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The equiboundedness of the solutions of ordinary and functional differential equations are
mainly discussed by using Liapunov’s second method. For a theorem on equiboundedness in
ordinary differential equations in [V. Lakshmikantham and S. Leela, Math. Systems Theory,
10 (1976), 85-90], an example is presented. Moreover the theorem is extended to functional
differential equations with infinite delay by using Liapunov-Razumikhin method, and an
application is presented.

§1. Imtroduction

In many theorems on boundedness of the solutions of ordinary and functional
differential equations, Liapunov functions (or functionals) play important roles. It is
well known that in proving uniform boundedness of the solutions of ordinary
differential equations by using Liapunov functions, it is sufficient to impose con-
ditions in the complement of a bounded set in R* ([6], [10]). But, in the case of
equiboundedness, we usually need to impose conditions everywhere in R". 1In [7],
some efforts are made to overcome such a deficiency.

The purpose of this paper is to study equiboundedness of the solutions of ordinary
and functional differential equations by employing Liapunov’s second method. In
§3, we present an example for a theorem in [7], which concerns equiboundedness in
ordinary differential equations. In §4, we extend the result for ordinary differential
equations in §3 to functional differential equations by using the theory of Liapunov-
Razumikhin type. The comparison method used in §4 is similar to those found in
[1-6] and [9]. In §5, we present an application of the result obtained in §4.

§2. Notations and preliminary results

Let I and R denote the intervals 0<t<oo and —oo<t<oco, respectively. R”"
denotes the Euclidean space and C(4, B) the class of continuous functions from 4 to B.
For any set EcR", we denote b'y Ec¢ and E, the complement and the closure of E,
respectively. For any p>0, let S(p)={xeR": |x|<p}, where || denotes any con-
venient norm in R*. BC denotes the Banach space of bounded continuous functions
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¢: (— o0, 0]—R", with the uniform norm, ||@| =sup {|¢(s)|: s<0}. For any bounded
continuous function x(s) defined on — o0 <s<T(0<T<Z ) and any fixed t, 05t < T, x,
is defined by x(0)=x(t+80), 6<0.

Consider the following differential equations

x=f(t, x), )
u=g(t, u), )
o=h(t, v), 3)
X0)=F(, x,), “4)

where the dot denotes the right-hand derivative, fe C(I x R", R"), g, he C(I xI, R),
and FeC(IxBC, R"). Moreover, we assume that g(¢, u) and h(t, u) are locally
Lipschitzian with respect to u for u>0. For T with 0<T< 0, x: (— o0, T)—R" is
said to be a solution of Equation (4) through (o, ¢) on [t,, T) if x(¢) is continuous on
(— o0, T), x(t) satisfies Equation (4) for t,<t<T, and x,,=¢. For t,€l and x, € R",
x(t, to, Xo) denotes a solution of Equation (1) through (¢,, x,). Similarly, u(t, to, u,),
v(t, tg, vo) and x(Z, t,, ¢) denote solutions of Equations (2), (3) and (4) through (¢, u,),
(to, vo) and (24, ¢), respectively. In what follows, we assume the local existence of a
solution x(t, to, ¢) of Equation (4) for any t,e€I and any ¢ € BC. Moreover, it is
assumed that if x(¢) is a solution of Equation (4) on (—o0, T), 0< T< o0, then either
x(?) is continuable past T or |x,||— o0 as t—>T—.

In this paper, we study equiboundedness of the solutions of Equations (1) and (4)
by utilizing Liapunov functions. For Equation (4), we use Razumikhin method.
Now let E be a compact subset of R”.

DEeFiNITION 1. U(t, x) € C(I x E°, I) (or C(R x E¢, I)) is said to be a Liapunov
function if U(t, x) is locally Lipschitzian with respect to x.
For a Liapunov function U(t, x), we define U, (¢, x) by

Uts(t, %)= lim sup - {U(t=+h, x+hf (1, )= UGt 0}
-0+
Similarly, U,(t, ¢) is defined by taking ¢(0) and F(t, ¢) instead of x and f(t, x),

respectively. For a solution x(#) of Equation (1) (or (4)), Uy (t, x(1)) (or Uy(t, x,)
is equal to the following derivative of U along the solution x(7).

lim sup - {U(t+h, x(t4 )= Ut, x(0))} -
-0+
Let x(t) be a solution of Equation (1) (or (4)). We study equiboundedness of the

solutions of Equation (1) (or (4)) through the behavior of the scalar functions U(t, x(£))
and U(¢, x(¥))+ V (1, x(¥)). To evaluate the values of these two scalar functions, we
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employ differential inequalities with respect to Equations (2) and (3).

We first state a fundamental theorem concerning the estimate of the value of
U(t, x(t, t,, ¢)) with respect to Equation (2). Similar result holds for U(#, x(t, to, ¢))+
V(t, x(t, ty, ¢)) and Equation (3).

Tueorem 1. Let U(t, x)e C(Rx E¢, I) be a Liapunov function, and L(t, u)e
C(I x I, I) be nondecreasing in u for each fixed t and that

L(t, )>u for t=0,u>0,
or
L(t, u)=u for t=0,u>0.

Suppose that there exists a nonnegative function u(t) defined on (— oo, T) for some
T with 0<T< o0 such that u(t) is a positive solution of Equation (2) on [, T) for
some 1€ [0, T) which satisfies u(t+0) < L(t, u(t)) for 1<t<T, 00, and that we have

Ute(t, )= a(t, UG, $(0))
for all functions ¢ € BC with the properties that
d(0)e E¢, U(t+0, p(0) S L(t, U, $(0)))  for 0=0 with ¢(0) e E-.

Then, for ¢ € BC such that ¢(0)e E¢, U(z+0, ¢(0)) Su(t+0) for 6<0 with ¢(0) € E¢,
we have U(t, x(t, t, §))Su(f) for t<t<T as long as x(t, 7, ¢)e E-.

Since the proof is essentially the same as one for Theorem 3.2 in [1], we omit the
proof. In [1], L(t, u) is independent of ¢ and the time delay is fixed and finite.

§3. Equiboundedness in ordinary differential equations

In this section, we discuss equiboundedness of the solutions of the ordinary
differential equation (1). The following definitions can be found in [10].

DEerFINITION 2. The solutions of Equation (1) are equibounded, if for any t,€l
and any 6>0, there exists a B=B(to, 6)>0 such that if |xo| <6, |x(t, ty, ¢)|<B for
t_Z_ to-

DEerNiTION 3. The solutions of Equation (1) are uniformly bounded, if the B
in Definition 2 is independent of ¢,.

For these definitions, the corresponding definitions for the solutions of Equations
(2), (3) and (4) are similarly obtained by taking u,=0, v, =0 and ¢ € BC instead of x,,
respectively.

Now we state a theorem, which is a special case of Theorem 1 in [7] by
Lakshmikantham and Leela.
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THEOREM 2. Suppose that the following conditions hold.
() U, x)e C(I xR, 1) is a Liapunov function which satisfies

U;l)(t, X)ég(l‘, U(t9 X)), (t3 x) el xR". (5)
(i) For a constant p>0, Ve C(I x S¢(p), I) is a Liapunov function which satisfies
a(lx) =V, x)<b(Ix]), (1, x)eIxS(p), (6)

where a, be C([p, ), I) are nondecreasing and a(u)— o as u—co, and for (t, x) e
I x S¢(p) with |x|>p,

Uit )+ Vigy(t, ) Sh(t, U, x)+ V(t, X)). (7

_ (iii) The solutions of Equations (2) and (3) are equibounded and uniformly
bounded, respectively.

Then the solutions of Equation (1) are equibounded.

For the proof, see [7].

In Theorem 2, it is remarkable that equiboundedness is concluded by combining
two Liapunov functions U(t, x) and V(t, x), though the conditions for V(¢, x) are
imposed on the restricted region I x S¢(p) in I x R°. Since no example is shown for
Theorem 1 in [7], here we give an example for Theorem 2.

To construct an example for Theorem 2, consider the scalar equation

X=(6tsint—2t)x, (t, x)elxI, ®)

which can be found in [8]. The function w(r)=exp (6sint—6tcost—1?) is clearly
bounded and continuously differentiable on I, and a solution of Equation (8) through
(0, 1) on I. For this w(t) and some positive constant w,, define a function wy(f) on
I by

%m=%+£mua—wmm

Then wo(t) is continuously differentiable and wo(1)<0 on I. Moreover w,(?) is positive
for a sufficiently large w,, since the total variation of w() on I is clearly finite. Here
we assume that w, is taken sufficiently large so that wo(f)=w(?) on I. For this w(f)
and w(t), define a function U(t, x) by

u(, x)‘= zégg x2, (t,x)eIxR.

Next, define another function V(t, x) by
V(t, x)=x2, (t,x)elxS(1).

Then, clearly U(t, x) and V(¢, x) are Liapunov functions. Now we show that all
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condistions in Theorem 2 are satisfied for a(u) =b(u)=u?, p=1, f(t, x)=(6tsint —20)x,
and g(t, u)=h(t, u)=0.
Differentiating U along the solutions of Equation (8) we have

Ulgy(1, X)= 2wo(2) (Wo(t)vvvt;((tt))—Wo(t)W(t)) x24 ZW%(tM)){((tt), x)x

_ 2wo(2) (Wo)(2) — (6sint —2t)we(2)) 24 2(6tsint —2t)wd(t) %2
wi(t) ' w(t)

—_ 2wo(2)Wo(2) x2<0
w(t) =

and hence Condition (5) holds for g(¢, u)=0. Similarly we obtain
Ut (1, x)+ Vigy(t, X)

= 2wo(t) (ho(DIW(t) =wo(D)W(1)) 2 2(wd(1) +w2(1)) Sz, x)x
w3(2) w2(1)

_ 2wo(t) (Wo(2)— (62sint —2t)we(2)) x24 2(w3(t) +w2(2))(6tsint —2t) %2
- w2(1) w2(t)

= ey (o(Do(D) +W(()¥S - (io(1) (1) SO,

as long as |x|>1, and hence Condition (7) holds for h(¢, v)=0. Since clearly Con-
dition (6) holds for a(u) = b(u) =u?, and the solutions of each equation of #=0and 5 =0
are uniformly bounded, all conditions in Theorem 2 hold, and consequently we can
conclude that the solutions of Equation (8) are equibounded.

§4. Equiboundedness in functional differential equations

In this section, we discuss equiboundedness of ‘the solutions of Equation (4) by
employing Liapunov-Razumikhin method. Corresponding to Theorem 2, we have
the following theorem on equiboundedness of the solutions of Equation (4).

THEOREM 3. Let L(t, u) satisfy the conditions in Theorem 1 and an additional
condition that L(t, u) is nondecreasing in t for each fixed u. Suppose that
the following conditions hold.

(i) For any t,=0 and any n=0, there exists a ug=u(to, 1)>n such that u(t)=
u(t, to, uo) exists for t=ty, and satisfies u(t+0) < L(t, u(t)) for t=to, t,—1<0=0.

(ii) U(t, x)e C(Rx R*, I) is a Liapunov function which satisfies

U(t, x)< (s, |x]), t<s, xeR",
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where c(s, u) e C(I x I, I) is nondecreasing in s for each fixed u. Moreover, U(t, x)
satisfies

Ué4)(t5 ¢)§g(t3 U(ts ¢(0)))
for all functions ¢ € BC with the property that
U@+90, p(0)=L(t, U, $(0))) for 6=0.

(iii) For a constant p>0, V(t, x) € C(R x S¢(p), I) is a Liapunov function which
satisfies

a(xD=V(t, x)=b(x[), (1, x) e Ix S(p)

where a, be C([p, ), I) are nondecreasing and a(u)— o as u— oo.

(iv) Foraconstant K>0, any 1,20, and any 3= K, we can choose a vy=vy(1) >
such that v(t)=u(t, to, vy) exists for t=ty, and v(t+0) S L(t, v(t)) for t=t,, to—t<0=0
as long as v(f)= K.

(v) U(t, x) and V(t, x) satisfy

@t D)+ Vg, 9)Sh(t, U, ¢0)+ V(1 ¢(0))

Sor all functions ¢ € BC with the properties that

U, o) +V(, $(0)>K, [0)]>p,
Ut+0, p0)+V(t+0, () S L(t, U(t, $(0)+ V(t, $(0))) for 0=<0 with |$(8)| > p.

Then the solutions of Equation (4) are equibounded, if the solutions of Equations (2)
and (3) are equibounded and uniformly bounded, respectively.

Proor. For any 1,20 and any a=p, let n=max {c(ty, u): 0Su<a}, and let
uo=uo(to, 1)>n be a number in the condition (i). Since the solutions of Equation (2)
are equibounded, for 75> 0 and u,>0, there exists a By = By(t,, t,)>0 such that

u(t, to, ug)<By, t=t,. 9

Let ag=max {By,+b(x), K}. For any o, >w,, let vy=vy(a;) >, be a number in the
condition (iv). Since the solutions of Equation (3) are uniformly bounded, for this
vy, there exists a B;(a;) >0 such that for any #,=0, v(t, ¢, vo) <Bj(a;) for t=1t,. As
a(u)— oo with u— 0o, we can choose a B=B(t,, o) > o such that

a(B)>B,(a,). (10)

We now claim that for any #,=0 and any ¢ e BC with ||¢| <«, any solution
x(t, to, @) of Equation (4) satisfies |x(t, to, ¢)|<B for t=t,. If this is not true, there
exists a solution x(t, ty, ¢) of Equation (4) with |@|| <« such that for some t*>1¢,,
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|x(t*, to, ®)| =B, |x(t, ty, ¢)|<B for t,<t<t*. First we show that
U(t, x(t, ty, $))<B, for toSt<th. 1y

If we define a function u(f) by u(f)=u, for t<ty, u(t)=u(t, ty, uy) for t=1,, then u(t)
satisfies the conditions in Theorem 1 for t=1t,, and we have U(z+0, ¢(0)) = max {c(%,,
u): 0Su <P} Sn<u(ty+0) for 6<0. Thus, if we employ Theorem 1 with the case
that E is empty, we obtain

U(t, x(t, ty, P))Su(t)<By for t,<t=st*

from (9), and hence we have (11).

Next, we consider a function u*(f) defined on (— oo, t¥]. For t; =sup {t € [1,, t*]:
(s, tg, o) >0a for 1,<s=<t}, we define a function u*(t) on (— o, t;) by u*()=v, for
t<t, and u*()=0v(t, ty, vy) for toSt<t,. If 1, <t*, then for t,=sup {te[t,, t*]:
(s, ty, Vo) >0, for t; £s< 1}, we similarly define u*(¢) by u*(£)=v(t, ty, vo) for t; <t <1,.
By repeating this process, we obtain a sequence t, <t,<---. Since the solutions of
Equation (3) are uniformly bounded, each solution u(t, t;, v,) satisfies v(2, t;, vo) <
B,(a;) for t=t,. From this and the fact that max {|h(z, v)|: t, St <t*, [v| S By(ay)} is
finite, there exists an integer x such that ¢, =¢*. If we define u*(t*) by u*(¢+*)=v(t*,
t.—1, Vo), then u*(z) is a function defined on (— 0o, t*] which satisfies

o Su*(t)<By(oy) for t=t*. (12)
Let x()=x(t, to, @) and w(®)=U(s, x(1))+ V (¢, x(¥)) for t,<t<t*. We now show that

wi)su*(®)  for n_ Sish, with [x(9)[2p (13)

holds for k=1,..., k. First, let k=1. There are two cases to consider.

(i) The case when |x(, ty, §)|>p for t,<t<t,. If we define a function u(?)
by u(t)=u*(¢) for t<t,, then u(z) satisfies the conditions in Theorem 1 for t=t¢,, and
we have

U(to+6, p(0))+V(to+0, §(0) =Bo+b(|¢)=Bo+b(@)<u(to+6)  for 6=0.

Thus Theorem 1 with E=S(p) implies that (13) holds for k=1.

(ii) The case when |x(t, 1o, ¢)|<p for some t€[t, ;). First we show that the
sequence {[ry, 5, 1}x>; of disjoint intervals, which satisfy the following conditions, is
a finite sequence if it exists.

L= <s<ty, |x(r)l=p, ws)=u*(s),
(O >p, wE)<u*() for r.<t<s,, 14

Fe<Sp<Fpaq OF Frp1<Sps1<rp k=1
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Suppose that {[r;, 5,1} is an infinite sequence, and r, <s;<r.,, k=1. Then, r, and
s, converge to some o € [ty, ¢,], and clearly we have |x(o)| =p and u*(t)—w(c) as t—o—.
Thus we obtain

w(@)SBy+b(p)<By+b(o) <, .

On the other hand, we have w(o) = «, from (12). This is a contradiction. In the case
when 7y, <S44.1<r, k=1, we arrive at the same contradiction. Thus, {[r, 5,1}
which satisfies Condition (14) is a finite sequence if it exists.

Next, if we define a set T by T={te(to, t;): |x(1)|>p}, then T is expressed by a
union of disjoint open intervals. If (¢y, 7) with some te(t,, ;) is an interval con-
structing T, discussing as in the case (i), we have w(t) Su*(z) for 1, <t <, since w(ty) <
u*(t,) in case |x(to)| =p. ,

In case {[r;, 5,1} is empty, let (v, s), r>1t, be any open interval constructing T.
Then we obtain

w()<u*(t) for r<i<s.
Moreover, since we have
w()SBo+b(p)<u*(t) for telty, t;] with [x(®)|=p

from (11), we can conclude that (13) holds for k=1 in this case.
On the other hand, in case {[r,, 5,]} is not empty, we can assume that r,; <s; <---
<7,<8, by changing the number if necessary. Discussing as in the above, we obtain

w)Su*(t) for t,<t<s, with [x(D)|=p.
Thus, by employing Theorem 1 for (s4, x,,(to, ¢)) and u(¢) in the case (i), we have
w()Su*(t) for t>s; aslong as |x(¥)|>p.

By continuing the same process, we obtain (13) for k=1.
If k=1, then ¢, =t* and the relations (10), (12) and (13) imply

a(B) =w(1*) Su*(*) < B, () <a(B) (15)

which is a contradiction.
If k=2, define a function u(f) by

u(t)=u*(), t<t, Q<k<r).

Then u(t) satisfies the conditions in Theorem 1 for t=#,_; (2<k=<x). Thus, by
discussing similarly as in the above, we again arrive at the contradiction (15). This
proves that for any ¢{,=0 and any ¢ € BC with |¢| <«, any solution x(t, t,, ¢) of
Equation (4) satisfies |x(t, to, ¢)| <B for t=1t, if a=p.
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For a< p, we take B(ty, @)=B(to, p). Thus the proof is complete.

Remark. If F(i, $)=f(t, ¢(0)) for some fe C(IxR", R"), then Equation (4)
is reduced to the ordinary differential equation (1). For Liapunov functions U(z, x)
and V(t, x) which satisfy the conditions in Theorem 2, we can extend U(t, x) and
V(t, x) for t<0 by defining U(t, x)=U(0, x) and V (1, x)= V(0, x) for t<0. Then, for
these Liapunov functions and L(¢, u) =u, it is clearly seen that all conditions in Theorem
3 hold. First we note that  in Theorem 3 is zero in the case of ordinary differential
equations. Now the conditions (i) and (iv) hold from the assumptions for Equations (2)
and (3). Moreover, the condition (ii) holds with c(s, u)=max {U(t, x): 0=t<s,
|x| Su}, and the conditions (iii) and (v) are contained in the condition (ii) of Theorem 2.
Thus, Theorem 3 is an extension of Theorem 2.

Now we present a theorem on uniform boundedness of the solutions of Equation
(4), which can be proved by similar arguments as in the proof of Theorem 3.

TueoreM 4. Let L be as in Theorem 3. In addition to (iii) and (iv) in Theorem 3,
suppose that we have

Vit ®)<h(, V(t, $(0))
for all functions ¢ € BC with the properties that
V(t, ¢O)>K, [40)>p,
V(t+6, pO)S L, V(t, p0) for =0 with |§(O)|>p.

Then the solutions of Equation (4) are uniformly bounded, if the solutions of Equation
(3) are uniformly bounded.

PrOOF. If we take U(t, x)=0 and g(t, u)=0 in Theorem 3, we can choose the
B, in (10) independent of #,. Thus uniform boundedness of the solutions of Equation
(3) implies uniform boundedness of the solutions of Equation (4).

§5. Application of Theorem 3

In this section, we present an application of Theorem 3. Consider the scalar
delay equation

x(t)=(6tsint — 2)x(t) - c(Dx(D)+F({, x,), (16)
where ce C(I, I), and F € C(I x BC, R) satisfies
|F(t, pI=d®lol, 120, 19O)=p,

where de C(I, I) and p is a nonnegative constant. We assume that for any toel
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and any ¢eBC, the solution x(t, t5, ¢) of Equation (16) exists locally, and is
continuable as long as it is bounded. For the functions w(f) and wo(?) in §3, we define
the function p(f) and the number w by

PO= ey 32, ")
~ Wi+ W (1) \ 2
w= 0§s<t(W6(S)+W2(S)> ’

where it is easily seen that o satisfies 1 <® g\/éf Moreover, we assume that

dn< £ e
0= wp(z)
Then we have the proposition.

PROPOSITION.  Suppose that all hypothesis above for c(tf) and F(t, ¢) are
satisfied. Then the solutions of Equation (16) are equibounded.

Proor. If we define U(t, x) and V(t, x) by U(t, x)=(w3(t)/w(¥)x? for =0,
U(t, x)=(w§(0)/wx0))x? for t<0, and V(t, x)=x2 for |x|=1, then U and V are
Liapunov functions. Differentiating U along the solutions of Equation (16) we have

Utiey(t, ;)= 2Wo(t)(wo(t)vV:§(tt))—Wo(t)w(l)) x2(2) + 2W%(t)(vf;€f;lt—2t) x2(t)

2w(1)

+ w2(1) (F(2, x,)—c(2)x(2))x(2)

= %x2(1)+ %V";‘Zz(tt)) (F(t, x,)—c()x(2))x(2)

< 298U (F(t, x) - (x>0

by the similar calculation as in §3. For L(t, u)=u, if U(s, x(s))< L(1, U(t, x(t)) for
s=<t, then we obtain ||x,|| < p(£)|x(¢)| and

, 2wa(t) (1F, x) x| 2
U(l6)(t’xt)§ Wz(t) ”xt” Ix(t)' —C(Z))X (t)

2wi(2)
w2(2)

if |x(®)]>1. Thus the condition (ii) holds with g(t, u)=0. Next, differentiating
U + V along the solutions of Equation (16) we have

I\

(d(2)p(t)—c(1))x*(1) <0
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Utie)(t X)+ Va6t X,)
SU (161> %) +2x(2) ((6sint —20)x() — c(t)x(t)+F(t, x,))

22 (i) wi(0)+2 (S35 + 1O %)= dx0)

IIA

<2 ( xég ; + 1> () (F(t, %) — e()x(D)

by the similar calculation as in §3, if [x(#)|>1. If U(s, x(s))+ V(s, x(s)) S U(t, x(¥))+
V(t, x(2)) for s<t with |x(s)| >1 and |x(#)| > 1, then we obtain | x,|| £ wp(?) |x(1)| and

’ ' wj(?) LF(t, x )l >l
U(16)(t7xt)+V(16)(t9xr)§2<w2(t) +1>< ||x,J|T T (0)] C(I)>x2(1)

gz( 3‘323 +1>(wd(l)p(t)—c(t))xz(r)go.

Thus the condition (v) holds with h(t, v)=0 and K=p=1. Moreover it is easily seen
that other conditions in Theorem 3 are satisfied, and consequently we can conclude
from Theorem 3 that the solutions of Equation (16) are eugibounded.
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