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The equiboundedness of the solutions of ordinary and functional differential equations are 

mainly discussed by using Liapunov's second method. For a theorem on equiboundedness in 

ordinary differential equations in [V. Lakshmikantham and S. Leela, Math. Systems Theory, 

10 (1976), 85-90], an example is presented. Moreover the theorem is extended to functional 

differential equations with infinite delay by using Liapunov-Razumikhin method, and an 

application is prp-sented 

S I . Imtroductiom 

In many 'theorems on boundedness of the solutions of ordinary and functional 

differential equations. Liapunov functions (or functionals) play important roles. It is 

well known that in proving uniform boundedness of the solutions of ordinary 
differential equations by using Liapunov functions, it is sufficient to impose con-

ditions in the complement of a bounded set in R" ([6], [10]). But, in the case of 

equiboundedness, we usually need to rmpose conditions everywhere in R". In [7], 

some efforts are made to overcome such a deficiency 

The purpose of this paper is to study equiboundedness of the solutions of ordinary 

and functional differential equations by employing Liapunov's second method. In 

S3, we present an example for a theorem in [7], which concerns equiboundedness in 

ordinary differential equations. In S4, we extend the result for ordinary differential 

equations in S3 to functional differential equations by using the theory of Liapunov-

Razumikhin type. The comparison method used in S4 is similar to those found in 

[1-6] and [9]･ In S5, we present an application of the result obtained in S4-

S 2. Notatioms amd preliminary reswlts 

Let I and R denote the intervals O ~ t 

denotes the Euclidean space and C(A, B) the class of continuous functions from A to B 

For any set E c R", we denote by E' and E, the complement and the closure of E, 

respectively. For any p > O, Iet S(p) = {x e Rn : Ixl

venient norm in R". BC denotes the Banach space of bounded continuous functions 
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ip : (- oo, O]~.R", with the uniform norm, Ilipll =sup {Iip(s)1 : s~O}. For any bounded 

continuous function x(s) defined on - oo 

is defined by xt(O) = x(t+ o), O ~ O 

Consider the following differential equations 

~ =f(t, x) , (1) 
a =g(t, u) , (2) 
b = h(t, v) , (3) 
~(t) = F(t, xt) ' (4) 

where the dot denotes the right-hand derivative, fe C(1 x R", R"), g, h e C(1 x I, R), 

and F e C(1 x BC, R"). Moreover, we assume that g(t, u) and h(t, u) are locally 

Lipschitzian with respect to u for u > O. For T with 0

R" is said to be a solution of Equation (4) through (to' c) on [to' T) if x(t) is continuous on 

( - oo, T), x(t) satisfies Equation (4) for to ~ t 

x(t, to' xo) denotes a solution of Equation (1) through (to' xo)' Similarly, u(t, to' uo)' 

v(t, to' vo) and x(t, to' ip) denote solutions of Equations (_2), (3) and (4) through (to' uo)' 

(to' vo) and (to' c)' respectively. In what follows, we assume the local existence of a 

solution x(t, to' ip) of Equation (4) for any to e I and any ip e BC. Moreover, it is 

assumed that if x(t) is a solution of Equation (4) on ( - co , T), O 

x(t) is continuable past T or [Ixtll ~' co as t->T-

In this paper, we study equiboundedness of the solutions of Equations (1) and (4) 

by utilizing Liapunov functions. For Equation (4), we use Razumikhin method 

Now let E be a compact subset of R". 

DEFlNITION I . U(t, x) e C(1 x E', I) (or C(R x E', I)) is said to be a Lrapunov 

function if U(t, x) is locally Lipschitzian with respect to x 

For a Llapunov function U(t, x), we define U(1)(t, x) by 

1
 U(1)(t, x)= Iim sup l^ {U(t+h, x+hf(t, x)) - U(t, x)} . 

h+0+ n 

Similarly, U(4)(t, ip) is defined by taking ip(O) and F(t, ip) instead of x and f(t, x), 

respectively. For a solution x(t) of Equation (1) (or (4)), U(1)(t, x(t)) (or U(4)(t, xt)) 

is equal to the following derivative of U along the solution x(t). 

lim sup l^ {U(t+ h, x(t+ h)) - U(t, x(t))} . 

h*0+ rl 

Let x(t) be a solution of Equation (1) (or (4)). We study equiboundedness of the 

solutions of Equation (1) (or (4)) through the behavior of the scalar functions U(t, x(t)) 

and U(t, x(t)) + V(t, x(t)). To evaluate the values of these two scalar functions, we 
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employ differential inequalities with respect to Equations (2) and (3) 

We first state a fundamental theorem concerning the estimate of the value of 

U(t x(t, to' ip)) with respect to Equation (2). Similar result holds for U(t, x(t, to, ip)) + 

V(t, x(t, to' ip)) and Equation (3). 

THEOREM 1. Let U(t, x) e C(R x E', I) be a Liapunov function, and L(t, u)e 

C(1 x I, I) be nondecreasing in u for eachfixed t and that 

L(t, u)>u for t~O, u>0, 

or 

L(t, u)~u for t~0, u>0. 

Suppose that there exists a nonnegative function u(t) defined on (- oo, T) for some 

T with. 0

some T e [O, T) which sati~'fies u(t+0)~L(t, u(t)) for T~ t

U(4)(t, ip) ~ g(t, U(t, ip(O))) 

for all functions ip e BC with the properties that 

ip(O) eE', U(t+0, ip(e))~L(t, U(t, ip(O))) for e~O with ip(O) eE'. 

Then, for ip e BC such that ip(O) e E', U(T+e, ip(O))~u(T+0) for 6~0 with ip(6) e E', 

we have U(t, x(t, T, ip))~u(t) for T~ t

Since the proof is essentially the same as one for Theorem 3.2 in [1], we omit the 

proof. In [1], L(t, u) is independent of t and the time delay is fixed and finite. 

S 3･ Equfibowm~edmess iE1 ordinary clifferentiall equations 

In this section, we discuss equiboundedness of the solutions of the ordinary 

differential equation (1). The following definitions can be found in [10] 

DEFINITION 2. The solutions of Equation (1) are equibounded, if for any to e I 

and any 6 >0, there exists a B=B(to,. ~)>0 such that if lxol 

t ~ to' 

DEFINITION 3. The solutions of Equation (1) are uniformly bounded, if the B 

in Definition 2 is independent of to 

For these definitions, the corresponding definitions for the solutions of Equations 

(2), (3) and (4) are similarly obtained by taking uo ~ O, vo ~ O and ip e BC instead of xo, 

respectively 

Now we state a theorem, which is a special case of Theorem I in [7] by 

Lakshmikantham and Leela 
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THEOREM 2. Suppose that thefollowing conditions hold 

(i) U(t, x) e C(1 x R", I) is a. Liapunovfunction which satisfies 

U(1)(t, x)~9(t, U(t, x)), (t, x) e I x R". (5) 

(ii) For a constant p>0, Ve C(1 x S'(p), I) is a Liapunovfunction which satisfies 

a(IxD~ V(t, x)~b(lxD, (t, x) elx S'(p), (6) 

where a, b e C([p, oo), I) are nondecreasing and a(u)->00 as u->00, and for (t, x) e 

I x S'(p) with lxl > p, 

U(1)(t, x)+ V(1)(t, x)~ h(t, U(t, x)+ V(t, x)) . (7) 

(iii) The solution.s of Equations (2) and (3) are equibounded and unlformly 

bounded, respectively. 

Then the solutions of Equation (1) are equibounded. 

For the proof, see [7] . 

In Theorem 2, it is remarkable that equiboundedness is concluded by combining 

two Liapunov functions U(t, x) and V(t, x), though the conditions for V(t, x) are 

imposed on the restricted region I x S'(p) in I x R'. Since no example is shown for 

Theorem I in [7] , here we give an example for Theorem 2 

To construct an exanrple for Theorem 2, consider the scalar equation 

~ =(6tsint-2t)x, (t, x) e I x I, (8) 

which can be found in [8]. The function w(t) = exp (6sint-6tcost-t2) is clearly 

bounded and continuously differentiable on I, and a solution 'of Equation (8) through 

(O, 1) on I. For this w(t) and some positive constant wo' define a function wo(t) on 

I by 

J
:
 

wo(t) = wo + min {O, - vi,(s)}ds 

Then wo(t) is continuously differentiable and vi/o(t) ~ O on I. Moreover wo(t) is positive 

for a sufficiently large wo' since the total variation of w(t) on I is clearly finite. Here 

we assume that wo is taken sufficiently large so that wo(t) ~ w(t) on I. For this wo(t) 

and w(t), define a function U(t, x) by 

U(t, x)- w~(t) x2, (t, x)elxR 
w2(t) 

Next, define another function V(t, x) by 

V(t, x)=x2, (t, x) elx S'(1) . 

Then, clearly U(t, x) and V(t, x) are Liapunov functions. Now we show that all 
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condistions in Theorem 2 are satisfied for a(u) ~ b(u) ~: u2, p = 1, f(t, x) = (6tsint-2t)x, 

and g(t, u) = h(t, u) =0. 

Differentiating U along the solutions of Equation (8) we have 

_ 2wo(t) (vi'o(t)w(t)-wo(t)vi'(t)) 2 U(8)(t, x)- x + 2w~(t)f(t, x)x 
w3(t) w2(t) 

= 2wo(t) (vi'o)(t) ~(6tsint -2t)wo(t)) 2(6tsint-2t)w~(t) x2 x2 + 

w2(t) ' w2(t) 
_ 2wo(t)vi'o(t) x2~o 

~ w2(t) ~ 
and hence Condition (5) holds for g(t, u) = O. Similarly we obtain 

U(8)(t, x)+ V(8)(t, x) 

2wo(t) (vi'o(t)w(t) - wo(t)v~(t)) 2(w~(t)+w2(t))f(t x)x 
w2(t) w3(t) 

= 2wo(t) (vi'o(t)~(6tsint-2t)wo(t)) 2(w~(t)+w2(t))(6tsint -2t) x2 x2 + 

~ w2(t) (wo(t)w (t)+w(t)w(t))x2= w(t) (vi;o(t)+w(t))

as long as .Ixl > 1, and hence Condition (7) holds for h(t, v) = O. Since clearly Con-

dition (6) holds for a(u) ~ b(u) 5 u2, and the solutions of each equation of ~ = O and b = O 

are uniformly bounded, all conditions in Theorem 2 hold, and consequently we can 

conclude that the solutions of Equation (8) are equibounded 

S 4. Equiboundedmess im functional differentiall equatioms 

In this section, we discuss equiboundedness of the solutions of Equation (4) by 

employing Llapunov-Razumikhin method. Correspondmg to Theorem 2, we have 
the following theorem on equiboundedness of the solutions of Equation (4). 

THEOREM 3. Let L(t, u) sati.~,fy the conditions in Theorem I and an additional 

condition that L(t, u) is nondecreasing in t for each fixed u. Suppose that 

thefollowing conditions hold. 

(i) For any to ~O and any q~O, there exists a u0=uo(to, n)>n such that u(t)= 

u(t, to, uo) exists for t~ to, and satisfies u(t+e)~L(t, u(t)) for t~ to, to ~ t~ O~O. 

(ii) U(t, x) e C(R x R", I) is a Liapunovfunction which satisfies 

U(t, x)~c(s, Ixl), t~s xeR 
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where c(s, u) e C(1 x I, I) is nondecreasrng rn s for each fixed u Moreover U(t x) 

satisfies 

U(4)(t, ip) ~g(t, U(t, c(O))) 

for all functions c e BC with the property that 

U(t+e, ip(O))

(iii) For a constant p>0, V(t, x) e C(R x S'(p), I) is a Liapunov function which 

satisfies 

a(lxD~V(t, x)~b(lxD, (t, x) e I x S'(p) 

where a, b e C([p, oo), I) a,re nondecreasing and a(u)->00 as u~'oo. 

(iv) For a constant K>0, any to ~O, and any n ~K, we can choose a vo =vo(n)>n 

such that v(t) = v(t, to' vo) exists for t~ to' and v(t+ e) :~L(t, v(t)) for t~ to' to --t~o~O 
as long as v(t)~K. 

(v) U(t, x) and V(t, x) satisfy 

U(4)(t, c) + V(4)(t, c) ~ h(t, U(t, ip(O)) + V(t, ip(O))) 

for all functions ip e BC with the properties that 

U(t, ip(O)) + V(t, ip(O)) > K, Iip(O)1>p, 

U(t+e, c(6)) + V(t + o, ip(e)) ~ L(t, U(t, ip(O)) + V(t, c(O))) for O ~ O with I ip(O)1 > p. 

Then the solutions of Equation (4) are equibounded, if the solutions of Equatrons (2) 

and (3) are equibounded and unlformly bounded, respectively. 

PRooF. For any to~O and any oc~p, Iet n=max {c(to' u): O~u~oc}, and let 
u0=uo(to' n) > n be a number in the condition (i). Since the solutions of Equation (2) 

are equibounded, for to ~ O and uo > O, there exists a Bo = Bo(to' uo) > o such that 

u(t, to' uo)
Let c(o = max {BO + b(oc), K}. For any oei > oco' Iet vo = vo(ocl)>0el be a number in the 

condition (iv). Since the solutions of Equation (3) are uniformly bounded, for this 

vo' there exists a Bl(ocl)>0 such that for any to ~ O, v(t, to' vo) 

a(u)-> oo with u-> co, we can choose a B =B(to' oc) > oc such that 

a(B) > B1(oel) ' (10) 
We now claim that for any to ~ O and any ip e BC with llcl[ 

x(t, to' ip) of Equation (4) Satisfies lx(t, to' c)1 

exists a solution x(t, to' ip) of Equation (4) with llipll 

 to' 
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lx(t*, to' c)1=B, Ix(t, to' ep)1 

U(t, x(t, to' ip))

If we define a function u(t) by u(t) = uo for t 

satisfies the conditions in Theorem I for 1: = to, and we have U(T + e, c(6)) ~ max {c(to, 

u): O~u ~~ llipll} ~n

that E is empty, we obtain 

U(t, x(t, to' ip)) ~ u(t) 

from (9), and hence we have (11) 

Next, we consider a function u*(t) defined on ( - oo, t*]. For ti = sup {te [to, t*] : 

v(s, to, vo)>0cl for to ~s~t}, we define a function u*(t) on (- oo, tl) by u*(t)=vo for 

t

v(s, tl' vo) > ocl for tl ~ s ~ t}, we similarly define u*(t) by u*(t) = v(t, tl' vo) for tl ~ t 

By repeating this process, we obtain a sequence tl Since the solutions of 

Equation (3) are uniformly bounded, each solution v(t, tk, vo) satisfies v(t, tk, vo) 

B1-(ocl) for t~tk. From this and the fact that max {lh(t, v)1 : to ~ t~t*, Ivl ~B1(oel)} is 

finite, there exists an integer lc such that t~ = t*. If we define u*(t*) by u*(t*) = v(t* 

t* _ I , vo)' then u*(t) is a function defined on ( - oo, t*] which satisfies 

ocl~u*(t)
Let x(t) = x(t, to, ip) and w(t) = U(t, x(t)) + V(t, x(t)) for to ~ t ~ t*. We now show that 

w(t)
p (13) 

holds for k = 1,...,1c. Frrst, Iet k = 1. There are two cases to consider 

(1) The case when lx(t, to, c)1>p for to ~ t~tl' If we define a function u(t) 

by u(t) = u*(t) for t ~ tl' then u(t) satisfies the conditions in Theorem I for T = to, and 

we have 

U(to + e, ip(e))+ V(to +e, ip(O))~Bo + b(llc]J)~Bo + b(oc)

Thus Theorem I with E = S(p) implies that (_13) holds for k = 1 

(ii) The case when lx(t, to' ip)1~p for some t e [to, tl)' First we show that the 

sequence {[rk, sk]}k~1 of disjoint intervals, ,which satisfy the following conditions, is 

a finite sequence if it exists 

t 

lx(t)1>p, w(t)

r 
1 
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Suppose that {[rk, sk]} is an infinite sequence, and rk 

sk converge to some er e [to' tl]' and clearly we have lx(or)1 = p and u*(t)->w(a) as t~'a - . 

Thus we obtain 

w(a) ~ Bo + b(p) ~ Bo + b(oe) 

On the other hand, we have w(a) ~ ocl from (12). This is a contradiction. In the case 

when rk+1

1 we arrive at the same contradiction. Thus, {[rk, Sk]} which satisfies Condition (14) is a finite sequence if it exists 

Next, if we define a set T by T= {te (to' tl): Ix(t)1 >p}, then T is expressed by a 

union of disjoint open intervals. If (to' T) with some T e (to' tl) is an interval con-

structing T, discussing as in the case (i), we have w(t) ~ u*(t) for to ~ t ~ T, since w(to) 

u*(to) in case lx(to)1 =p. . In case {[rk, sk]} is empty, Iet (r, s), r > to be any open interval constructing T. 

Then we obtain 

w(t)

Moreover, since we have 

w(t)

from (11), we can conclude that (13) holds for k = I in this case. 

On the other hand, in case {[rk, Sk]} is not empty, we can assume that rl 

w(t)~u*(t) for to~t
p 

Thus, by employing Theorem I for (sl' x**(to' ip)) and u(t) in the case (i), we have 

w(t)~u*(t) for t>sl as long as lx(t)1>p. 

By continuing the same process, we obtain (13) for k = 1 

If lc = 1, then tl = t* and the relations (10), (12) and (13) imply 

a(B) ~ w(t*) ~ u*(t*) 

which is a contradiction. 

If lc ~ 2, define a function u(t) by 

u(t)=u*(t), t~tk (2~k~1(:). 

Then u(t) satisfies the conditions in Theorem I for T = tk_i (2 ~ k ~ Ic). Thus, by 

discussmg similarly as in the above, we again arrive at the contradiction (15). This 

proves that for any to ~ O and any ip e BC with llipll 

Equation (4) satisfies lx(t, to, ip)1 
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For oc

Renrark. If F(t, ip) =f(t, ip(O)) for some feC(1 x R", R"), then Equation (4) 

is reduced to the ordinary differential equation (1). For Liapunov functions U(t, x) 

and V(t, x) which satisfy the conditions in Theorem 2, we can extend U(t, x) and 

V(t, x) for t 

these Llapunov functions and L(t, u) = u, it is clearly seen that all conditions in Theorem 

3 hold. First we note that e in Theorem 3 is zero in the case of ordinary differential 

equations. Now the conditions (i) and (iv) hold from the assumptions for Equations (2) 

and (3). Moreover, the condition (ii) holds with c(s, u) =max {U(t, x) : O~t~s, 

l x I ~ u } , and the conditions (iii) and (v) are contained in the condition (ii) of Theorem 2 

Thus, Theorem 3 is an extension of Theorem 2 

Now we present a theorem on uniform boundedness of the solutions of Equation 

(4), which can be proved by similar arguments as in the proof of Theorem 3 

THEOREM 4. LetLbe as in Theorem 3. In addition to (iii) and (iv) in Theorem 3, 

suppose that we have 

V(4)(t, c) ~ h(t, V(t, ip(O))) 

for all functions c e BC with the properties that 

V(t, c(O)) > K, lc(O)1>p, 

V(t+e, c(O))~L(t, V(t, ip(O))) for O~O with lip(O)1>p. 

Then the solutions of Equation (4) are unlformly bounded, if the solutions of Equation 

(3) are unlformly bounded. 

PRooF. If we take U(t, x) ~ O and g(t, u) = O in Theorem 3, we can choose the 

Bo in (10) independent of to' Thus uniform boundedness of the solutions of Equation 

(3) implies uniform boundedness of the solutions of Equation (4) 

S 5. Applicatiom of TheoreEn 3 

In this section, we present an application of Theorem 3. Consider the scalar 

delay equation 

~(t) = (6tsint - 2t)x(t) - c(t)x(t) + F(t, xt) ' (16) 

where c e C(1, I), and F e C(1 x BC, R) satisfies 

IF(t, ip)l~d(t)llcIl, t~O Iip(O)1>p 

where d e C(1, I) and p is a nonnegative constant. We assume that for any to e I 
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and any c e BC, the solution x(t, to' ip) of Equation (16) exists locally, and is 

continuable as long as it is bounded. For the functions w(t) and wo(t) in S3, we define 

the function p(t) and the number co by 

1
 p(t)= w(t) sup w(s), 

o~*

co w~(t)+w2(t) ~ 
su p 
_ w~(s) + w2(s) ' o~*

where it is easily seen that co satisfies I 

d(t)~ c(t) 
~ cop(t) ' 

Then we have the proposition. 

Pp_OPOSITION. Suppose that all hypothesis above for c(t) and F(t, c) are 

satisfied. Then the solutions ofEquation (16) are equibounded. 

PROoF. If we define U(t, x) and V(t, x) by U(t, x) = (w~(t)/w2(t))x2 for t~O, 

U(t, x)=(w~(O)/w2(O))x2 for t

Liapunov functions. Differentiating U along the solutions of Equation (16) we have 

U(16)(t x )= 2wo(t)(vi'o(t)w(t)-wo(t)vi'(t)) x2(t)+ 2w~(t)(6tsint-2t) x2(t) 

w3(t) w2(t) 
+ 2w~(t) (F(t x ) c(t)x(t))x(t) 

w2(t) ' 
_ 2wo(t)vi;o(t) x2(t)+ 2w~(t) (F(t x ) c(t)x(t))x(t) 

~ w2(t) w2(t) ' 
~ 2w~(t) (F(t x ) c(t)x(t))x(t) 

~ w2(t) ' 

by the similar calculation as in S3. For L(t, u) = u, if U(s, x(s)) ~ L(t, U(t, x(t)) for 

s ~ t, then we obtain llxtll ~ p(t)lx(t)1 and 

2w~(t) IF(t, xt)1 Ilx,ll U(16)(t, xt) ~ ( - c (t)) x2(t) 
w2(t) Ilxtll lx(t)l 

~ 2w~(t) (d(t)p(t) c(t))x (t)
~ w2(t) 

if lx(t)1>1. Thus the condition (ii) holds with g(t, u) ~ O. Next, differentiating 

U + V along the solutions of Equation (16) we have 
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Ufl6)(t, x,) + V(16)(t, x,) 

~ U (16)(t, X~ + 2x(t) ((6sint - 2t)x(t) - c(t)x(t) + F(t, x~) 

. ( = w2(t) w2(t) 
~2 w~(t) + 1) x(t)(F(t, x,)-c(t)x(t)) (
 

~ w2(t) 

by the similar calculation as in S3, if lx(t)1 > I . If U(s, x(s)) + V(s, x(s)) ~ U(t, x(t)) + 

V(t, x(t)) for s ~ t with lx(s)1 > I and lx(t)1 > 1, then we obtain llxtll ~ cop(t) Ix(t)1 and 

U(16)(t, xt)+ w~(t) +1 IF(t, x,)1 Ilx,ll _c(t))x2(~) ( )( V(16)(t, x*) ~2 
w2(t) Ilxtll lx(t)I 

~2 w~(t) +1)(cod(t)p(t)-c(t))x2(t)~0 (
 

~ w2(t) 

Thus the condition (v) holds with h(t, v) ~; O and K = p = I . Moreover it is easily seen 

that other' conditions in Theorem 3 are satisfied, and consequently we can conclude 

from Theorem 3 that the solutions of Equation (16) are euqibounded 
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