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As a discrete analogue to the results related to the biharmonic Green function P of a 

Riemannian manifold due to Sario et al., we discuss the existence and uniqueness of the 

discrete biharmonic Green function P of an infinite network. A discrete analogue to the 

normal derivative plays an important role in our study 

Imtrocluctiom 

On a regular subregion Q of a Riemannian manifold, there exist two biharmonic 

Green functions, to be denoted by P and y, with a biharmonic fundamental singularity, 

and with boundary data P = ap/an = O and y = Ay=0 (cf. [2]). A discrete analogue 

to the biharmonic Green function y was studied in [5]. In this paper, we shall discuss 

the existence and uniqueness of a discrete analogue to the biharmonic Green function 

p. Discrete analogues to the biharmonic fundamental singularity A 2p. = e. and the 

boudary data p. = O are easily formulated. The discrete analogue to the boundary 

data afi./en = O seems to be not easy as in [1] or [3]･ We replace this boundary data 

by the condition that a weak normal derivative of fi* vanishes on the boundary in S2 

and S3. For a finite subnetwork N' of a locally finite infinite network N, the existence 

and uniqueness of the biharmonic Green function P~' of N' with pole at a satisfying 

explicit boundary data will be shown in S2. The biharmonic Green function P. of N 

with pole at a ' will be studied in S3 related to the ideal boundary of N. For an ex-

haustion {N~} of N, the convergence of the sequence of the biharmonic Green functions 

p~" of N,, will be discussed in S4. 

S 1. Prelimimaries 

Let X be a countable set of nodes, Y be a countable set of arcs, K be the node-arc 

incidence function and r be a strictly positive function on Y. Assume that the quartet 

N = {X, Y, K, r} is an infinite network i. e., the graph {X, Y, K} is connected, Iocally 

finite and has no self-loop. For notation and terminology, we mainly follow [4] and [6] 

For a finite subnetwork N' = 

 of N, denote by nb(N') the subnetwork  of N defined by nb(X')= U {X(x); x eX'} and nb(Y')={y e Y; 
e(y) c nb(X')}, where e(y) = {x e X ; K(x, y) ~ O} (the set of end nodes of y) and X(x) = 
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U {e(y) ; K(x, y) ~ O} (the set of neighboring nodes of x). Let us put b(r) = nb (X') 

- r and b (r)=nb ( r)- r and regard the pair {b(X'), b(r)} as the boundary 
of N'. 

Let L(X) be the set of all real functions on X. For u e L(X), the Laplacian Au e 

L(X) of u is defined by 

Au(x) = - ~y=Y K(x, y)r(y)~1[~.=x K(z y)u(z)] 

A function u e L(X) is called harmonic or biharmonic on a set A ~according as Au(x) = O 

or A 2u(x) = A(Au)(x) = O on A respectively. 

For a finite subnetwork N' = 

 of N, the harmonic Green function g~ =9 ~' of N' with pole at a e X' is defined by 

(1.1) Ag~(x)=-e.(x) on X', 

(1.2) g~(x)=0 on X-X', 

where e*(x) = O if x ~ a and e~(a) = I . 

The existence and uniqueness of g~ was studied in [4] ･ Let {N~} be an 
exhaustion of N and let g(") be the harmonic Green function of N. with pole at a. 

Then we see that g(~) ~ g(~+1) and the limit g. of {9(~)} exists and does not depend on 

the choice of an exhaustion of N. We have either g* e L(X) or g~ = oo . In case g*=00, 

we say that N has no Green function and denote by OG the set of all infinite networks 

which have no Green function, In case g*eL(X), we call it the harmonic Green 

function of N with pole at a. We have Ag*(x) = - 8*(x) on X and g*(x) = g*(a) for 

every a, x e X. 

For // e L+(X), the (harmonic) Green potential G/1 of p is defined by 

G//(x) = ~.=x 9.(x)//(z) . 

We have either G/1 e L(X) or G// = co . Let us put M(G) = {// e L+(X) ; Gpt e L(X)} 

S 2. Biharmonic Green function p~' 

Let m be a strictly positive function on X. We call it a weight function. For 

u, v e L(X), the inner product ((u, v)) of u and v and the norm llull of u are defined by 

((u, v)) = ~*~x In(x)u(.x)v(x) and llull = [((u, u))]l/2 

if the sum is well-defined. Denote by L2(X ; m) the set of all u e L(X) with finite norm 

Note that L2(X ; m) is a Hilbert space with respect to the inner product ((u, v)) 

We give some examples of the weight functions. 

EXAMPLE 2.1. (1) m(x)=10n X. 
(2) m(x) = ~y=Y IK(x, y)Ir(y) on X. In this case, jlu 112=~y=Y r(y) ~*=x IK(x, y)1-

u(x)2. If lllll 

(3) m(x) = ~y=Y IK(x, y)Ir(y)~1 on X. In this case, Ilull2= ~y~Y r(y)~1 ~*=x IK(x, y)1-
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u(x)2. If 11111 

Let N' = 

 be a finite subnetwork of N and denote by H(N') the set of all a e L(X) which is harmonic on X' and satisfies the boundary condition : u(x) = O 

on X - nb(X'). Then H(N') is a closed subspace of L2(X ; m). 

In order to construct a discrete analogue to the biharmon.ic Green function P, 

we introduce a discrete analogue to the weak normal derivative in [2] . Let u e L(X) 

For any h e H(N'), ((h, Au)) is a continuous linear functional on H(N'). Thus there 

exists a unique eu e H(N') such that ((h, Au)) = ((h, au)) for all h e H(N') by Riesz's 

theorem. We call au the weak normal derivative of u on b(X') (with respect to the 

weight function m) 

LEMMA 2.1. The weak normal dertvative au of u on b(X') vanishes on b(X ) if 

and only if ((h, Au)) =0 for all h e H(N'). 

PRooF. Let au(x) = O on b(X'). Since au is harmonic on X', we see by the 
maximum principle (cf. [5 ; Lemma 1.1]) that au.(x) =0 on nb(X'), so that ((h, Au)) = 

((h, au)) =0 for all h e H(N'). On the other hand, assume that ((h., Au)) = O, for all 

h e H(N'). Since eu e H(N')~ we have ((eu, eu)) = O, so that au(x) = O on X 

Denote by W(N'; m) the orthogonal complement of H(N') in L2(X ; m), i.e., 

W(N' ; m) = {v e L2(X; m); ((h, v)) =0 for all h e H(N')} . 

Now we define the biharmonic Green function p~ = fi~' of N' with pole at a e X' by 

the following conditions 

(2.1) A2p~(x)=8.(x) on X' 

(2.2) Ap~ e W(N' ; m), i,e., ep~(x)=0 on b(X') , 

(2.3) p~(x)=0 on X-nb(X'). 

The uniqueness of p~ follows from the following lemma 

LEMMA 2.2. Assume that u eL(X) satisfies the conditions 

(2.4) A2u(x)=0 on X', 

(2.5) AueW(N'; m) , 

(2.6) u(x)=0 on X-nb(X'). 

Then u(x) =0 on X. 

PROoF. Define v e L(X) by v(x)=Au(x) for x e nb(X') and v(x)=0 for x e X -

nb(X'). Then Av(x)=0 on X' by (2.4), so that v e H(N'). We have llvll2=((v, Au)) =0 

by (2.5), and hence v(x) = O on X. Thus u is harmonic on nb(X'). It follows from (2.6) 
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and the maximum principle that u(x) = O on X. 

In order to prove the existence of p~, we consider the following extremum 

problem : 

(2.7) Find c(N'; a)=inf{Ilh-g~ll2; h e H(N')} , 

where g~ is the harmonic Green function of N' with pole at a 

We have by the standard projection theorem 

LEMMA 2.3. Problem (2.7) has a unique solution h' i.e., h~ eH(N') such, that 
", 

c(N'; a)=1lh~-9~112. Put k~=h~-9~. Then k~ is the projection of .-g~ onto 

W(N'; m) and 

(2.8) ((h, k~)) =0 for every h eH(N ) 

REMARK 2.1. We have c(N'; a)>0. In fact, if c(N'; a)=0, then k~=0 and 
9~ e H(N'). This is a contradiction. 

REMARK 2.2. It should be noted that k~ is not of constant sign. In fact, assume 

that k~ is non-negative (non-positive resp.) on X and let ~~ be the harmonic Green 

function of nb(N') with pole at z e b(X'). Since ~~>0 on nb(X') and ~~ e H(N'), 

(2 8) unplies that k' (x) O on nb(X') I e c(N' ; a) = O. This is a contradiction 

We give a simple example of p~ 

EXAMPLE 2.2. Let J be the set of all non-negative integers. Let us take X = 

{x.; n e J}, Y= {y.+1; n e J} and define K(x, y) by K(x~, y~+1)= ~ I and K(x~+1' 

y~+1)= I for n e J and K(x, y) = O for any other pair (x, y). For any positive f]Jnction 

r on Y, N = {X, Y, K, r} is a locally finite infinite network. Let X' = {xo' xl, x2} 

and Y' = {yl, y2}' Then N' = 

 is a finite subnetwork of N and b(X')= {x3} and b(Y')={y3}. We have 

H(N') = {h e L(X) ; h(x~) = h(xo) (1 ~ n ~ 3), h(x.) = O (n ~:4)} . 

Let a =xo and put r.=r(y~). Then g~(a) = rl+r2 + r3, g~(xl)=r2 + r3, g~(x2)=r3 

and g~(x~)=0 (n ~: 3). We see by Lemma 2.3 that k~(x~)=c-g~(x~) (n =0, 1, 2), 

k~(x3)=c and k' (x )=0 (n.>4) with a constant c It follows from (2.8) that c= 

" ,, -~~=0 m(x~)g~(x~)/ ~~=0 m(x,,). 

LEMMA 2.4. Let u e L(X). If u is harmonic on X', then ((u, k~)) =0. 

PRooF. Define h e L(X) by h(x)=u(x) for x e nb(X') and h(x)=0 for x e X-

nb(X'). Then h e H(N'). Since k~(x) =00n X - nb(X'), we have ((u, k~)) = ((h, k~)) = O 

by (2.8). 

We have 
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THEOREM 2.1. For every finite subnetwork N'=
 of N and a eX', the biharmonic Green function fi~=fi~' of N' with pole at a is given by 

(2.9) P~ (x)=-~.~~b(x')~~(x)k~(z), 

where ~~ is the harmonic Green function of nb(N') with pole at z e nb(X'). 

PRooF. Since ~~(x) = O for every x e X - nb(X'), condition (2.3) is fulfilled. We 

have 

A p~(x) = - ~.=~b(x') [A ~~(x)]k~(z) = k~(x) 

for every x e nb(X'). It follows from Lemma 2.3 that ((h, Ap~)) = ((h, k~)) =0 for 

every /'7 e H(N'), which shows condition (2.2). Since k~ = - 9~+h~ with h~ e H(N') 

and Ap~(x) = k~(x) on nb(X'), we have for x e X' 

A2p'(x) Ak(x) A( g +h )(x)=-Ag~(x)=e.(x). 

Namely condition (2.3) is fulfilled 

REMARK 2.3. Let ~~ be the harmonic Green function of nb(N') with pole at z e 

nb(X'). For any v e L(X), define the potential G'v e L(X) of v by 

G'v(x) = ~.~~b(x' ) ~~(x)v(z) 

Then H(N ) {G'v; v e L(X), v(x)=0 on X'} 

S 3. Biharmnonic Greem functiom P~ 

In the rest of this paper, we always assume that N has a harmohic Green function, 

i.e., N ~ OG. 

Let us put 

HL2(N; m) = {h e L2(X; m) ; h is harmomc on X} 

Then HL2(N ; m) is a closed subspace of L2(X ; m). Denote by W(N ; m) the 
orthogonal complement of HL2(N ; m) in L2(X ; m), i.e., 

W(N; m)= {u e L2(X; m); ((h, u)) =0 for all h eHL2(N; m)} . 

Let u e L(X) such that AueL2(X; m). For any h e HL2(N; m), ((h, Au)) is a 

continuous linear functional on HL2(N ; m). Thus there exists a unique au e 
HL2(N; m) such that ((h, Au)) = ((h, au)) for all h e HL2(N; m) by Riesz's theorem. 

We call au the weak normal derivative of u on the ideal boundary (with respect to 

the weight function m) 

We say that the weak normal derivative au of u on the ideal boundary vanishes 
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on the ideal boundary if A u e W(N ; m). 

We say that u e L(X) vanishes on the ideal boundary if it belongs to the following 

functional space 

P(G)={G//1~Gll2; pl' // eM(G) p (x)p (x) O on X} 

We define the biharmonic Green function P. = p~ of N with pole at a e X by the 

following conditions 

(3.1) A2p~(x)=e~(x) on X, 

(3.2) Ap.(x) e W(N; In) , 

(3.3) P~ e P(G). 

To prove the uniqueness of p~, it suffices to show the following lemma 

LEMMA 3.1. Assume thatu is biharmonic on X. IfueP(G) and Aue W(N; m), 
then u(x) = O on X. 

PRooF. Let u = G//1 ~ Gp2 With l/1' p2 e M(G) and pl(x)p2(x) = O on X. Then 

Au(x)=p2(x)-pl(x) on X. By our assumption, AueHL2(N; m). Since Aue 
W(N ; m), we have 

0= ((Au, Au)) = IIAull2= II//1 I12 + llll2112 , 

and hence //1(x) =p2(x) =0 on X. Thus u(x) = O on X 

Similarly to problem (2.7), we consider the following extremum problem 

(3.4) Find c(N; a)=inf{llh-g.I12; h eHL2(N; m)} , 

where g. is the harmonic Green function of N with pole at a 

REMARK 3.1. The value c(N ; a) of problem (3.4) is finite if and only if the norm 

ll9.ll of g. is finite 

By the standard projection theorem, we have 

LEMMA 3.2. If c(N; a) is finite, then there exists a unique optimal solution h. 

of problern (3.4), i.e., h~ eHL2(N; m) such that c(N; a)=1lh.-g*l]2. Put k*= 

h*-g*. Then k. is the projection of -g. onto W(N; m). 

COROLLARY I . Ak~(x) = 8*(x) on X. 

COROLLARY 2. Ifg. e W(N; m), then k~= -g. 

We have 

THEOREM 3.1. Assume that 
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(3.5) c(N;a)

(3.6) ~.~x 9*(z) Ik*(z)1

Then the biharmonic Green function P~ of N with pole at a is given by 

(3.7) P.(x) = - ~.=x 9*(z)ka(z) 

PRooF. By Harnack's principle [5 ; Lemma I .3] and by (3.6), P.(x) is well-

defined for all x e X. We have Ap.(x) = k.(x) e W(N ; m) by Lemma 3.2 and A2p.(x) = 

8.(x) on X. We see by (3.6) that P. e P(G). 

COROLLARY. If g. e W(N; m), then P*(x) = ~.=x 9*(z)g~(z), which rs equal to 

the discrete analogue to the biharmonic Green function y (cf. [5]). 

REMARK 3.2. If m(x) ~ m0>0 on X, then HL2(N; m) = {O} by [5 ; Theorem 1 I] 

If we further assume that ll9.ll 

LEMMA 3.3. Assume that the norm of g. is finite. Then c(N;a)=1l9~I12 if and 

only if k.= -g~. 

PRooF. It suffices to show the "only if" part. Assume that c(N; a) = Il9.ll2. 

Then we have by Lemma 3.2 

O ((h., k~)) = - ((h., g~)) + llh.ll2 

Ilk.Ii2= ((-g.+h., g +h )) Il9 11 Ilh ll2 

Since c(N ; a) = Ilk* I12, we have ll h. Il = O, and hence h.(x) = O on X 

We show that p* is not equal to the biharmonic Green function v in general 

EXAMPLE 3.1. Let N be the infinite network defined in Example 2.1. Assume 

that ~y~Y r(y) 

HL2(N ; m) consists only of constant functions. Since g*(x) ~ g*(a) on X, the norm 

-g*+((1, g*)). In case ~･*~x9~(x)of g. is finite. We see easily that k. = 

N ~ OQp (cf. [6]), p.(x) exists by Theorem 3.1 and 

p.(x) ~ ~.~x 9*(z)g.(z) - ((1, g.)) ~.~x 9*(z) . 

As for condition (3.5), we have 

THEOREM 3.2. Let a, b eX. Then c(N; a)

PROoF. By Harnack's principle [5 ; Lemma I .3], there exists a constant oc > O 

such that oc~1gb(x)~g*(x)~ocgb(x) on X. We have a~1jl9bil ~ ll9.II ~ocll9bll. Our 

assertion follows from Remark 3 . 1 

As for condition (3.6), we ~have 
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THEOREM 3.3. Assume that the norm ofg. is finite and that ~.=x m(z)~1g.(z)2 

co. Then condition (3.6) isfulfilled. 

PRooF. By Remark 3.1, Ilk~ll 

that ~.~x m(z)~1g*(z)2

[~.=x 9*(z)lk.(z)l]2~ [~.=x m(z) g (z) J [~.=x m(z)k (z) J 

S 4. Comvergemce of p(~) 

Let {N~}(N~ = 
) be an exhaustion of N. We are concerned with the convergence of the sequence {p(~)} of the biharmonic Green functions of N~ with 

pole at a. 

We have 

LEMMA 4.1. For anyfinlte subnetwork N =

 ofN and a e X', c(N'; a)~ 
c(N; a). 

PROOF. Let h e HL2(N; m) and put u = -g. + h. Define v e L(X) by v(x) = u(x) 

for x e nb(X') and v(x)=0 for x e X-nb(X'). Then h'=v+g~eH(N'), so that 
c(N' ; a) ~ Il vll2 ~ Ilu ll2. 

LEMMA 4.2. Assulne that c(N; a) is finite and let k("") be the optimal solution 

ofproblem (2.7) replacing N' by N.. Then llk(')-k.Il->0 as n~'co. 

PRooF. If n 

by Lemma 2.4, so that 

Ilk(~)-k(~)ll2= Ilk(~)I12 Ilk(~)f 2 

Since Ilk(~)I12~ c(N ; a) by Lemma 4.1, we see that {k(')} is a Cauchy sequence in the 

Hilbert space L2(X ; m). There exists v e L2(X; m) such that I[k(~)-vll ~,O as n->00 

Note that k(')(x) converges to v(x) for each x e X. Let g(~) be the harmonic Green 

function of N~ with pole at a. Since h(~)=k(~)+g(~) is harmonic on X~, we see that 

h*=v+g. is harmonic on X. Thus h*eHL2(N; m). Let h be any element of 
HL2(N; m). Then ((h, k(~))) =0 by Lemma 2.4, so that ((h, v)) =0, i,e., v e W(N; m) 

It follows from Lemma 3.2 that v= k*. 

We have 

THEOREM 4.1. Assurne that the norm ofg* isfinite and that ~.~x m(z)~1g (z) 

oo. Then {P(~)(x)} converges to P.(x)for each x e X. 

PRooF. The existence of p* follows from Theorems 3.1 and 3.3. For each x e X, 
let us define p(~) and p* by 
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p(')(z)=1n(z)~1~(~)(x) for z e nb(Xn) ' 

p(n)(z)=0 for z e X-nb(Xn) ' 

p*(z) = m(z)~1gz(x) for z e X, 

where 9(n) is the harmonic Green function of nb(N~) with pole at z e nb(Xn)' We 

see by Theorems 2.1 and 3.1 that p(n)(x) ((p(xn), k(n))) and p (x) ((px' k )) We 

have 

lp (x) p(')(x)1 

~ px~P(n)ll llk(~)ll + Ilp*ll llk(n)_kall 

Note that llpx 112 = ~.ex m(z)~1gx(z)2 is finite by our assumption and Harnack's prmci-

ple. By Lemmas 4.1 and 4.2, it suffices to show that llpx~P(n)II ->0 as n~'oo for each 

x e X. For any 8 > O, there exists nl such that x e X'=Xnl and 

~.ex-x' m(z)~1gz(x)2 

Since ~(n)(x) = ~(n)(z) for any z e nb(Xn) if n ~ nl and ~(n)(x) converges to g.(x), there 

exists n2 such that 

l9.(x)-~(~)(x)12

for all n~:n2 and z e X'. Let n ~max {nl, n2}' Since.o~~(n)(z) ~g.(z) on X, we have 

~.ex-x' m(z)~1 [9x(z) - ~j")(z)]2 ~ ~.ex-x' m(z)~1gx(z)2 

We have 
Il px ~ P(n) Il 2 

Therefore px~P(~)II ~'O as n->00 
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