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Discrete Biharmonic Green Function B
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As a discrete analogue to the results related to the biharmonic Green function 8 of a
Riemannian manifold due to Sario et al., we discuss the existence and uniqueness of the
discrete biharmonic Green function B of an infinite network. A discrete analogue to the
normal derivative plays an important role in our study.

Introduction

On a regular subregion Q of a Riemannian manifold, there exist two biharmonic
Green functions, to be denoted by f and y, with a biharmonic fundamental singularity,
and with boundary data f=0B/0n=0 and y=A4y=0 (cf. [2]). A discrete analogue
to the biharmonic Green function y was studied in [5]. In this paper, we shall discuss
the existence and uniqueness of a discrete analogue to the biharmonic Green function
B. Discrete analogues to the biharmonic fundamental singularity A2p,=¢, and the
boudary data B,=0 are easily formulated. The discrete analogue to the boundary
data 0B,/0n=0 seems to be not easy as in [1] or [3]. We replace this boundary data
by the condition that a weak normal derivative of f§, vanishes on the boundary in §2
and §3. For a finite subnetwork N’ of a locally finite infinite network N, the existence
and uniqueness of the biharmonic Green function pY" of N’ with pole at a satisfying
explicit boundary data will be shown in §2. The biharmonic Green function §, of N
with pole at a will be studied in §3 related to the ideal boundary of N. For an ex-
haustion {N,} of N, the convergence of the sequence of the biharmonic Green functions
B of N, will be discussed in §4.

§1. Preliminaries

Let X be a countable set of nodes, Y be a countable set of arcs, K be the node-arc
incidence function and r be a strictly positive function on Y. Assume that the quartet
N={X, Y, K, r} is an infinite network i. e., the graph {X, Y, K} is connected, locally
finite and has no self-loop. For notation and terminology, we mainly follow [4] and [6].

For a finite subnetwork N'=(X’, Y'> of N, denote by nb(N') the subnetwork
nb(X"), nb(Y")> of N defined by nb(X')=U{X(x); xe X'} and nb(YN={yeVY;
e(y)=nb(X")}, where e(y)={x e X; K(x, y)#0} (the set of end nodes of y) and X(x)=
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U {e(»); K(x, y)#0} (the set of neighboring nodes of x). Let us put b(X")=nb (X’)
— X and b (Y')=nb (Y')— Y’ and regard the pair {6(X’), b(Y’)} as the boundary
of N'. '

Let L(X) be the set of all real functions on X. For u e L(X), the Laplacian du e
L(X) of u is defined by

Au(x)= — Zyey K(x, () [ Zsex K(z, y)u(2)].

A function u € L(X) is called harmonic or biharmonic on a set 4 according as Au(x)=0
or 4%u(x)=A4(4u)(x)=0 on A respectively.

For a finite subnetwork N'=<X’, Y’ of N, the harmonic Green function g,=gV’
of N’ with pole at a € X' is defined by

(1.1) dgi(x)=—¢e/x) on X',
(1.2) gi(x)=0 on X-X/,

where ¢,(x)=0 if x#a and ¢, (a)=1.

The existence and uniqueness of g, was studied in [4]. Let {N,} be an
exhaustion of N and let g{» be the harmonic Green function of N, with pole at a.
Then we see that g& <g+1 and the limit g, of {g{™} exists and does not depend on
the choice of an exhaustion of N. We have either g,e L(X) or g,=00. Incaseg,= 00,
we say that N has no Green function and denote by Oy the set of all infinite networks
which have no Green function, In case g,e L(X), we call it the harmonic Green
function of N with pole at a. We have 4g,(x)= —¢,(x) on X and g,(x)=g,(a) for
every a, xe X.

For pe L*(X), the (harmonic) Green potential Gu of u is defined by

GM(X)= ZzeX gz(x)ﬂ(z) .
We have either Gue L(X) or Gu=o0. Let us put M(G)={ueL*(X); Gue L(X)}.

§2. Biharmonic Green function B

Let m be a strictly positive function on X. We call it a weight function. For
u, ve L(X), the inner product (u, v) of u and v and the norm |u| of u are defined by

(u, v) = Zsex m(x)u(x)o(x) and |lul=[(u, u)]*/?

if the sum is well-defined. Denote by L,(X; m) the set of all u € L(X) with finite norm.
Note that L,(X; m) is a Hilbert space with respect to the inner product (u, v).
We give some examples of the weight functions.

ExampLE 2.1. (1) m(x)=1on X.
2 m(x)=Zyey [K(x, )Ir(y) on X. In this case, [[ull?=2 ey "(¥) Zyex |K(x, Y)I-
u(x)®. If |1 < oo, then N Og.
(3) m(x)=2 ey IK(x, )Ir(y)™* on X. Inthis case, |u]2= X,y ")) Zyex [K(x, Y)I-
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u(x)2. 1If |1]| < oo, then N € Og.

Let N'=<(X’, Y') be a finite subnetwork of N and denote by H(N') the set of
all # e L(X) which is harmonic on X' and satisfies the boundary condition: u(x)=0
on X —nb(X’). Then H(N’) is a closed subspace of Ly(X; m).

In order to construct a discrete analogue to the biharmonic Green function S,
we introduce a discrete analogue to the weak normal derivative in [2]. Letue L(X).
For any he H(N'), (h, 4u) is a continuous linear functional on H(N’'). Thus there
exists a unique du € H(N') such that (h, Au) = (h, éu) for all he H(N') by Riesz’s
theorem. We call du the weak normal derivative of u on b(X') (with respect to the
weight function m).

LEmMA 2.1.  The weak normal derivative du of u on b(X') vanishes on X" if
and only if (h, 4u)=0 for all he H(N").

PrROOF. Let du(x)=0 on b(X’). Since du is harmonic on X', we see by the
maximum principle (cf. [5; Lemma 1.1]) that du(x)=0 on nb(X"), so that (h, du)=
(h, du)=0 for all he H(N'). On the other hand, assume that (h, 4u) =0, for all
he H(N'). Since ou e H(N'), we have (0u, ou) =0, so that du(x)=0 on X.

Denote by W(N’; m) the orthogonal complement of H(N') in L,(X; m), i.e.,

W(N’; m)={ve Ly(X; m); (h, v)=0 for all he H(N")}.

Now we define the biharmonic Green function ,=pY" of N’ with pole at ae X’ by
the following conditions:

2.1) 4% (x)=¢x) on X’

(2.2) AB,e W(N'; m), ie., 0B,(x)=0 on b(X"),

(2.3) Bux)=0 on X-—nb(X').
The uniqueness of , follows from the following lemma.
LEMMA 2.2. Assume that ue L(X) satisfies the conditions:

2.4) A*u(x)=0 on X,

(2.5) dueW(N'; m),

(2.6) ‘u(x)=0 on X—nb(X').

Then u(x)=0 on X.

PrOOF. Define ve L(X) by v(x)=Au(x) for xenb(X’) and v(x)=0 for xe X-
nb(X’). Then 4v(x)=0on X' by (2.4), so that ve H(N'). We have ||v]|2= (v, 4u)=0
by (2.5), and hence v(x)=0o0n X. Thusuis harmonic on nb(X’). It follows from (2.6)
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and the maximum principle that u(x)=0 on X.
In order to prove the existence of S, we consider the following extremum
problem:

(2.7) Find o(N'; a)=inf{|h—g"|2; he H(N")},

where g, is the harmonic Green function of N’ with pole at a.
We have by the standard projection theorem

Lemma 2.3.  Problem (2.7) has a unique solution hl, i.e., h!, e H(N') such that
o(N'; a)=Ilh;—gal* Put k,=h,—g,. Then k, is the projection of —g’ onto
W(N'; m) and

(2.8) (h, k,)=0 for every heH(N").

REMARK 2.1. We have ¢(N'; a)>0. In fact, if ¢(N’; a)=0, then k,=0 and
g,€H(N'). This is a contradiction.

REMARK 2.2. It should be noted that kJ is not of constant sign. In fact, assume
that k; is non-negative (non-positive resp.) on X and let §, be the harmonic Green
function of nb(N') with pole at ze b(X’). Since §.>0 on nb(X’) and g, e H(N"),
(2.8) implies that kj,(x)=0 on nb(X"), i.e., c(N’; a)=0. This is a contradiction.

We give a simple example of ..

ExAMPLE 2.2. Let J be the set of all non-negative integers. Let us take X =
{x,; ned}, Y={y,,,;neJ} and define K(x,y) by K(x,, y,+;)=—1 and K(%,,1,
Ya+1)=1for neJ and K(x, y)=0 for any other pair (x, y). For any positive function
ron Y, N={X, Y, K, r} is a locally finite infinite network. Let X’'={x,, x,, x,}
and Y'={y, y,}. Then N'=(X’, Y’} is a finite subnetwork of N and bh(X')=
{x3} and b(Y")={y;}. We have

H(N")={he L(X); h(x,)=h(x,) (1<n<3), h(x,)=0 (n>4)}.

Let a=x, and put r,=7(y,). Then gy(a)=r+r,+7s, gu(x))=r+7rs gi(xs)=rs
and gu(x,)=0 (n>3). We see by Lemma 2.3 that kj(x,)=c—g.(x,) (n=0, 1, 2),
ka(x3)=c and ki(x,)=0 (n>4) with a constant c¢. It follows from (2.8) that c=
2r=0 M(X,)g5(x)] Zi=0 M(x,).

LemMaA 2.4. Let ue L(X). If u is harmonic on X', then (u, k,)=0.

Proor. Define he L(X) by h(x)=u(x) for xenb(X’) and h(x)=0 for xe X —
nb(X'). Then he H(N'). Since kj(x)=0on X —nb(X"), we have (u, k) =(h, k,)=0
by (2.8).

We have
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TuroreM 2.1. For every finite subnetwork N'=<{X', Y'Y of N and aeX/,
the biharmonic Green function B,=pBY of N' with pole at a is given by

(2.9) Bl (%)== Zzenvx Fx(¥)ka(2),
where §., is the harmonic Green function of nb(N") with pole at z € nb(X").

PrROOF. Since §.(x)=0 for every x € X —nb(X’), condition (2.3) is fulfilled. We

have
ABYX) = — Zcennxry [4F2(¥)]K(2) = Ka(x)
for every xenb(X’). It follows from Lemma 2.3 that (h, 4B.)=(h, k;)=0 for
every he H(N'), which shows condition (2.2). Since k,=—g,+h; with h,e HN")
and Ap.(x)=k,(x) on nb(X"), we have for xe X'
A2B(x) = Ak (x) = A(— g4+ h)(x) = — Ago(x) =e,x).

Namely condition (2.3) is fulfilled.

REMARK 2.3. Let §’ be the harmonic Green function of nb(N’) with pole at ze
nb(X'). For any ve L(X), define the potential G've L(X) of v by

G'v(x) =2 senb(X") F(om(z2)-
Then H(N)={G"v; ve L(X), »(x)=0 on X'}.

§3. Biharmonic Green function 57

In the rest of this paper, we always assume that N has a harmonic Green function,
ie., N¢ Og.

Let us put

HL,(N; m)={heL,(X; m); his harmonic on X}.

Then HL,(N; m) is a closed subspace of L,(X;m). Denote by W(N;m) the
orthogonal complement of HL,(N; m) in Ly(X; m), i.e.,

W(N; m)={u € Ly(X; m); (h, u)=0 for all he HL,(N; m)}.

Let ueL(X) such that dueL,(X; m). For any he HL,(N; m), (h, 4u) is a
continuous linear functional on HL,(N;m). Thus there exists a unique OJue
HL,(N; m) such that (h, 4u)=(h, ou) for all he HL,(N; m) by Riesz’s theorem.
We call du the weak normal derivative of u on the ideal boundary (with respect to
the weight function m).

We say that the weak normal derivative Ju of u on the ideal boundary vanishes
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on the ideal boundary if due W(N; m).
We say that u € L(X) vanishes on the ideal boundary if it belongs to the following
functional space

P(G)={Guy — Gp; py, py € M(G), py(x)p(x)=0 on X}.

We define the biharmonic Green function f,=pY of N with pole at ae X by the
following conditions:

(3.1) 4?,(x)=¢ x) on X,
(3.2) AB(x)e W(N; m),
(3.3) B,eP@G).
To prove the uniqueness of f,, it suffices to show the following lemrr-la:

LemMA 3.1.  Assume that u is biharmonic on X. Ifu € P(G) and Aue W(N ; m),
then u(x)=0 on X.

Proor. Let u=Gu; —Gpu, with u,, p, € M(G) and H1(X)ux(x)=0 on X. Then
du(x)=p,(x)—py(x) on X. By our assumption, due HL,(N; m). Since Aue
W(N; m), we have

0=(du, du)=|ldu)2=llp, ]+ lu, 2,

and hence u,(x)=p,(x)=0 on X. Thus u(x)=0 on X.
Similarly to problem (2.7), we consider the following extremum problem :

(34) Find c(N; a)=inf{|h—g,|?; he HL,(N; m)},
where g, is the harmonic Green function of N with pole at a.

REMARK 3.1. The value ¢(N; a) of problem (3.4) is finite if and only if the norm
llg.ll of g, is finite.
By the standard projection theorem, we have

Lemma 3.2. If o(N; a) is finite, then there exists a unique optimal solution h,
of problem (3.4), i.e., h,e HL,(N; m) such that c(N; a)=||ha—ga||2. Put k,=
h,—g, Then k, is the projection of —g, onto W(N; m).

COROLLARY 1. Ak (x)=¢,(x) on X.

CoroLLARY 2. If g,e W(N; m), then k,= — G
We have

THEOREM 3.1.  Assume that
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(3.5) ¢(N;a)<co,
(3.6) X ,x9:(2) k()| <0 for some xeX.

Then the biharmonic Green function B, of N with pole at a is given by

(3'7) ﬁa(x) == ZZGX gx(Z)kd(z) .

Proor. By Harnack’s principle [5; Lemma 1.3] and by (3.6), B(x) is well-
defined for all xe X. We have 48,(x)=k,(x) e W(N; m) by Lemma 3.2 and 42f,(x)=
g,(x) on X. We see by (3.6) that B, P(G).

COROLLARY. If g, W(N; m), then B(x)=2.cx 9(2)94(2), which is equal to
the discrete analogue to the biharmonic Green function y (cf. [5]).

REMARK 3.2. If m(x)>mo>0 on X, then HL,(N; m)={0} by [5; Theorem 1.1].
If we further assume that ||g,|| < oo, then g,€ W(N; m).

LeMMA 3.3. Assume that the norm of g, is finite. Then c(N; a)=|g,l? if and
only l:fka= —Ya

Proor. It suffices to show the “only if”” part. Assume that c¢(N; a)=|g,l>
Then we have by Lemma 3.2

0= ((ha’ ka)) == ((hm ga)) + " hanz >
IKkall2=(—ga+has —gatha) =1gall>—[1hall*-

Since ¢(N; a)= | k,||?, we have |h,| =0, and hence h,(x)=0 on X.
We show that B, is not equal to the biharmonic Green function y in general.

ExaMPLE 3.1. Let N be the infinite network defined in Example 2.1.  Assume
that ¥,y r(y)<oo and X ,x m(x)=1. Let a=xo. Then g,(x,)= X 5=+1 7(y;) and
HL,(N; m) consists only of constant functions. Since g (x)<g.(a) on X, the norm
of g, is finite. We see easily that k,=—g,+(1,g,). In case S vex da(X)< 00, ie.,
N ¢ Ogp (cf. [6]), B(x) exists by Theorem 3.1 and

ﬂa(x)= ZzeX gx(z)ga(z) - ((19 ga)) ZZEX gx(Z) .
As for condition (3.5), we have
THEOREM 3.2. Leta,beX. Then c(N; a)<oo if and only if ¢(N; b)<oo.

Proor. By Harnack’s principle [5; Lemma 1.3], there exists a constant a>0
such that o~lg,(x)<g (x)<ogy(x) on X. We have o '|g,|<llgal <elgsll. Our
assertion follows from Remark 3.1.

As for condition (3.6), we have
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THEOREM 3.3.  Assume that the norm of g, is finite and that ¥ .., m(z)~1g,(2)* <
0. Then condition (3.6) is fulfilled.

Proor. By Remark 3.1, [|k,[| <oo. Let xeX. We see by Harnack’s principle
that 3,y m(z)71g(2)?< oo (cf. the proof of Theorem 3.2). We have

[ZZEX gx(z)lka(z)l]z < [ZZEX m(z)‘lgx(z)z] [ZZEX m(z)ka(z)z] <00.

§4. Convergence of SV

Let {N,}(N,=<X,, Y,») be an exhaustion of N. We are concerned with the
convergence of the sequence {f{"} of the biharmonic Green functions of N, with
pole at a.

We have

LemMA 4.1, For any finite subnetwork N'=<{X', Y'Y of N and ae X', ¢«(N'; a) <
¢(N; a).

PrOOF. Let he HL,(N; m) and put u= —g,+h. Define ve L(X) by v(x)=u(x)
for xenb(X’) and v(x)=0 for xe X —nb(X'). Then h'=v+g,eH(N'), so that
N5 a)<[Jol2 < JJul2.

LemMA 4.2,  Assume that c(N; a) is finite and let k™ be the optimal solution
of problem (2.7) replacing N’ by N,. Then ||k{" —k,|—0 as n— .

ProoF. If n<m, then k{»—k{ is harmonic on X, and (k{® —k{™, k() =0
by Lemma 2.4, so that

kG = kgm |12 = [| kG |12~ || §12.

Since ||k{||2< ¢(N; a) by Lemma 4.1, we see that {k{} is a Cauchy sequence in the
Hilbert space L,(X; m). There exists ve L,(X; m) such that ||k —p||—0 as n—oco.
Note that k{(x) converges to v(x) for each xe X. Let g% be the harmonic Green
function of N, with pole at a. Since h{» =k{ + g{» is harmonic on X,, we see that
h*=v+g, is harmonic on X. Thus h*e HL,(N; m). Let h be any element of
HLy(N; m). Then (h, ki) =0 by Lemma 2.4, so that (h, v) =0, i.e., ve W(N; m).
It follows from Lemma 3.2 that v=k,.
We have

THEOREM 4.1. Assume that the norm of g, is finite and that Y. ,.x m(z)"1g,(z)?<
00. Then {BM(x)} converges to B(x) for each x e X.

Proor. The existence of f, follows from Theorems 3.1 and 3.3. For each x € X,
let us define p{» and p, by
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pi(2)=m(z)"1§(x)  for zenb(X,),
p(z)=0 for zeX—nb(X,),
p(2)=m(z)"1g.(x) for zeX,

where §( is the harmonic Green function of nb(N,) with pole at zenb(X,). We
see by Theorems 2.1 and 3.1 that B(x)=—(p{, ki) and B (x)=—(ps k). We
have

1B =B < (P — P, k&) + (P K = Ka)
<Npe= P 1K + 1l psll 1K = K

Note that ||p.)|2= 2 .ex m(z)~1g,(2)? is finite by our assumption and Harnack’s princi-
ple. By Lemmas 4.1 and 4.2, it suffices to show that | p,— p®| -0 as n—oo for each
xeX. For any &>0, there exists n; such that xe X' =X, and

ZzeX—X’ m(z)_lgz(x)z < 8/3

Since §{M(x)=§{(z) for any z e nb(X,) if n>n; and GM(x) converges to g,(x), there
exists n, such that

lg.()— G ()2 <e/3t with t=3 5 m(z)™!
foralln>n,and ze X’. Letn>max {n, n,}. Since0< G(2) < g.(z) on X, we have
T exox M(2) 1 g(2) — G (2) 12 < Toex—x m(2) 71 g:(2)* <&/3.
We have
15— P12 < ey M(2)~1Lg:0x) — GE(x)]7 +&/3

< T.ex m(2) 1 g:(2)— GI(2)1>+¢/3

< T oex (D) [g(2) — G(2)]7 +2¢/3

<[ ,ex m(2)~1]e/3t+2¢[3=¢.

Therefore || p,— pi||—0 as n— 0.
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