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ABSTRACT. For a continuous and positive function w (A), A > 0 and u a positive
measure on (0, 00) we consider the following integral transform

Dwo) ()= [ w4 du ),

where the integral is assumed to exist for all T' a positive operator on a complex
Hilbert space H.

Let A > 0 and assume that there exist positive numbers d > ¢ > 0 such that
d> B — A >c¢>0, then, we show that,

D (w, ) (A) =D (w, ) (B) > 2 [P (w, 1) (|A]]) = P (w, p) (d + [[A])] = 0.

As a consequence we derive that

DAl f(ByB-l>E (f(llAll) _fld+ A|)> >0,
POAT=TE =20\ T~ “awan ) =
if f is operator monotone on [0, 00) with f (0) =0 and

FA)AT2 = f(B)B™> ~ fL(0) (A7 = BTY)
FAIAD — fd+ Al cf} (0)

JAIZ @+ A 1Al@+ (1Al

provided that f is operator convex on [0,00) with f(0) = 0. Some examples of
interest are also given.

¢
—d

1. INTRODUCTION

Consider a complex Hilbert space (H, (-,-)). An operator T is said to be positive
(denoted by T' > 0) if (T'z,z) > 0 for all x € H and also an operator 7' is said to
be strictly positive (denoted by T > 0) if T is positive and invertible. A real valued
continuous function f on (0,00) is said to be operator monotone if f(A) > f(B)
holds for any A > B > 0.
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54 S. S. DRAGOMIR

We have the following representation of operator monotone functions [6], see for
instance [1, p. 144-145]:

Theorem 1. A function f : [0,00) — R is operator monotone in [0,00) if and
only if it has the representation

tA

(L1) = s b [,

where b > 0 and a positive measure j1 on [0,00) such that

(1.2) /OOO H%du (A) < 0.

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(0C) f(A=XN)A+AB) < (2)(1-A) f(A)+Af(B)

in the operator order, for all A € [0, 1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

We have the following representation of operator convex functions [1, p. 147]:

Theorem 2. A function f : [0,00) = R is operator convex in [0, 00) with f’ (0) €
R if and only if it has the representation

)
t+ A

(1.3) f(t):f(0>+f’+(0)t+ct2+/ooo an ().

where ¢ > 0 and a positive measure i on [0,00) such that (1.2) holds.

Let A and B be strictly positive operators on a Hilbert space H such that
B—A > m > 0. In 2015, [4], T. Furuta obtained the following result for any
non-constant operator monotone function f on [0, co)

(1.4) f(B) = f(A) = f(Al +m) = (Al
> £(1BI) = £ (1Bl = m) > 0.

If B> A>0, then

v

1
. B)—f(A Al + —m | — A

> fdBl) - f <HBH - m> > 0.

The inequality between the first and third term in (1.5) was obtained earlier by
H. Zuo and G. Duan in [8].
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By taking f (t) =", r € (0,1] in (1.5) Furuta obtained the following refinement
of the celebrated Lowner-Heinz inequality [5]

, 1 '
> [|BII" - (HBH - W) >0
provided B > A > 0.

With the same assumptions for A and B, we have the logarithmic inequality [4]

1
1.7 InB—InA>In{||A —— | —In(||A

zln(HB!D—ln(“B” (B 1A ||>

Notice that the inequalities between the first and third terms in (1.6) and (1.7)
were obtained earlier by M. S. Moslehian and H. Najafi in [7].

For a continuous and positive function w (A), A > 0 and p a positive measure
on (0,00) we consider the following integral transform

D (w, 1) (T) := / Tw) T du (),

where the integral is assumed to exist for T" a positive operator on a complex Hilbert
space H.
Motivated by the above results, in this paper we show that

D (w,p) (A) =D (w,p) (B) 2 2[17 (w, ) ([[A[]) = D (w, ) (d + [[A)] = 0

where A > 0 and provided that there exist positive numbers d > ¢ > 0 such that
d> B — A >c¢>0.As a consequence, we derive the following alternative lower
bound to the one provided by Furuta’s result in (1.4),

FOAD 7+ IA])
Al drA] ) =0

At pmet = (
if f is operator monotone on [0, 00) with f (0) = 0 and

FAA—f(B)B2—f,(0) (A =B
FUAD  fd+ HAH)] _efL0)
JAIP @+ [AD* ] AN @+ (Al

>0

provided that f is operator convex on [0,00) with f(0) = 0. Some examples of
interest are also given.
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2. PRELIMINARY FACTS

We have the following integral representation for the power function when ¢ > 0,
r € (0,1], see for instance [1, p. 145]
00 )\rfl

(2.1) g S0 (W)t/ d\.

T A+t

Observe that for t > 0, t # 1, we have

/“ d\ _Int . 1 n u—+t
o A+FHA+1) t—1 1—t \u+l
for all v > 0.

By taking the limit over © — oo in this equality, we derive

Int / o d\
t—1  Jo A+t)(A+1)
which gives the representation for the logarithm

0 d\
(2.2) lnt:(t—l)/o S

for all ¢t > 0.
Motivated by these representations, we introduce, for a continuous and positive
function w (), A > 0, the following integral transform

(2.3) D@wﬂw:AwwW

A+t
where p is a positive measure on (0, 00) and the integral (2.3) exists for all ¢ > 0.
For p the Lebesgue usual measure, we put

(2.4) D (w) (1) = /0 N ;”Lﬁzdx, £ 0.

dp(A), t >0,

Now, assume that 7" > 0, then by the continuous functional calculus for selfad-
joint operators, we can define the positive operator

(2.5) D) (T)i= [0 (1) (),

where w and p are as above. Also, when p is the usual Lebesgue measure, then
(2.6) D (w) (T) := /0 T (A) (A4 T) 7 d),

for T'> 0.

If we take p to be the usual Lebesgue measure and the kernel w, (\) = A%,
r € (0,1], then

(2.7) = D (w,) (), t > 0.
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We define the upper incomplete Gamma function as [9]

I'(a,z) := / t*te~tdt,
which for z = 0 gives Gamma function
['(a) ::/ t*te~tdt for Rea > 0.
0

We have the integral representation [10]
a,—z o t—a —t
2% / e
'l—a)/, z+t
for Rea < 1 and |phz| < 7.

Now, we consider the weight w.—a.— (\) := A" % for A > 0. Then by (2.8) we
have

(2.9) D (wop—) (t) = /0

fora<1andt>0.
For a = 0 in (2.9) we get

(2.8) ['(a,z) =

o) /\—ae—)\
t+ A

d\=T(1 —a)t “e'T(a,t)

o8] -
(2.10) D (w, ) (t) = /0 S = T((0,0) = ¢ B (1)
for t > 0, where
(2.11) By (t) = / ° du.
t u

Let a = 1 — n, with n a natural number with n > 0, then by (2.9) we have

[es) )\nfle—A

(2.12) D (wan-1e—) (t) = /0 T
= (n— D" e T(1 —n,t).

d\ =T(n)t" 'e'T(1 —n,t)

If we define the generalized exponential integral [11] by

oo ,—t

E,(2) =2""T(1 —p,2) = Zpl/ et—pdt

then
"1 —n,t) = E, (1)
forn>1and t > 0.
Using the identity [11, Eq 8.19.7], for n > 2

(="

E,(z) =
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we get
(2.13) D (wn1e-) (1)
=(n—1)'E,(t)
=(n— 1)!et iEl (t) + 5 (n—Fk—2)! (—t)k
(n—1)! (n—1)! &

3
N

(=1)" (n — k= 2)1t* + (=1)" "Lt By (1)

forn>2and t > 0.
If T'> 0, then we have

e
i

(2.14) D (w-ap) (T) = /0 Tt (0 AN = (1 — )T exp (T) T(a, T)

for a < 1.
In particular,

(2.15) D (w, ) (T) = /Ooo e (T + N dh = exp (T) By (T)

and, for n > 2
(2.16) D (wn-1.-) (T)

AT (T + A) A

I
T o—

[\

(=1)" (n — k= 2)!IT* + (=1)" ' T Lexp (T) By (T),

e
Il

where T > 0.
For n = 2, we also get

(2.17) D (w,)(T) = /OOO Ae ™ (T +N)""d\ =1 —Texp (T) Ey (T)

for T' > 0.
We consider the weight w1 (A) = /\+ra for A > 0 and a > 0. Then, by simple
calculations, we get

1 _lnt—lna

(2.18) D (W) () = /OOO 0 0T T o

for all @ > 0 and ¢t > 0 with ¢t # a.
From this, we get

Int=Ina+ (t—a)D <w(_+a)—1> (t)

for all t, a > 0.
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If T"> 0, then

(2.19) InT =Ina+ (T —a)D (w(,+a)_1) ()
=Ina+ (T — A+T) " dA.
na+(T=a) [ om0
Let a > 0. Assume that either 0 < 7' < a or T' > a, then by (2.19) we get

(2.20) (InT —Ina) (T —a)" = /OO =

A+T)"Hd
TR

We can also consider the weight w2, ,2)-1 (A) =

Then, by simple calculations, we get

_)\Q#Wfor)\>0anda>0.

D () 0= [ o

(/\2 —l—aQ)d)\
mt Int—1Ina
- 2 (12 +a2) 2+ a2
fort > 0 and a > 0.

For a = 1 we also have

() 0= | O+ D) %)\2 T T R

2+1) £2+1

for t > 0.

If T>0and a >0, then
(2.21) 5T (T 4+a%) " = (T —lna) (T* + )
a
= —— A+T) " dA

/0 ()\2 +CL2) ( )

and, in particular,

(2.22) gT (T2 +1)" = (T +1) ' InT = /Ooo ) (A+T)""dA.

In the following, whenever we write D (w, ) we mean that the integral from
(2.3) exists and is finite for all ¢ > 0.
Lemma 1. For all A, B > 0 we have the representation

(2:23) D (w, 1) (4) = D (w, 1) (B)

x w (A)dp (N) .
Proof. Observe that, for all A, B > 0

(2.24) D (w, ) (B) = D (w, 1) (A) = / Tw [0 B = (A du ().

/ooo (/01 A+sB+(1—-s)A) (B-A) (A +sB+(1 _S)A)_lds)
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Let T, S > 0. The function f (t) = —t~! is operator monotone on (0, 0c), operator
Gateaux differentiable and the Gateaux derivative is given by

(2.25) U (8) = tim | LEHEN = SO s g

t—0 t

for T, S > 0.

Consider the continuous function f defined on an interval I for which the cor-
responding operator function is Gateaux differentiable on the segment [C, D] :
{(1=t)C+tD, te€]0,1]} for C, D selfadjoint operators with spectra in I. We
consider the auxiliary function defined on [0, 1] by

fC,D(t) :f((l_t)c+tD)7 te [071]
Then we have, by the properties of the Bochner integral, that

(2.26) f(D)—=f(C)= /o % (fep (1)) dt = /0 V fa-nc+ip (D—C)dt.

If we write this equality for the function f(¢) = —t~! and C, D > 0, then we get
the representation

(227) C*t-D!= /1 (1—t)C+tD) " (D—-C)((1—1t)C +tD)" " dt.

Now, if we take in (2.27) C =X+ B, D = A + A, then
(2.28) A+B) ' —(+4)7"
:/01((1 —t)(A+B)+t(A+A)" (A-DB)
X (1=t)(A+B)+t(A+A) " dt
:/01 A+ (1—8)B+1A) (A= B) A+ (1 —1) B +14) " dt
and by (2.24) we derive
D (w,p) (A) =D (w, p) (B)

:/oo (/1()\+(1_t>B+tA)_1(B—A)(>\+(1—t)B+tA)—1dt>
xw(A)dp (),

which, by the change of variable t = 1 — s, gives (2.23). 1
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Remark 1. By making use of the examples provided above, we can infer the fol-
lowing identities for A, B > 0,
(229) At - p!

_sin(rm) /°° =
==/

« (/0 (A sB+(1—8) A (B A)(A+sB+(1—s5) A ds)d)\,

and
(2.30) I'(1—a)[A "exp(A)T(a,A) — B *exp (B)I'(a, B)]
= /OO A%
X (/1 A+ sB+(1—s)A)"(B—-A) ()\+sB+(1—s)A)1ds) d,
fora < 1.
In particular,
(2.31)

exp (A) By (A) — exp (B) E1 (B)

o0
—_= / €_>\
0

y (/1()\+SB+(1—s)A)_l(B—A)()\+sB+(1—s)A)_1ds) i

and

(2.32) Bexp(B)E;

= / e
0

« (/0 (A sB+(1—s)A) (B A)(A+ 5B+ (1—s) A) ds)d)\.

(B) - Bexp (B) Fy (B)

Let a > 0. Assume that either 0 < A, B < a or A, B > a, then
(2.33)

(InA—Ina)(A—a)' = (InB—1na)(B—a)""
< 1
:/0 (A+a)

X (/1()\+sB+(1—s)A)_l(B—A)()\+sB+(1—s)A)_lds) d.

3. MAIN RESULTS
Our first main result is as follows:
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Theorem 3. Let A > 0 and assume that there exist positive numbers d > ¢ > 0
such that

(3.1) d>B—A>c>0,
then

(3.2) D(w,p)(A) =D (w,p) (B) = 5 [D (w, 1) (| All) = P (w, p) (d + [|A])] = 0.

Ul o

Proof. Since B — A > ¢, then by multiplying both sides with
(A+sB+(1—s)A)~", we get

A+sB+(1—s)A)" (B=A)(A+sB+(1—s5)A)"
>c(A+sB+(1—5)A)"°

for all s € [0,1] and A > 0.
By integration over s € [0, 1] we get

/1()\+sB+(1—s)A)1(B—A)()\+sB+(1—s)A)1ds

1
Zc/ (A+sB+ (1—s)A)*ds
0

for all A > 0.
If we multiply this inequality with w (A) and integrate, then we get

(3.3) /Ooow()\)
X (/o A+sB+(1—5)A) (B—A)(A+sB+(1—s)A)" ds)d,u()\)

> c/ooow()\) (/01 (A sB+ (1 —S)A)2ds> du ().
Since A < ||A]|, then

A+ sB+(1—-5)A=A+A+s(B—-A) <X+ ||A]| +sd
= A+ (1= s)[|All +s(d +[[A]])

for all s € [0,1] and A > 0, which implies that

A +sB+(1=5)A)" = A+ (1 —9) A +s(d+][A]) "
and
(3.4) A+sB+(L—=s)A) 72 A+ (1 —s) |l +5s(d+]A])~
for all s € [0,1] and A > 0.
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From ) we get by integration twice the inequality

(3.4
/ (/ )\+sB+(1—s)A)2ds>d,u()\)
>

| e ( / O (1 s) Al s (d+ Al ds) du(N) (>0)

é/ooo“’ W U A+ @ =9 141 + s (@ + 4D (@ + 141 = 141D

X (A4 (L= ) |l + s (d + | AID) ™" ds] dpu (V)
= LD (o) (JAI) = D () (01 A1)] 2 0 (by (223)).

By utilizing (3.3) and (3.5) we obtain

| e

« </0 (At sB+(1—s)A) " (B—A)(A+ 5B+ (1—s) A) ds) dp (M)

c
2 S [P (w, 1) (1A]) = P (w, ) (d + [ AID],
which by the representation (2.23) gives (3.2). 1
Its is well known that, if P > 0, then

[(Pz,y)|” < (Px,z) (Py.y)

for all z, y € H.
Therefore, if T' > 0, then

0< (93,:5)2 = <T_1Tz,x>2 = <Tx,T_1:B>2
< (Tz,z) (TT 'z, T "'2) = (Tz,z) (x,T 'z)

for all x € H.
If 2 € H, ||z|| = 1, then

1 <(Tz,z)(x, T "'z) < (Tz,z) ||i1\\1£1 (2, T7'z) = (Tw,z) ||T

which implies the following operator inequalities
_1y-1
(3.6) 774 <T <7l
Corollary 1. Assume that A >0 and B — A > 0. Then
1
1B = All[[(B—A)7"

X D (w, ) ([[A[]) =D (w, ) (| B = All + [[A[])]
> 0.
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The proof follows by (3.2) since, by (3.6),
0<|[(B=A)7Y " '<B-A<|B-A4]|.
We can state the following result for operator monotone functions on [0, c0) :

Proposition 1. Assume that f : [0,00) = R is an operator monotone function on
[0,00). If A, B > 0 satisfy condition (3.1), then

(3.8) FA)A™ = f(B)B™ = f(0) (A~ = B
S ¢ <f(HAH) _fld+ IIAII)) __cf(0) .
—d 4] d+ |[A] [l (d +[lA[) —

If f(0) =0, then we have the simpler inequality
- o ¢ (FUAD - fd+ Al
B9 fuyar- etz (LD - >0
d\ |lA] d+ || Al
Proof. If f :[0,00) — R is an operator monotone, then by (1.1)

FO—F0) g
t

for some positive measure u, where £ (\) = X\, A > 0.
By the inequality (3.2) we have

[f(A) = fOA™ = [f(B) = f(0)] B~

5 ¢ fmmw—fm>_fw+HMD—f@q>n
ZalT A d+fAl 1T

which is equivalent to (3.8). 1

Gu)(t), t>0

Corollary 2. Assume that f : [0,00) — R is an operator monotone function on
[0,00), A>0 and B— A > 0. Then

(3.10) FAYA = fB)B'=f(0)(A' =B
N | Cwmm_me—Awumm>
“lB=-a7 1B -A\ 1Al 1B — Al + | A]
) 7 )
JAIT(B = A) ' (1B = Al + IA])
> 0.
If £(0) =0, then
(3.11)  f(A)A" = f(B) B!
| FUIAD £ (1B = A] + 1A])
ZWB—mlmw—Au(nAn HB—MHWMI>ZO

In the case of operator convex functions, we have:
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Proposition 2. Assume that f : [0,00) — R is an operator convex function on
[0,00). If A, B > 0 satisfy condition (3.1), then

(3812)  F(A)A2—f(B)B™ — f(0) (A = B%) = £, (0) (A~ — B™")
e [FUAD  fEA+]IADT]  ef 0 @+2]|A])

AN (d+ || Al])? I (d + || All)?
o
|A]l (d+ [[A]])
> 0.
If f(0) =0, then
(3.13) FAA— [(B)B2—f,(0) (A" =B
S e[fAAD _ fd+lAD) _ efi(0) 0.

“dl AP @+ AD*] TAT@+AD

Proof. If f :]0,00) — R is an operator convex function on [0, c0), then by (1.3) we

have that
ﬂﬂ—ﬂg—ﬁm”—c:D%Mﬁ%

for some positive measure u, where £ (\) = X, A > 0.
By the inequality (3.2) we have

[f(A) = £(0) = £ (0)A] A= — [f(B) — £(0) — f°. (0) B] B~
> e [LAAD = £(0) = fi (0) Al

—a l1A]?

_Sd+A[D = £(0) = £ (0) (d+ [[Al)
(d +[|A]1)?

>0

— ’

which is equivalent to (3.12).

Corollary 3. Assume that f : [0,00) — R is an operator convex function on
[0,00), A>0 and B— A > 0. Then
(3.14) fAA)A?—f(B)B>—=f(0)(A?=B7?) = f.(0) (A" =B
- 1 FAAD £ AIB = Al +[1Al)
“NB=ATIB-AlL AP (1B - A+ (Al
fO) (I[B — Al +2||All)
1(B =AY IAI* (1B = All + | All)*
) 71.(0)
1B =) 1Al (1B = All + || Al
> 0.
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If £(0) =0, then

(3.15) FA) A — f(B)B™ = [, (0) (A~ = B™")
. 1 FUIAID — f B = Al + 1Al
“B=ATYIB-AlL 1AP (1B - Al +]1Al)?
- f1(0)
(B —A)7M[IIAll (1B — Al + | A])
> 0.

4. SOME EXAMPLES

In this section we give some example of the above general inequalities that hold
for some particular operator monotone or operator convex functions of interest.
If we take f(t) =t", r € (0,1] in (3.9), then we get

(4.1) AT =BT > (IIAII’” P (@A) >0,

provided A, B > 0 satisfy condition (3.1).
If A>0and B— A >0, then

(4.2) At —prt
1
=@ =B - Al

AN = (1B = Al + 1AI)™] > 0.

If we take f (t) = —In (¢ + 1), which is operator convex on [0, c0), then by (3.13)
we get

(43) B7?2lm(B+1)—AIm(A+1)+A'—B!

In(d+||A]|+1) In(||A] + 1)} c
- 5 2 - 2 Z 07

d 1 (d+][A]) 1Al Il (d + [1A1)

provided that A, B > 0 and satisfy condition (3.1).
If A>0and B— A >0, then
(44) B?In(B+1)-A2m(A+1)+A'—-B!
1 lln(llB —Al+ AT+ (Al +1)
||(B ATIB=AlL (1B~ Al + [1Al)* 1A]1”

1
\ = A7 IAINIB — All + 1Al
0.

Y]
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Assume that A, B > 0 and satisfy condition (3.1) for d > ¢ > 0, then
(4.5) A %exp (A)T'(a,A) — B %exp (B)I'(a, B)
c —a
> < 1A exp (JAID T (a, [|A])
—(d+[|AIN™ exp (d + [|A]}) D(a, d + [ A[])]

>0
for a < 1.
In particular, we have
(46)  oxp(A)F\ (4) — exp (B) By (B)
> g[exp(HAll) Ey (| All) — exp (d + [|A]]) Ex (d + [|A])] = 0
and

(4.7)  Bexp(B)E,(B)— Aexp(A) E; (A)
> 5 [(d + [[Al]) exp (d + [|A]]) Ex (d + [|A]]) = | Al exp ([|A]]) £v (1 AID]
> 0.

Let a > 0. Assume that A, B > a and there exists d > ¢ > 0 such that (3.1)
holds, then by (2.20) we get

(4.8) (InA—1Ina) (A - a)_1 —(InB—1na) (B - a)_1
> <[] Al = a) (4] - )"

—(In(d+ || Al) —Ina) (d+ | A] = a) ']
> 0.

The interested author may state other similar inequalities by using the examples
of operator monotone functions from [2], [3] and the references therein.

Acknowledgement. The author would like to thank the anonymous referee
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