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Abstract. For a continuous and positive function w (λ) , λ > 0 and µ a positive
measure on (0,∞) we consider the following monotonic integral transform

M (w, µ) (T ) :=

∫ ∞

0

w (λ)T (λ+ T )
−1

dµ (λ) ,

where the integral is assumed to exist for T a positive operator on a complex
Hilbert space H.

Assume that A ≥ m1 > 0, B ≥ m2 > 0, then we show that

∥M (w, µ) (B)−M (w, µ) (A)∥

≤ ∥B −A∥


M(w,µ)(m2)−M(w,µ)(m1)

m2−m1
if m1 ̸= m2,

M′ (w, µ) (m) if m1 = m2 = m,

where M′ (w, µ) (t) is the derivative of M (w, µ) as a function of t. If the function
f : (0,∞) → R is operator monotone in (0,∞), then

∥f (B)− f (A)∥ ≤ ∥B −A∥


f(m2)−f(m1)

m2−m1
if m1 ̸= m2,

f ′ (m) if m1 = m2 = m.

In particular we have the power inequalities

∥Br −Ar∥ ≤ ∥B −A∥


mr

2−mr
1

m2−m1
if m1 ̸= m2,

rmr−1 if m1 = m2 = m,

and the logarithmic inequalities

∥lnB − lnA∥ ≤ ∥B −A∥


lnm2−lnm1

m2−m1
if m1 ̸= m2,

1
m if m1 = m2 = m.

Some applications for operator convex functions and midpoint and trapezoid
norm inequalities are also provided.
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1. Introduction

Let B (H) be the Banach algebra of bounded linear operators on a complex
Hilbert space H. The absolute value of an operator A is the positive operator |A|
defined as |A| := (A∗A)1/2 .

It is known that [3] in the infinite-dimensional case the map f (A) := |A| is
not Lipschitz continuous on B (H) with the usual operator norm, i.e. there is no
constant L > 0 such that

∥|A| − |B|∥ ≤ L ∥A−B∥

for any A, B ∈ B (H) .
However, as shown by Farforovskaya in [7], [8] and Kato in [14], the following

inequality holds

(1.1) ∥|A| − |B|∥ ≤ 2

π
∥A−B∥

(
2 + log

(
∥A∥+ ∥B∥
∥A−B∥

))
for any A, B ∈ B (H) with A ̸= B.
If the operator norm is replaced with Hilbert-Schmidt norm ∥C∥HS :=

(trC∗C)1/2 of an operator C, then the following inequality is true [1]

(1.2) ∥|A| − |B|∥HS ≤
√
2 ∥A−B∥HS

for any A, B ∈ B (H) .
The coefficient

√
2 is best possible for a general A and B. If A and B are restricted

to be selfadjoint, then the best coefficient is 1.
It has been shown in [3] that, if A is an invertible operator, then for all operators

B in a neighborhood of A we have

(1.3) ∥|A| − |B|∥ ≤ a1 ∥A−B∥+ a2 ∥A−B∥2 +O
(
∥A−B∥3

)
,

where

a1 =
∥∥A−1

∥∥ ∥A∥ and a2 =
∥∥A−1

∥∥+ ∥∥A−1
∥∥3 ∥A∥2 .

In [2] the author also obtained the following Lipschitz type inequality

(1.4) ∥f (A)− f (B)∥ ≤ f ′ (a) ∥A−B∥

where f is an operator monotone function on (0,∞) and A, B ≥ a > 0.
One of the problems in perturbation theory is to find bounds for ∥f (A)− f (B)∥

in terms of ∥A−B∥ for different classes of measurable functions f for which the
function of operator can be defined. For some results on this topic, see [4], [9] and
the references therein.

We have the following representation of operator monotone functions [15], see
for instance [5, p. 144-145]:

Theorem 1. A function f : [0,∞) → R is operator monotone in [0,∞) if and
only if it has the representation

(1.5) f (t) = f (0) + bt+

∫ ∞

0

tλ

t+ λ
dµ (λ) ,
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where b ≥ 0 and a positive measure µ on [0,∞) such that

(1.6)

∫ ∞

0

λ

1 + λ
dµ (λ) < ∞.

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(OC) f ((1− λ)A+ λB) ≤ (≥) (1− λ) f (A) + λf (B)

in the operator order, for all λ ∈ [0, 1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if −f is operator convex.

We have the following representation of operator convex functions [5, p. 147]:

Theorem 2. A function f : [0,∞) → R is operator convex in [0,∞) with f ′
+ (0) ∈

R if and only if it has the representation

(1.7) f (t) = f (0) + f ′
+ (0) t+ ct2 +

∫ ∞

0

t2λ

t+ λ
dµ (λ) ,

where c ≥ 0 and a positive measure µ on [0,∞) such that (1.6) holds.

We have the following integral representation for the power function when t > 0,
r ∈ (0, 1], see for instance [5, p. 145]

tr−1 =
sin (rπ)

π

∫ ∞

0

λr−1

λ+ t
dλ.

Motivated by these representations, we introduce, for a continuous and positive
function w (λ) , λ > 0, the following integral transform

(1.8) D (w, µ) (t) :=

∫ ∞

0

w (λ)

λ+ t
dµ (λ) , t > 0,

where µ is a positive measure on (0,∞) and the integral (1.8) exists for all t > 0.
For µ the Lebesgue usual measure, we put

(1.9) D (w) (t) :=

∫ ∞

0

w (λ)

λ+ t
dλ, t > 0.

Now, assume that T > 0, then by the continuous functional calculus for selfad-
joint operators, we can define the positive operator

(1.10) D (w, µ) (T ) :=

∫ ∞

0

w (λ) (λ+ T )−1 dµ (λ) ,

where w and µ are as above. Also, when µ is the usual Lebesgue measure, then

(1.11) D (w) (T ) :=

∫ ∞

0

w (λ) (λ+ T )−1 dλ,

for T > 0.
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If we take µ to be the usual Lebesgue measure and the kernel wr (λ) = λr−1,
r ∈ (0, 1], then

(1.12) tr−1 =
sin (rπ)

π
D (wr) (t) , t > 0.

For a continuous and positive function w (λ) , λ > 0 and a positive measure µ
on (0,∞), we can define the following mapping, which we call monotonic integral
transform, by

(1.13) M(w, µ) (t) := tD(w, µ) (t) , t > 0.

For t > 0 we have

M(w, µ) (t) := tD(w, µ) (t) =

∫ ∞

0

w (λ) t (t+ λ)−1 dµ (λ)(1.14)

=

∫ ∞

0

w (λ) (t+ λ− λ) (t+ λ)−1 dµ (λ)

=

∫ ∞

0

w (λ)
[
1− λ (t+ λ)−1] dµ (λ) .

If
∫∞
0

w (λ) dµ (λ) < ∞, then

(1.15) M(w, µ) (t) =

∫ ∞

0

w (λ) dµ (λ)−D(ℓw, µ) (t) ,

where ℓ (t) = t, t > 0.
Consider the kernel e−a (λ) := exp (−aλ) , λ ≥ 0 and a > 0. Then, after some

calculations, we get

D(e−a) (t) =

∫ ∞

0

exp (−aλ)

t+ λ
dλ = E1 (at) exp (at) , t ≥ 0

and ∫ ∞

0

w (λ) dλ =

∫ ∞

0

exp (−aλ) dλ =
1

a
,

where the exponential integral is defined by

E1 (t) :=

∫ ∞

t

e−u

u
du.

This gives that

M(e−a) (t) = tD(w, µ) (t) = tE1 (at) exp (at) , t ≥ 0.

By integration we also have

D(ℓe−a, µ) (t) =

∫ ∞

0

λ exp (−aλ)

t+ λ
dλ =

1

a
− tE1 (at) exp (at)

for t > 0.
One observes that

M(e−a) (t) =

∫ ∞

0

w (λ) dλ−D(ℓe−a, µ) (t) , t > 0

and the equality (1.15) is verified in this case.
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If we take wr (λ) = λr−1, r ∈ (0, 1], then
∫∞
0

wr (λ) dλ = ∞ and the equality
(1.15) does not hold in this case.

For all T > 0 we have, by the continuous functional calculus for selfadjoint
operators, that

(1.16) M(w, µ) (T ) = TD(w, µ) (T ) =

∫ ∞

0

w (λ)
[
1− λ (T + λ)−1] dµ (λ) .

This gives the representation

T r =
sin (rπ)

π
M(wr, µ) (T ) ,

where wr (λ) = λr−1, r ∈ (0, 1] and µ is the usual Lebesgue measure.
Assume that A ≥ m1 > 0, B ≥ m2 > 0, then we show that

∥M (w, µ) (B)−M (w, µ) (A)∥

≤ ∥B − A∥


M(w,µ)(m2)−M(w,µ)(m1)

m2−m1
if m1 ̸= m2,

M′ (w, µ) (m) if m1 = m2 = m,

where M′ (w, µ) (t) is the derivative of M (w, µ) as a function of t. If the function
f : [0,∞) → R is operator monotone in [0,∞), then

∥f (B)− f (A)∥ ≤ ∥B − A∥


f(m2)−f(m1)

m2−m1
if m1 ̸= m2,

f ′ (m) if m1 = m2 = m.

In particular we have the power inequalities

∥Br − Ar∥ ≤ ∥B − A∥


mr

2−mr
1

m2−m1
if m1 ̸= m2,

rmr−1 if m1 = m2 = m,

and the logarithmic inequalities

∥lnB − lnA∥ ≤ ∥B − A∥


lnm2−lnm1

m2−m1
if m1 ̸= m2,

1
m

if m1 = m2 = m.

Some applications for operator convex functions and midpoint and trapezoid norm
inequalities are also provided.

2. Main Results

We have the following equality that is of interest in itself:

Lemma 1. For all A, B > 0 we have the representation

M(w, µ) (B)−M(w, µ) (A)(2.1)

=

∫ ∞

0

(∫ 1

0

(λ+ (1− t)A+ tB)−1 (B − A) (λ+ (1− t)A+ tB)−1 dt

)
× λw (λ) dµ (λ) .
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Proof. From (1.16) we have for all A, B ≥ 0 that

M(w, µ) (B)−M(w, µ) (A)(2.2)

=

∫ ∞

0

w (λ)
[
1− λ (B + λ)−1] dµ (λ)−

∫ ∞

0

w (λ)
[
1− λ (A+ λ)−1] dµ (λ)

=

∫ ∞

0

λw (λ)
[
(A+ λ)−1 − (B + λ)−1] dµ (λ) .

Let T, S > 0. The function f (t) = −t−1 is operator monotone on (0,∞), operator
Gâteaux differentiable and the Gâteaux derivative is given by

(2.3) ∇fT (S) := lim
t→0

[
f (T + tS)− f (T )

t

]
= T−1ST−1

for T, S > 0.
Consider the continuous function f defined on an interval I for which the cor-

responding operator function is Gâteaux differentiable on the segment [C,D] :
{(1− t)C + tD, t ∈ [0, 1]} for C, D selfadjoint operators with spectra in I. We
consider the auxiliary function defined on [0, 1] by

fC,D (t) := f ((1− t)C + tD) , t ∈ [0, 1] .

Then we have, by the properties of the Bochner integral, that

(2.4) f (D)− f (C) =

∫ 1

0

d

dt
(fC,D (t)) dt =

∫ 1

0

∇f(1−t)C+tD (D − C) dt.

If we write this equality for the function f (t) = −t−1 and C, D > 0, then we get
the representation

(2.5) C−1 −D−1 =

∫ 1

0

((1− t)C + tD)−1 (D − C) ((1− t)C + tD)−1 dt.

Now, if we take in (2.5) C = λ+ A, D = λ+B, then

(λ+ A)−1 − (λ+B)−1(2.6)

=

∫ 1

0

((1− t) (λ+ A) + t (λ+B))−1 (B − A)

× ((1− t) (λ+ A) + t (λ+B))−1 dt

=

∫ 1

0

(λ+ (1− t)A+ tB)−1 (B − A) (λ+ (1− t)A+ tB)−1 dt.

By employing (2.2) and (2.6), we derive (2.1).

Corollary 1. Assume that the function f : [0,∞) → R is operator monotone
in [0,∞) and it has the representation (1.5), then for all A, B > 0 we have the
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equality

f (B)− f (A)− b (B − A)(2.7)

=

∫ ∞

0

(∫ 1

0

(λ+ (1− t)A+ tB)−1 (B − A) (λ+ (1− t)A+ tB)−1 dt

)
× λ2dµ (λ) .

Proof. From (1.5) we have for T > 0 that

f (T )− f (0)− bT = M(ℓ, µ) (T ) ,

for some positive measure µ, where ℓ (λ) = λ, λ ≥ 0. Therefore

M(ℓ, µ) (B)−M(ℓ, µ) (A) = f (B)− f (A)− b (B − A)

and by (2.1) we get (2.7).

Corollary 2. Assume that the function f : [0,∞) → R is operator convex in [0,∞)
and it has the representation (1.3), then for all A, B > 0 we have the identity

f (B)B−1 − f (A)A−1 − f (0)
(
B−1 − A−1

)
− c (B − A)(2.8)

=

∫ ∞

0

(∫ 1

0

(λ+ (1− t)A+ tB)−1 (B − A) (λ+ (1− t)A+ tB)−1 dt

)
× λ2dµ (λ) .

Proof. From (1.7) we have for T > 0 that

(f (T )− f (0))T−1 − b− cT = M(ℓ, µ) (T ) ,

for some positive measure µ. Therefore

M(ℓ, µ) (B)−M(ℓ, µ) (A) = (f (B)− f (0))B−1− (f (A)− f (0))A−1− c (B − A)

and by (2.1) we get (2.8).

Remark 1. From the representation (2.1) we observe that if B ≥ A > 0, then
M(w, µ) (B) ≥ M(w, µ) (A) which means that M(w, µ) is operator monotone on
(0,∞) , see also [6].

We have the following Lipschitz type inequality:

Theorem 3. Assume that A ≥ m1 > 0, B ≥ m2 > 0, then

∥M (w, µ) (B)−M (w, µ) (A)∥(2.9)

≤ ∥B − A∥


M(w,µ)(m2)−M(w,µ)(m1)

m2−m1
if m1 ̸= m2,

M′ (w, µ) (m) if m1 = m2 = m,

where M′ (w, µ) (t) is the derivative of M (w, µ) as a function of t.
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Proof. From the identity (2.6) we get by taking the norm that

∥M (w, µ) (B)−M (w, µ) (A)∥(2.10)

≤
∫ ∞

0

∥∥∥∥∫ 1

0

(λ+ (1− t)A+ tB)−1 (B − A) (λ+ (1− t)A+ tB)−1 dt

∥∥∥∥
× λw (λ) dµ (λ)

≤
∫ ∞

0

(∫ 1

0

∥∥(λ+ (1− t)A+ tB)−1 (B − A) (λ+ (1− t)A+ tB)−1
∥∥ dt)

× λw (λ) dµ (λ)

≤ ∥B − A∥
∫ ∞

0

λw (λ)

(∫ 1

0

∥∥(λ+ (1− t)A+ tB)−1
∥∥2 dt) dµ (λ)

for all A, B > 0.
Assume that m2 > m1. Then

(1− t)A+ tB + λ ≥ (1− t)m1 + tm2 + λ,

which implies that

((1− t)A+ tB + λ)−1 ≤ ((1− t)m1 + tm2 + λ)−1 ,

and

(2.11)
∥∥((1− t)A+ tB + λ)−1

∥∥2 ≤ ((1− t)m1 + tm2 + λ)−2

for all t ∈ [0, 1] and λ ≥ 0.
Therefore, by integrating (2.11) we derive∫ ∞

0

λw (λ)

(∫ 1

0

∥∥((1− t)A+ tB + λ)−1
∥∥2 dt) dw (λ)

≤
∫ ∞

0

λw (λ)

(∫ 1

0

((1− t)m1 + tm2 + λ)−2 dt

)
dw (λ)

=
1

m2 −m1

∫ ∞

0

λw (λ)

(∫ 1

0

((1− t)m1 + tm2 + λ)−1

× (m2 −m1) ((1− t)m1 + tm2 + λ)−1 dt
)
dw (λ)

=
1

m2 −m1

[M (w, µ) (m2)−M (w, µ) (m1)] (by (2.1))

and by (2.10) we deduce

∥M (w, µ) (B)−M (w, µ) (A)∥(2.12)

≤ ∥B − A∥
m2 −m1

[M (w, µ) (m2)−M (w, µ) (m2)] .

The case m2 < m1 goes in a similar way and we also obtain (2.12).
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Let ϵ > 0. Then B + ϵ ≥ m+ ϵ > m. From (2.12) we get

∥M (w, µ) (B + ϵ)−M (w, µ) (A)∥

≤ ∥B + ϵ− A∥
m+ ϵ−m

[M (w, µ) (m+ ϵ)−M (w, µ) (m)]

and by taking the limit over ϵ → 0+, using the continuity and differentiability of
M (w, µ) we deduce the second part of (2.9).

Corollary 3. Assume that the function f : [0,∞) → R is operator monotone in
[0,∞) and it has the representation (1.5). If A ≥ m1 > 0, B ≥ m2 > 0, then,

∥f (B)− f (A)− b (B − A)∥(2.13)

≤ ∥B − A∥


(

f(m2)−f(m1)
m2−m1

− b
)

if m1 ̸= m2,

(f ′ (m)− b) if m1 = m2 = m.

Proof. From (1.5) we have for T > 0 that

f (T )− f (0)− bT = M(ℓ, µ) (T ) ,

for some positive measure µ, where ℓ (λ) = λ, λ ≥ 0. Therefore

M(ℓ, µ) (B)−M(ℓ, µ) (A) = f (B)− f (A)− b (B − A) ,

M (ℓ, µ) (m2)−M (ℓ, µ) (m1) = f (m2)− f (m1)− b (m2 −m1)

and

M′ (ℓ, µ) (m) = f ′ (m)− b.

By (2.9) we obtain

∥f (B)− f (A)− b (B − A)∥

≤ ∥B − A∥


(

f(m2)−f(m1)
m2−m1

− b
)

if m1 ̸= m2,

(f ′ (m)− b) if m1 = m2 = m,

which is equivalent to (2.13).

By the properties of the norm, we have

∥f (B)− f (A)∥ − b ∥B − A∥
≤ ∥f (B)− f (A)− b (B − A)∥

≤ ∥B − A∥


(

f(m2)−f(m1)
m2−m1

− b
)

if m1 ̸= m2,

(f ′ (m)− b) if m1 = m2 = m,
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which implies the following inequalities in which the nonnegative parameter b is
not involved

(2.14) ∥f (B)− f (A)∥ ≤ ∥B − A∥


f(m2)−f(m1)

m2−m1
if m1 ̸= m2,

f ′ (m) if m1 = m2 = m,

where the function f : (0,∞) → R is operator monotone in (0,∞).
By employing this inequality for power and logarithmic functions we can state

the following results of interest:

Proposition 1. If A ≥ m1 > 0, B ≥ m2 > 0, then for r ∈ (0, 1] we have the power
inequalities

(2.15) ∥Br − Ar∥ ≤ ∥B − A∥


mr

2−mr
1

m2−m1
if m1 ̸= m2,

rmr−1 if m1 = m2 = m,

and the logarithmic inequalities

(2.16) ∥lnB − lnA∥ ≤ ∥B − A∥


lnm2−lnm1

m2−m1
if m1 ̸= m2,

1
m

if m1 = m2 = m.

Corollary 4. Assume that f : [0,∞) → R is operator convex in [0,∞) that has
the representation (1.7). If A ≥ m1 > 0, B ≥ m2 > 0, then∥∥f (B)B−1 − f (A)A−1 − f (0)

(
B−1 − A−1

)
− c (B − A)

∥∥(2.17)

≤ ∥B − A∥


(

f(m2)m
−1
2 −f(m1)m

−1
1 −f(0)(m−1

2 −m−1
1 )

m2−m1
− c

)
if m1 ̸= m2,

(
f ′(m)m−f(m)+f(0)

m2 − c
)

if m1 = m2 = m.

If f (0) = 0, then we have the simpler inequalities∥∥f (B)B−1 − f (A)A−1 − c (B − A)
∥∥(2.18)

≤ ∥B − A∥


(

f(m2)m
−1
2 −f(m1)m

−1
1

m2−m1
− c
)

if m1 ̸= m2,(
f ′(m)m−f(m)

m2 − c
)

if m1 = m2 = m.

Proof. From (1.7) we have for T > 0 that

(f (T )− f (0))T−1 − f ′
+ (0)− cT = M(ℓ, µ) (T ) ,

for some positive measure µ. Therefore

M(ℓ, µ) (B)−M(ℓ, µ) (A)

= f (B)B−1 − f (A)A−1 − f (0)
(
B−1 − A−1

)
− c (B − A) ,
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M (ℓ, µ) (m2)−M (ℓ, µ) (m1)

= f (m2)m
−1
2 − f (m1)m

−1
1 − f (0)

(
m−1

2 −m−1
1

)
− c (m2 −m1)

and

M(ℓ, µ) (m) =
f ′ (m)m− f (m) + f (0)

m2
− c.

Then by (2.9) we get∥∥f (B)B−1 − f (A)A−1 − f (0)
(
B−1 − A−1

)
− c (B − A)

∥∥
≤ ∥B − A∥


f(m2)m

−1
2 −f(m1)m

−1
1 −f(0)(m−1

2 −m−1
1 )

m2−m1
− c if m1 ̸= m2,(

f ′(m)m−f(m)+f(0)
m2 − c

)
if m1 = m2 = m,

and the inequality (2.17) is obtained.

By the properties of the norm, we have∥∥f (B)B−1 − f (A)A−1 − f (0)
(
B−1 − A−1

)∥∥− c ∥B − A∥
≤
∥∥f (B)B−1 − f (A)A−1 − f (0)

(
B−1 − A−1

)
− c (B − A)

∥∥
≤ ∥B − A∥


(

f(m2)m
−1
2 −f(m1)m

−1
1 −f(0)(m−1

2 −m−1
1 )

m2−m1
− c

)
if m1 ̸= m2,

(
f ′(m)m−f(m)+f(0)

m2 − c
)

if m1 = m2 = m,

which implies the following inequalities in which the nonnegative parameter c is
not involved ∥∥f (B)B−1 − f (A)A−1 − f (0)

(
B−1 − A−1

)∥∥(2.19)

≤ ∥B − A∥


f(m2)m

−1
2 −f(m1)m

−1
1 −f(0)(m−1

2 −m−1
1 )

m2−m1
if m1 ̸= m2,

f ′(m)m−f(m)+f(0)
m2 if m1 = m2 = m.

By applying this inequality to the operator convex function f (t) = − ln (t+ 1) ,
then we can state the following result:

Proposition 2. If A ≥ m1 > 0, B ≥ m2 > 0, then we have the logarithmic
inequalities ∥∥B−1 ln (B + 1)− A−1 ln (A+ 1)

∥∥(2.20)

≤ ∥B − A∥


m−1

1 ln(m1+1)−m−1
2 ln(m2+1)

m2−m1
if m1 ̸= m2,

ln(m+1)−m(m+1)−1

m2 if m1 = m2 = m.
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3. Midpoint and Trapezoid Inequalities

We have the following midpoint type inequalities:

Proposition 3. For all A, B ≥ m > 0 we have the midpoint inequality∥∥∥∥∫ 1

0

M (w, µ) ((1− t)A+ tB) dt−M (w, µ)

(
A+B

2

)∥∥∥∥(3.1)

≤ 1

4
M′ (w, µ) (m) ∥B − A∥ .

Proof. Since A, B ≥ m, hence A+B
2

≥ m > 0 and (1− t)A + tB ≥ m > 0 for all
t ∈ [0, 1] and by (2.9)∥∥∥∥M (w, µ) ((1− t)A+ tB)−M (w, µ)

(
A+B

2

)∥∥∥∥(3.2)

≤ M′ (w, µ) (m)

∥∥∥∥(1− t)A+ tB − A+B

2

∥∥∥∥
= M′ (w, µ) (m)

∣∣∣∣t− 1

2

∣∣∣∣ ∥B − A∥

for all t ∈ [0, 1] .
Taking the integral in (3.2), we get∥∥∥∥∫ 1

0

M (w, µ) ((1− t)A+ tB) dt−M (w, µ)

(
A+B

2

)∥∥∥∥
≤
∫ 1

0

∥∥∥∥M (w, µ) ((1− t)A+ tB)−M (w, µ)

(
A+B

2

)∥∥∥∥ dt
≤ M′ (w, µ) (m) ∥B − A∥

∫ 1

0

∣∣∣∣t− 1

2

∣∣∣∣ dt = 1

4
M′ (w, µ) (m) ∥B − A∥

and the inequality (3.1) is proved.

We have the following trapezoid type inequalities:

Proposition 4. For all A, B ≥ m > 0 we have the trapezoid inequality∥∥∥∥M (w, µ) (A) +M (w, µ) (B)

2
−
∫ 1

0

M (w, µ) ((1− t)A+ tB) dt

∥∥∥∥(3.3)

≤ 1

4
M′ (w, µ) (m) ∥B − A∥ .

Proof. Since A, B ≥ m, hence (1− s)A+ sA+B
2

, sA+B
2

+ (1− s)B ≥ m > 0 for all
s ∈ [0, 1] and by Theorem 3 we get∥∥∥∥M (w, µ) (A)−M (w, µ)

(
(1− s)A+ s

A+B

2

)∥∥∥∥(3.4)

≤ 1

2
M′ (w, µ) (m) ∥B − A∥ s
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and ∥∥∥∥M (w, µ) (B)−M (w, µ)

(
s
A+B

2
+ (1− s)B

)∥∥∥∥(3.5)

≤ 1

2
M′ (w, µ) (m) ∥B − A∥ s.

From (3.4) and (3.5) we derive by addition, division by 2 and triangle inequality
that∥∥∥∥M (w, µ) (A) +M (w, µ) (B)

2

−1

2

[
M (w, µ)

(
(1− s)A+ s

A+B

2

)
+M (w, µ)

(
s
A+B

2
+ (1− s)B

)]∥∥∥∥
≤ 1

2
M′ (w, µ) (m) ∥B − A∥ s

for all s ∈ [0, 1] .
By taking the integral and using its properties, we derive∥∥∥∥M (w, µ) (A) +M (w, µ) (B)

2
(3.6)

− 1

2

[∫ 1

0

M (w, µ)

(
(1− s)A+ s

A+B

2

)
+M (w, µ)

(
s
A+B

2
+ (1− s)B

)
ds

]∥∥∥∥
≤ 1

2
M′ (w, µ) (m) ∥B − A∥

∫ 1

0

sds =
1

4
M′ (w, µ) (m) ∥B − A∥ .

Now, using the change of variable t = 2s we have

1

2

∫ 1

0

M (w, µ)

(
(1− t)A+ t

A+B

2

)
dt =

∫ 1/2

0

M (w, µ) ((1− s)A+ sB) ds

and by the change of variable t = 1− v we have

1

2

∫ 1

0

M (w, µ)

(
t
A+B

2
+ (1− t)A

)
dt

=
1

2

∫ 1

0

M (w, µ)

(
(1− v)

A+B

2
+ vB

)
dv.

Moreover, if we make the change of variable v = 2s− 1 we also have

1

2

∫ 1

0

M (w, µ)

(
(1− v)

A+B

2
+ vB

)
dv =

∫ 1

1/2

M (w, µ) ((1− s)A+ sB) ds.
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Therefore

1

2

∫ 1

0

[
M (w, µ)

(
(1− s)A+ s

A+B

2

)
+M (w, µ)

(
s
A+B

2
+ (1− s)B

)]
ds

=

∫ 1/2

0

M (w, µ) ((1− s)A+ sB) dt+

∫ 1

1/2

M (w, µ) ((1− s)A+ sB) ds

=

∫ 1

0

M (w, µ) ((1− s)A+ sB) ds

and by (3.6) we deduce the desired result (3.3).

The case of operator monotone functions is as follows:

Corollary 5. Assume that the function f : [0,∞) → R is operator monotone in
[0,∞) and it has the representation (1.5). If A, B ≥ m > 0, then we have the
midpoint inequality∥∥∥∥∫ 1

0

f ((1− t)A+ tB) dt− f

(
A+B

2

)∥∥∥∥(3.7)

≤ 1

4
[f ′ (m)− b] ∥B − A∥ ≤ 1

4
f ′ (m) ∥B − A∥

and the trapezoid inequality∥∥∥∥f (A) + f (B)

2
−
∫ 1

0

f ((1− t)A+ tB) dt

∥∥∥∥(3.8)

≤ 1

4
[f ′ (m)− b] ∥B − A∥ ≤ 1

4
f ′ (m) ∥B − A∥ .

Proof. From (1.5) we have for T > 0 that

f (T )− f (0)− bT = M(ℓ, µ) (T ) ,

for some positive measure µ, where ℓ (λ) = λ, λ ≥ 0.
Therefore∫ 1

0

M (ℓ, µ) ((1− t)A+ tB) dt =

∫ 1

0

f ((1− t)A+ tB) dt− f (0)− b

(
A+B

2

)
,

M (ℓ, µ)

(
A+B

2

)
= f

(
A+B

2

)
− f (0)− b

(
A+B

2

)
and

M′ (ℓ, µ) (m) = f ′ (m)− b.

From (3.1) we derive (3.7).
Since

M(ℓ, µ) (A) = f (A)− f (0)− bA, and M(ℓ, µ) (B) = f (B)− f (0)− bB,

then by (3.3) we derive (3.8).
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Remark 2. If A, B ≥ m > 0, then we have the midpoint inequality and the
trapezoid inequality for power function with exponent r ∈ (0, 1]

(3.9)

∥∥∥∥∫ 1

0

((1− t)A+ tB)r dt−
(
A+B

2

)r∥∥∥∥ ≤ 1

4
rmr−1 ∥B − A∥

and

(3.10)

∥∥∥∥Ar +Br

2
−
∫ 1

0

((1− t)A+ tB)r dt

∥∥∥∥ ≤ 1

4
rmr−1 ∥B − A∥ .

The following inequalities for logarithm also hold

(3.11)

∥∥∥∥∫ 1

0

ln ((1− t)A+ tB) dt− ln

(
A+B

2

)∥∥∥∥ ≤ 1

4m
∥B − A∥

and

(3.12)

∥∥∥∥ lnA+ lnB

2
−
∫ 1

0

ln ((1− t)A+ tB) dt

∥∥∥∥ ≤ 1

4m
∥B − A∥ .

Corollary 6. Assume that f : [0,∞) → R is operator convex in [0,∞) that has
the representation (1.7). If A ≥ m > 0, B ≥ m > 0, then∥∥∥∥∥

∫ 1

0

f ((1− t)A+ tB) ((1− t)A+ tB)−1 dt− f

(
A+B

2

)(
A+B

2

)−1

(3.13)

−f (0)

(∫ 1

0

((1− t)A+ tB)−1 dt−
(
A+B

2

)−1
)∥∥∥∥∥

≤ 1

4

(
f ′ (m)m− f (m) + f (0)

m2
− c

)
∥B − A∥

≤ f ′ (m)m− f (m) + f (0)

4m2
∥B − A∥

and ∥∥∥∥f (A)A−1 + f (B)B−1

2
−
∫ 1

0

f ((1− t)A+ tB) ((1− t)A+ tB)−1 dt(3.14)

−f (0)

(
A−1 +B−1

2
−
∫ 1

0

((1− t)A+ tB)−1 dt

)∥∥∥∥
≤ 1

4

(
f ′ (m)m− f (m) + f (0)

m2
− c

)
∥B − A∥

≤ f ′ (m)m− f (m) + f (0)

4m2
∥B − A∥ .

Proof. From (1.7) we have for T > 0 that

M(ℓ, µ) (T ) = (f (T )− f (0))T−1 − f ′
+ (0)− cT,
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for some positive measure µ. Therefore∫ 1

0

M (ℓ, µ) ((1− t)A+ tB) dt

=

∫ 1

0

f ((1− t)A+ tB) ((1− t)A+ tB)−1 dt− f (0)

∫ 1

0

((1− t)A+ tB)−1 dt

− f ′
+ (0)− c

(
A+B

2

)
,

M(ℓ, µ)

(
A+B

2

)
= f

(
A+B

2

)(
A+B

2

)−1

− f (0)

(
A+B

2

)−1

− f ′
+ (0)− c

(
A+B

2

)
,

and

M(ℓ, µ) (m) =
f ′ (m)m− f (m) + f (0)

m2
− c.

By utilizing (3.1) we get (3.13).
Since

M(ℓ, µ) (A) = (f (A)− f (0))A−1 − f ′
+ (0)− cA

and

M(ℓ, µ) (B) = (f (B)− f (0))B−1 − f ′
+ (0)− cB,

hence by (3.3) we get (3.14).

Remark 3. In the case when f (0) = 0 in Corollary 6, we have the simpler in-
equalities∥∥∥∥∥

∫ 1

0

f ((1− t)A+ tB) ((1− t)A+ tB)−1 dt− f

(
A+B

2

)(
A+B

2

)−1
∥∥∥∥∥(3.15)

≤ 1

4

(
f ′ (m)m− f (m)

m2
− c

)
∥B − A∥ ≤ f ′ (m)m− f (m)

4m2
∥B − A∥

and ∥∥∥∥f (A)A−1 + f (B)B−1

2
−
∫ 1

0

f ((1− t)A+ tB) ((1− t)A+ tB)−1 dt

∥∥∥∥(3.16)

≤ 1

4

(
f ′ (m)m− f (m)

m2
− c

)
∥B − A∥ ≤ f ′ (m)m− f (m)

4m2
∥B − A∥ .
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If in these inequalities we take the operator convex function f (t) = − ln (t+ 1) ,
then we get ∥∥∥∥∫ 1

0

ln ((1− t)A+ tB + 1) ((1− t)A+ tB)−1 dt(3.17)

− ln

(
A+B

2
+ 1

)(
A+B

2

)−1
∥∥∥∥∥

≤ ln (m+ 1)−m (m+ 1)−1

m2
∥B − A∥

and ∥∥∥∥A−1 ln (A+ 1) +B−1 ln (B + 1)

2
(3.18)

−
∫ 1

0

ln ((1− t)A+ tB + 1) ((1− t)A+ tB)−1 dt

∥∥∥∥
≤ ln (m+ 1)−m (m+ 1)−1

m2
∥B − A∥ .
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[15] K. Löwner, Über monotone MatrixFunktionen, Math. Z. 38 (1934) 177–216.

S. S. Dragomir: Mathematics, College of Engineering & Science, Victoria Uni-
versity, PO Box 14428, Melbourne City, MC 8001, Australia.

Email address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

S. S. Dragomir: DST-NRF Centre of Excellence in the Mathematical and Sta-
tistical Sciences, School of Computer Science & Applied Mathematics, University
of the Witwatersrand, Johannesburg, South Africa.


