ideal, O-minimal
ideal], then there exists a 0-minimal Z-class L [0-minimal R-class R, 0-minimal
F-class J] such that I=L°[I=R°, [=J°].

LEMMA 1.3. Assume that S contains at least one O-minival &-class [0-minimal
&-class, 0-minimal g-class]. Then, the union ;34 (S) of all O-minimal Z-classes
and 0 [the union ,¥,(S) of all 0-minimal R-classes and O, the union ;3 (S)
of all 0-minimal g-classes and 0] is an ideal of S.

The ideal ;3 (S)[, 21 (S), ;21 (S)] is called the (first) left socle [right socle,
F-socle] of S.

Lemuma 1.4. If S contains at least one O-minimal £-class, then 3, (S) is a
primitive regular semigroup with 0. Further, S contains both a 0-minimal #-class of
S and a 0-minimal g-class of S, and ;%4 (8)=,21(8)=;2(S5).

Proor. Hereafter, E(S) denotes the set of idempotents of S. Let e, f be elements
of ;3 (S) n E(S) such that ef=fe=f+#0. Since e€ ;¥ (S), there exists a 0-minimal
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Z-class L,. Since L, is a left ideal, f=fee LY. Hence, L,=L,, and accordingly Sf=
Se. Thatis, ef=e. Therefore, e=f. This implies that 3", (S) is a primitive regular
semigroup with 0. Accordingly, ;> (S) is a O-direct union of completely O-simple
semigroups {C,:yeTl'}; that is, ;3, (S)=2{C,:yeI'} (X means O-direct union).
Each C, is an ideal of ;3 (S), and accordingly an ideal of S since S is semisimple.
Hence, by Lemma 1.1 each #-class, #-class and _¢-class are also an #-class, #-class
and #Z-class of S respectively. It is obvious that each 2-class of C, is 0-minimal and
C\0¥» is a O-minimal _¢-class. Hence, ;2 ;(S)<=,X>;(S), ;2:(Sc 21 (S).
Similarly, we can prove that ,3,(S)c;>; (§). Thus, we have 3, (S)=,3, (S).
From the lemma above, if S has a 0-minimal #-class or a 0-minimal %-class then
121 (8)=,221(S). Therefore, hereafter we call it the (first) socle of S and denote it

by 221 (8).

THEOREM 1.5. If S satisfies d.c.c. on Z-classes or R-classes, then S contains a
0-minimal %-class, a O-minimal Z-class and a 0-minimal g-class, and ¥, (S)=

i 21 (8).

PrOOF. The first part is obvious. It follows from Lemma 1.4 that ,3, (S)=
r21(8)=2,(8)=;2,(S). Assume that S satisfies d.c.c. on L-classes. If ;3 (S)\
1221(S)2a, then J, is a 0-minimal #-class. Since S satisfies d.c.c. on #-classes,
there exists a minimal element L, in the set of #-classes contained in J,. If 0#£L,. <
L,, then Sx<=Sb, and hence L,cSxcSbcJS. By the minimality of L,, L.=L,.
Therefore, L, is a O-minimal #-class of S, and accordingly L= ;3 (S). Hence,
J,=J,=SbS<,3>; (S). Therefore, ae;>,(S). This contradicts our assumptlon

Thus, ;2 (S)=;2+(S).

Lemma 1.6. (1) If S has a O-minimal g-class, then ;3 (S) is a O-direct union
of 0-simple regular semigroups.
(2) If S satisfies d.c.c. on g-class, then S has a -Ominimal g-class.

Proor. The assertion (2) is obvious. Let {J,: yeI'} be the set of all 0-minimal
J-classes of S. ‘Then, it follows from Lemma 1.1 that J9 is a 0-minimal ideal. Now,
i21(8)=u{J9:yel}. Since JJP<JIn J§and JInJYis an ideal, for a5 f we have
J2nJ)=0, and accordingly JJ§=0. Therefore, jZl (S)=2{JS:yel'}. It is
obvious that each J9 is a 0-simple regular semigroup (see also [1]).

The following is obvious from Munn [4]:

Lemma 1.7. If S satisfies d.c.c. on Z-classes or R-classes, then S also satisfies
d.c.c. on g-class (see also, p. 36 of Ilof [1]).

Lemma 1.8. Let f be a homomorphism of S onto a regular semigroup A. If

3) If M, N are sets and M DN, then M\N means the set {x&M: x&N}.
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S satisfies d.c.c. on L-classes [#-classes, g-classes], then A also satisfies d.c.c. on
ZL-classes [#-classes, F-classes].

PrOOF. We deal with only #-classes. In the other cases, we can proceed a proof
in an analogous way. For any xe S, put xf=X. Consider an infinite chain of -
classes of 4:

L; >L; >L; > .

ay = -""ar=—-"-az3=

Since L;,>L;,, ,, there exists X € 4 such that ¥a,=a;, ;. Letxa;=b;;;. Then, b;, =
G;41, XA,=b;,q, and L, >L, . Similarly, it follows from Lg, >L;,,, that there

exists b;, , € S such that b;,,=a;,,, Ls,,,>Ls,,, and L, >L, .. Hence,

L;y>Ls,>Lg,>- ,and a;=b, for all i>1. Further, L, >Ly,,>Ly, > .

ay —

Since S satisfies d.c.c. on #-classes, there exists m such that L, =Ly, =--. Hence
L;, =Ly, , = Thatis, L; =L, , ="

As a special case of the result above, we have the following:

CoroLLARY. LetI beanideal of S. If S satisfies d.c.c. on £-classes [ #-classes,
F-classes], then the Rees factor semigroup S/I moudlo I satisfies d.c.c. on Z-classes
[%-classes, #-classes].

REMARK. An analogous assertion as was shown in Corollary above is also satisfied
for a.c.c.

Assume that S satisfies d.c.c. on Z-classes [#-classes]. As was shown above,
the socle 3, (S) is an ideal. Of course, X ; (S)=,2;(8)=,2,(8)=;2.(8). If
S#3,(S), S/T.(S)#0, and S/X, (S) is a non-trivial regular semigroup with 0 and
satisfies d.c.c. on P-classes [#-classes]. Hence, we can consider the socle
T1(S/Z1(S). Let T, (S/Z;(8)=23(5), and put X, (S)U {XZ (5\0} =2, (5).
Then, 3, (S) is an ideal of S and X, (S)/ X, (S) is a primitive regular semigroup with
0. Of course, 3, (S)/X;(S)=T%(S). This X, (S) is called the second socle of S.
Inductively, we can define the nth socle of S as follows: Assume that the (n—1)th
socle 3,_; (S)of S was defined and it is an ideal of S. Suppose that 3,_; (S)#5.
Then, S/3,-, (S) is a non-trivial regular semigroup with 0 and satisfies d.c.c. on
P-classes [ #-classes]. Hence, there exists the socle 2, (S/X,-1(8)=2%(S). Put
T o1 (DU {ZEGN0}=2,(S). Then, X, (S)is an ideal of S. This 3, (S) is called
the nth socle of S. Of course, X, (8)/>,.-1(S) is a primitive regular semigroup
and isomorphic to > ¥ (S).

There are two cases as follows:
Case 1. There exists m such that S=3,, (5).
Case 2. For any i, S#>;(S).
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>m(S)in Case 1,

Let Z(S)=[
TS ULU{ZH (S\0: i=2, 3, 4,...}] in Case 2.

Then, 3(S) is of course an ideal of S. Similarly, we define the nth #-socle of S as
follows: Assume that S satisfies d.c.c. on #-classes. By Lemma 1.6. there exists
the (first) #-socle ;3 (S), and ; 3, (S) is an ideal which is a 0-direct union of 0-simple
regular semigroups. If ; 37, (S)#S, then S/; 3, (S) is a non-trivial regular semigroup
with 0 and satisfies d.c.c. on #-classes. Therefore, there exists ;3 (S/ iz1(8)=
j25(S). This >3 (S) is a O-direct union of O-simple regular semigroups. Put
iz1 U {;ZEON0}=;2,(S). Then, ;3,(S) is an ideal of S, and ;3,(S)/
i21(8)=;25(S). This ;3,(S) is called the second g-socle of S. Assume that
we can define the (n—1)th g-cole ;3°,_ (S) which is an ideal of S. Suppose that
j2u-1(8)#S. Then, §/;3,-,(S) is a non-trivial regular semigroup with 0 and
satisfies d.c.c. on g-classes. Therefore, there exists ;3 (S/;2,-1(S)=;Z%(S).
This ;275 (S) is a O-direct union of O-simple regular semigroups. Put ;3,_, (S)U
L2ZEO\N0}=;2,(5). Then, ;2,(S) is an ideal of S and JZ,,(S)/ i2a-1(8S)=
j2m(8). This ;3,(S) is called the nth g-socle of S.
There are two cases as follows:

Case 1. There exists m such that ;3°,(S)=S.

Case 2. Forany i, ;3;(S)#S.

j2m(S)in Case 1,
21 ULU{ZEE\0: i=2, 3,...}] in Case 2.

Then, ;>(S) is an ideal of S. Further, it follows from Theorem 1.5 and the
definitions of 37;(S) and ;3°;(S) that if S satisfies d.c.c. on Z-classes [ %-classes] then
2i(8)=;2;(5). Hence, if 3;(S)#S for all i, then ;3; (S)#S for all i and 3(S)=
i 2.(5).

J

REMARK. Assume that S satisfies d.c.c. on Z-classes [#Z-classes]. Let 3, (S)=
i20(8={0}. Then, 3 ()E1 Z ()E XL O)E [ Zo(OFE; Z1(O)E; X2 (S +]
and 341 (S)/Zi(S)[; Zi+1(S)/;2:(S)] is a primitive regular semigroup with 0 [a
0O-direct union of O-simple regular semigroups] for all possible i >0.

Let ;22(8)=

LemMma 1.9.

(1) If S satisfies d.c.c. on Z-classes [ #-classes], then the rank of every £-class
[#-class] contained in the ith socle Y;(S) has at most i.

(2) If S satisfies d.c.c. on g-classes, then the rank of every g-class contained
in the ith g-socle ;Y;(S) is at most i.

Proor. (1) Let L, be an Z-class contained in 3;(S). Suppose that #(L,)>
i+1. Then, there exists a chain of .#-classes such that
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La>Li+l >Li>"‘ >L2>L1,

where each L; is an #-class.

Now, Ly > 1 (S), Lo 22 (S),., Liy 1 & 2i-1(S), L,z >;(S). This contradicts
our assumption. Hence, #(L,)<i.

The part (2) can be proved in the same manner.

Lemma 1.10. (1) Let S satisfy d.c.c. on ¥-classes or #-classes. If an £-class
L satisfies (L)<k then Lc} ,(S). Similarly, if an Z%-class R satisfies n(R)<k
then Rc 3, (S).

(2) Let S satisfy d.c.c. on g-classes. If a g-class J satisfies r(J)<k then
J ; 2KS).

Proor. Assume that an #-class L satisfies »(L)=i<k. Then, there exists a
chain of .#-classes such that

O0=L,<Ll,<--<L;<L, =L,

where each L; is an #-class of S. Further, for any j with 1< j<i there is no #-class
L’ such that L;<L'<L;,;. Now, L,=3;(S). Next, we show that, for j<i, L;c
2 j-1(S) implies L;, ;=3 ;(S). It is obvious that L;, & 3 ;_{(S) implies L;,,c
S/2;-1(S). Hence, L;, =2 ;_1(S)c2;(S) or Lj;=5/2;-1(S). In the latter
case, L; 4 isa O-minimalin S/2°;_ (S). If not: There exists an #-class L,=S/3;_,(S)
such that L,<L;,;. Since L,& X ;_;(5), there exists an Z-class L;< 2 %_; (§) such
that L;<L, Similarly, L;¢ > ;_,(S) implies that there exists an %-class
L ;= X% ,(S) such that L;_; <Lj. Continuing this process successively, we have
a chain of #-classes

0=L;<L)<--<Lj_ <Li<L,<Lj;;<--<Lj;;=L.

Hence, r(L)>i. This contradicts our assumption. Therefore, L;., is O-minimal
Z-class in S/ ;-4 (S), and accordingly L;,; = > ;(S). Hence, Lc 3 ;(S). The part
(2) can be proved in the same manner.

THeoreM 1.11.
(1) If S satisfies d.c.c. on Z-classes or &-classes, then
(i) for any Z-class L of S contained in Y ¥ (S), n(L)=1i, and
) Y=, O)ULU{Z¥(S\0:i=2,3,... (finite or infinite)}]
= U{L: L is an Z-class of S such that r(L)< oo}
= U{R: R is an Z-class of S such that r(R)<oo}.
(2) If S satisfies d.c.c. on g-classes, then
(i) for any g-class J of S contained in 3 ¥ (S), n(J)=i, and
i@ ;Z®)=;Z1ULU{;ZFO)N\0: i=2, 3,... (finite or infinite)}]
=U{J: Jis a g-class such that r(J)< o}.



30 Miyuki YAaMADA

Proor. Obvious from Lemmas 1.9 and .1.0.

Let S satisfy d.c.c. on Z-classes or %-classes. Then, it is easy to see that S is
locally #-bounded [locally #£-bounded] if and only if S=3'(S). Hence, in this case,
“locally #-bounded “and’’ locally #-bounded’’ are equivalent to each other. Hence,
in this case we simply say that S is locally bounded. Similarly, it is also easy to see
that for S satisfying d.c.c. on g-classes S is locally #-bounded if and only if S= ;3" (S).

Both >(S) and ;3 (S) above are ideals of S, and accordingly a regular subsemi-
groups with 0. Further, > (S) satisfies d.c.c. on #-classes [#-classes] and is locally
bounded, while ;>(S) satisfies d.c.c. on #-classes and is locally #-bounded. These
2(S) and ;3°(S) are called the locally bounded part of S and the locally gZ-bounded
part of S respectively. Conversely, it is also easy to see that if S is locally #-bounded
[locally #-bounded] then S satisfies d.c.c. on both #-classes and %-classes [ ¢Z-
classes]. Further, if S is locally #-bounded then S is also locally #-bounded, and
accordingly S is locally bounded.

THEOREM 1.12. Assume that S satisfies d.c.c. on Z-classes or Z-classes [ ¢-
classes]. Then, 3 (S)[;22(S)] is the greatest locally bounded [the greatest locally
Z-bounded] ideal of S.

ProoF. Every Z-class of S contained in Y .(S) coincides with an #-class of
>(S). Now,let L, be an Z-class of 3.(S). Then, L,is an #-class of S. Hence, there
exists > ;(S) such that 3 ;(S)cL, From Lemma 1.9, r(L,)<i. Therefore, ¥ (S)
is locally bounded. Next, let I be a locally bounded ideal of S. Let L, be an Z-class
of I. Then L, is also an #-class of S. Since r(L,)<oo in I, r(L,)<oo in S, too.
Hence, it follows from Theorem 1.11 that L,< 3°(S). Hence, I<= >(S). For ;3 (S),
we can prove the assertion in the same manner.

If S is #-bounded [£-bounded], then S satisfies d.c.c. on both .#-classes and
Z-calsses. Hence, S=3,,(S) for some m. Therefore, S is #-bounded [ .#-bounded].
Thus, “Z-bounded” is equivalent to “Z#-bounded’’. Hereafter, in this case we
simply say that S is bounded. Further, in this case S satisfies d.c.c. on _#-classes.
Hence, we can consider ;3 (S), and 3 (S)=2,,(S) (for some m)=;3,,(S)=2;(S).
Accordingly, if S is bounded then S is also #-bounded.

§2. Locally bounded regular semigroups with 0.

Firstly, we consider the following three conditions:
(2.1) For any a€ S, L(a) contains only a finite number of .#-classes whose ranks are
different.
(2.2) For any ae S, R(a) contains only a finite number of %-classes whose ranks
are different.
(2.3) For any aeS, J(a) contains only a finite number of _#-classes whose ranks
are different.
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Now,

THEOREM 2.1. If S satisfies d.c.c. on Z-classes or R-classes, then the following
(1)—~(4) are equivalent:

(1) S s locally bounded.

(2) S satisfies (2.1).

(3) S satisfies (2.2).

(4) S satisfies (2.3).

Proor. (1)=(2): Assume that S\U{X;(S): i=1, 2,... (finite or infinite)}# .

Let L, be one of minimal #-classes containedin S\ U {2;(S): i=1, 2,...}. Put L(a)\
L,=L[a]. Since L[a]30, L[a] is non-empty. Since L[a] contains only a finite
number of #-classes whose ranks are different, there exists a .#-class L, which has the
greatest rank in L[a]. Since LycL[a], L,<L, Hence, L,c U{X;(5):i=1,2,...}.
Therefore, there exists 3°;(S) such that L= Y (S) and L, & >";_4(S). Since L, has the
greatest rank in L[a], every %-class contained in L[a] is contained also in X ,(S).
Hence, L[a]lc3;(S). Now, L, is a O-minimal #-class of S/X;(S). Therefore,
L,=X;+1(S). This contradicts our assumption. Thus, S= > (S).
(2)=(1): Assume that S is locally bounded. Then, S=3(S). Let a be any element
of S. If a=0, L(a)={0}. Hence, L(a) contains only one Z-class 0. If a#0, then
there exists 3", (S) such that 3°,(S)2a and X,—,(S) ?a. Since L(a)<= Z,(S), the rank
of an #-class contained in L(a) is less than k+1. Therefore, L(a) contains only a
finite number of .Z-classes whose ranks are different.

(1)==(3) can be proved in the same manner.

()=>(4): Since S satisfies d.c.c. on Z-classes or £-classes, it follows from
Lemma 1.7 that S satisfies d.c.c. on #-classes. Therefore, we can easily prove by an
analogous way to the proof of (1)«>(2) that the condition (4) is equivalent to the
condition “S is locally #-bounded””. Now, suppose that S is locally bounded.
Then, S=3(S)=;>(S). Therefore, S is locally #-bounded, and accordingly S
satisfies (4). Conversely, suppose that S satisfies (4). Since S satisfies d.c.c. on #-
classes or #-classes, 2.(S)=;2.(S). On the other hand, the condition (4) implies that
S is locally #-bounded. Hence, S=;3.(S)=2(S). Thatis, S is locally bounded.

From the proof of Theorem 2.1, we have:

THEOREM 2.2. If S satisfies d.c.c. on g-classes, then S is locally #-bounded if
and only if S satisfies (3.3).

LemMa 2.3. If S satisfies d.c.c. on left ideals [right ideals] and satisfies the
following conditon (2.4), S is locally bounded:
(2.4) Forany a€S, a.c.c. is satisfied with respect to £-classes of S contained in L(a)
[%-classes of S contained in R(a)].

Proor. Assume that S satisfies d.c.c. on left ideals and the condition (2.4).
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It is clear that S satisfies d.c.c. on #-classes. Suppose that S\Y.(S)#[J. There
exists a minimal .#-class contained in 4=S\Y(S). Let L, be such an #-class. Then,
there exists a maximal #-class of S contained in L[a]=L(a)\L,. Let Q={L,: le A}
be the maximal .#-classes of S contained in L[a]. If the cardinality of 4 is infinite,
then there exist L,, (i=1, 2,...), ;4. Now, for any i>1, put 4;= U{L: L is an
Z-class such that L<L,}. Then, it follows from Result 0.2 that A4; is a left ideal
and A;cL[a]. Now, U{4;:i=1,2,..}2U{4;:i=2,3,..}2U{4;:i=3,4,..}2---.
This contradicts the assumption that S satisfies d.c.c. on left ideals. Hence, Q is a
finite set; that is, |Q|<oo. Let Q={L,:i=1,2,...,n}. Since L, cL[a]cL(a),
L, <L, Hence L, =3(S). Therefore, there exists 3 ; (S) such that 3, (S)>L,,
and 2;_,(S)?L,. Let m=Max{j:i=1,2,..,n}. Then, L, =3, (S) for all
i=1,2,...,n. If there exists an #-class L such that S\>,(S)=L and L<L,, then
LcLfa]. Hence, there exists L, such that L, <L, and accordingly L< X, (S).
This is a contradiction. Therefore, L, is a 0-minimal .#-class of S/3,,(S). Thus, we
have L,c 3 ,.,(S). This contradicts the fact that L,=S\>.(S). Hence, S=3(S),
that is, S is locally bounded. ‘
Similarly, we have the following:

LemMa 2.4. If S satisfies d.c.c. on ideals and if S satisfies the following (2.5), then
S is locally #-bounded:
(2.5) Foranyaof S, a.c.c. is satisfied with respect to ¢-classes of S contained in J(a).

Lemma 2.5. (1) If S satisfies d.c.c. on left ideals [right ideals], then each 3 ¥ (S)
is a 0-direct union of completely 0-simple semigroups {S;,: kel (finite set)}. Fur-
ther, every S;; consists of only a finite number of &-classes [ #-classes].

(2) If S satisfies d.c.c. on ideals, then each ;3 ¥ (S) is a O-direct union of only
a finite number of 0-simple regular semigroups.

ProoF. Obvious.

COROLLARY. (1) Assume that S satisfies d.c.c. on Z-classes or #-classes. If S
satisfies a.c.c. on left ideals [right ideals], then each X ¥ (S) contains only a finite
number of £-classes [#-classes]. _

(2) Assume that S satisfies d.c.c. on g-classes. If S satisfies a.c.c. on ideals,
then each ;3 ¥ (S) is a O-direct union of only a finite number of O-simple regular
semigroups. ‘

Proor. Obvious.

§3. Bounded regular semigroups with 0.

If § is #-bounded [%-bounded], then S satisfies d.c.c. on #-classes [#-classes].
Hence, X ,,(S)=S for some m. Accordingly, S is also £-bounded [#-bounded].
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Therefore, two concepts “.#-bounded’” and “#-bounded’ are equivalent to each
other; that is, in this case S is bounded. It is obvious that if S is bounded [ _#-bounded]
then S satisfies both a.c.c. and d.c.c. on both .#-classes and %-classes [ ¢-classes].
Further, it is also obvious that if S satisfies d.c.c. on #-classes or #-classes [ _#-classes]
and satisfies a.c.c. on ideals, then S is bounded [ _#-bounded].

TurEOREM 3.1. If S satisfies d.c.c. on left ideals [right ideals] and satisfies a.c.c.
on Z-classes [ #-classes], then S is bounded.

Proor. For any a€S, a.c.c. is satisfied with respect to #-classes contained in

L(a). Hence, it follows from Lemma 2.3 that S is locally bounded; that is, S= 3 (5).
Since S satisfies a.c.c. on Z-classes, there is at least one maximal #-class in S. Let
Q={L,: Ae A} be the set of all maximal ¥-classes L,. If [4|=co (where | | means
cardinality), then there exist L,, (i=1, 2,...), A,e A. Take a,, from each L,. Then,
U{l(a,):i=1,2,.}2 U{L(a,):i=2,3,..} 2 U{L(a,): i=3,4,..} 2 .
Hence, we obtain an infinite chain of different left ideals. This contradicts our as-
sumption. Therefore, A=m<oo. Then, @={L,, L,,,..., L, }. Since S=73(5),
for any i with 1<i<m,thereexists ., (S) such that L, <>, (S). Let k=Max {4;:
i=1,2,..,m}. Then, L, =X, (S) fo rall i. Accordingly, S=2,(S). That is, S is
bounded.

Similarly, we can easily obtain the following:

TueoreM 3.2. If S satisfies d.c.c. on ideals and a.c.c. on g-classes, then S is
F-bounded. '

Remark. If Sis bounded, S satisfies d.c.c. on Z-classes. Hence, 3 ; (S)=;2;(S)
for all possible i. Hence, S=3%,(S)=;>,(S) for some m. Thus, S is also -
bounded.

§4. Construction.

If S is a non-trivial bounded regular semigroup with 0 and if dim ¢ § = n (hence, also
dim , S=n), then

0=20 ()= X1 (= XS = Zir1 (S) == 2, (5)=5.

In this case, each 3%, (S)= X ;41 (5)/Z(S) is a 0-direct union of completely 0-simiple
semigroups. Hence, 3;,, (S) is an ideal extension of };(S) by the primitive regular
semigroup 3%, (S). Now,dimg 3, (S)=i+1landdimg > ;(S)=i. Hence, we can
say that every bounded regular semigroup B with dimg B=i+1 can be obtained by an
ideal extension of a bounded regular semigroup 4 with dimg A =i by a non-trival primi-
tive regular semigroup C with 0. However, every ideal extension D of 4 by C does not
necessarily satisfy dimg, D=i+1. Now, we have the following:
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Lemma 4.1. For any ae (X}, (S\0), there exists xe (T ¥ (S\0) U (Z¥(5)\0)
(where i>2) such that xae (X ¥.; (S)\0).

ProOF. Since L,= ¥ ;4 (S) and L,z X ;(S), there exists an #-class L, such that
L.cS\%;-1(S) and L,<L, Therefore, L, > (S)\>;_;(S) and L <L, There
exists y € S such that x=ya. Since xe X} (S), yae T (S)and y¢ 3;,_,(5). If ye
2i+1(S) then we can take y as x in the lemma. Suppose that y¢ 3,,,(S). Since
ya=ya(ya)*ya, where (ya)* € V(ya) (the set of inverses of ya), if we put z=ya(ya)*y
then zae X ¥ (S)\0 and ze X, ; (S\X;~; (S). Therefore, we can takezas x in the
lemma. Accordingly, in any cases this lemma holds.

Lemma 4.2. Let A be a bounded regular semigroup with 0, and C a non-trivial
primitive regular semigroup with 0. Assume that dimgz A=i>1. Then, if an ideal
extesion B of A by C satisfies the following condition, then B is a bounded regular
semigroup and dimg B=i+1. Further, 3;(B)=A.

(4.1) For any ae C\0, there exists x € (C\O) U (¥ (4)\0) such that xae T ¥ (A)\0.

ProoF. Itis obvious that B is a bounded regular semigroup with 0. We need only
to show thateach non-zero #-class of C is not a 0-minimal %-class of B/Y;_, (A).
Let L, be a non-zero #-class of C. There exists xe(C\0) U(Z#(4)\0) such that
xae 32 F(A\0. Then, xae 3§ (4) and L,<L, in B. Since B/Y;_,(4)>L,, (#0)
and L,,<L,, L, is not O-minimal in B/Y;_, (A).

Now, let us consider to construct all bounded regular semigroups with 0 by using
induction concerning .#-dimension.

If dimg S=1 then S is a primitive regular semigroup with 0 (hence, it is a O-direct
union of completely 0-simple semigroups). Therefore, in this case the construction of
such semigroups is obvious. Assume that we can construct all bounded regular
semigroups S of #-dimension i (where i>1). Let us consider the construction of all
bounded regular semigroups of .#-dimension i+1. Let A be a bounded regular
semigroup with 0 such that dimg A=1i, C a non-trivial primitive regular semigroup with
0. Let B be an ideal extension of 4 by C which satisfies (4.1). Then, by Lemmas 4.1
and 4.2 it follows that dimg, B=i+1. Further, every bounded regular semigroup of
Z-dimension i+ 1 can be obtained in this way. Therefore, we need only to determine
ideal extensions of A4 by C which satisfies (4.1).

Since a bounded regular semigroup with 0 is of course weakly reductive, by
slightly modifying Theorem 4.21 of [1] we obtain the following:

Let A be a bounded regular semigroup with 0. Let dimg, A=i>1. Let C be a
non-trivial primitive regular semigroup with 0. Denote the semigroups of left and
right translations of 4 by A4, A4 respectively.

THEOREM 4.3. Let ¢ be a ramification of C into A (see [1]), and let A—), and
A—p 4 be mappings of C*=C\0 into A and A respectively such that
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lxy if X,YeC* and XY#0,

(D) lxly=[ )
)’(X,Y)nﬁ l_f X, YEC* and XY=0,

where, for te A, A, is the inner left translation of A induced by t.

pxy if X,YeC*¥ and XY#0,

(1) pxpy= [ .
p(x’y)¢ lf‘ X, YG C* and XY= 0,

where, for t€ A, p, is the inner right translation of A induced by t.

(III) For any X € C*, Ax and py are linked.

(IV) For every Ye C*, there exists Z € C* such that ZY=0and (Z, Y)¢p € 2.} (4)\0; or
there exists ze 3§ (A\O such that zpy e 2§ (A)\0. 7

Then B=C* U A is a bounded regular semigroup of £-dimension i+1 by the multi-

plication o defined as follows:

XY if X,YeC* andXY=0,
(N1) XoY=
X,Y) if X,YeC*¥ and XY=0.

(N2) Yos=sdy if se€eA and YeC*

(N3) soY=spy if seA and YeC*

(N4) set=st if s,teA.

Further, every bounded regular semigroup of &-dimension i+1 can be constructed
in this way.

Proor. Obvious from the results above and Theorem 4.21 of [1].

RemMARKS. (1) For any given A, C, the existence of at least one triple of
mappings {X—1x, X— Py, ¢} satisfying (I)~(IV) above is easily verified. However,
omit its proof.

(2) For a bounded regular semigroup S, dimg S=dim, S. Further, dimg
3 (S)=dim, X;(S) for all i<dimg S. Hence, the theorem above is still holds, even
if (IV) is changed as follows:

(IV)* For every Ye C*, there exists Ze C* such that YZ=0 and (Y, Z)¢ € 2}(A)\0;
or there exists ze Y ¥ (4)\0 such that zAy € 2 ¥ (A)\0.

(3) For the construction of #-bounded regular semigroups, we can proceed an
analogous discussion by changing “bounded’” “a primitive regular semigroup with 0>
to “ #-bounded’’, “a O-direct union of O-simple regular semigroups’ respectively.
However, we omit here the discussion.
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