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A differentiable left I. P. loop (G, 1) admits on the tangent space at the unit element two
kinds of bilinear operations dy and dL which are induced from the multiplication g and left
inner mappings. In this paper, after recalling some formulas of the Chern connection of a
local 3-web of a differentiable loop, relations between this connection and bilinear operations
above are investigated in differentiable left 1. P. loops. The results are applied to homo-
geneous Lie loops and it is shown that the bilinear- and trilinear products of the tangent Lie
triple algebras are given by the torsion and the curvature of the Chern connections.

§1. Introduction

A quasigroup (G, p) with the multiplication xy= w(x, y) for x, y in G is called a
loop if it has a unit element e in G (cf. [1], [7]). We denote by L, the left translation
of a loop G by an element x. A loop G has the left inverse property if, for every x in
G, there exists a two-sided inverse x~* of x such that L,-.L,= 15 (the identity map on
G). Such a loop will be called a left 1. P. loop. For any two elements a, b of a loop G,
the permutation of G given by L,,=Lz;L,L, is called a left inner mapping of G.
A homogeneous loop G is a left 1. P. loop in which all left inner mappings are automor-
phisms of G (cf. [12], [13], [25]). :

Let G be a left I. P. loop. For x, y, z in G, we set

n(x, y, 2)=x((x"1y) (x712)).
Then, the ternary system 7: G x G x G—G satisfies the following relations;
Hy)  n(x, x, )=y,
Hy)  ulx, y, )=,
HY  1(x, e, ne, x, Y)=n(e, x, n(x, & Y))=,

where e denotes the unit element of G. In this case, for any fixed x in G, the multi-
plication p, given by u(y, 2)=n(x, y, z) makes G a left I. P. loop with the unit element
x. An isomorphism (G, u)=(G, p,) holds for every x and, especially, g, =p. Assume
that (G, p) is a homogeneous loop. Then, (G, u,) is homogeneous, and the ternary
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operation # on G satisfies the additional relations (cf. [15]);
Hs)  nCx, y, 0y, x, 2))=z,
My nlx y, 0w, v, w)=n(n(x, y, u), n(x, y, v), n(x, y, w)).

In this case, the permutation #(x, y) of G given by n(x, y)z=#(x, y, z) induces an
isomorphism (G, pu,)=(G, p,) for any x, y in G.

In general, a ternary system 7: G x G x G—G satisfying the relations (H,), (H,),
(H3) and (H,) is called a homogeneous system on G, and the permutations n(x, y) of
G are called displacements of (G, n) (cf. [15], [16]). It has been shown that the dis-
placement 5(x, y) from x to any point y of a homogeneous system (G, n) has exactly
the same properties as those of the left translations of the homogeneous loop (G, p,)
at x given above. :

In 1930’s, it was found that the concept of loops is closely connected with the
concept of 3-webs (cf. [6], [24]). Let (G, u) be a loop. We consider three families
o®, p=1, 2, 3, of subsets of W=Gx G as follows: For any ge G, we set Fu9)=
{(g, vlve G}, F(Z)(g)={(u’ 9lueG} and F(3)(g)={(u’ v)|u(u, v)=g}, and we call
them vertical lines, horizontal lines and transversal lines of W, respectively. Then,
c@®={F,\(9)lge G}, p=1, 2, 3, satisfy the following axioms (W,), (W,) of 3-web on
W (cf. [5], [6D);

(W,) Each point in Wis contained in exactly one line of every ¢, p=1, 2, 3.

(W,) Two lines of different families have exactly one point in common.
Moreover, if (G, p) is non-trivial, we have

(W3) There exist three lines Fy, p=1, 2, 3, which contain no point in common.

In general, a set Wwith three families ¢, p=1, 2, 3, of subsets F (0 Satisfying (W)
and (W) is called a 3-web and it is said to be non-degenerate if (W,) is satisfied. Let
W be a non-degenerate 3-web with families ¢, p=1, 2, 3, of ‘lines’ in W. For any fixed
vertical line G=Fy), choose a point e of G fixed. Then, we can define a multiplication
on G in the following manner (Fig. 1): Let G’ be the horizontal line through e.
For any two points x, y € G, let x’ € G’ be the intersection of the transversal line through
x with G', and let P(x, y) be the point of intersection of the vertical line through x’
and the horizontal line through y. Then, we get the point u(x, y) of G as the inter-
section of the transversal line through P(x, y) with the verticalline G. We can check
easily that (G, p) is a loop with the unit element e, and that the 3-web of this loop
constructed on G x G is equivalent to the given 3-web W. Here, 3-webs W and W’
are equivalent if there exists a bijection a: W— W' under which the vertical-, horizontal-
and transversal lines are preserved, respectively. In our case, the equivalence is given
by P: G x G- W sending (x, y) into the point P(x, ).

Let (G, u) be a loop represented on the vertical line {¢} x G of the 3-web W=
GxG. In [6], it was shown that each element x of the loop (G, y) has a two-sided
inverse x™* if'and only if the corresponding 3-web W is hexagonal at e (Fig. 2), that is,
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the hexagon (H) in Fig. 2 with the center e is a closed figure, and shown that (G, p)
has the left inverse property if and only if W satisfies the Bj-closure condition of Bol
along the vertical line {e} x G, that is, the figure (B)) in Fig. 3 is closed. Note that
these conditions are weaker than the corresponding closure conditions appeared in
[6] which are to hold at any place in W. The closed figure which characterizes homo-
geneous loops is rather complicated and we omit to illustrate it. ~ However, here is a
special class of homogeneous loops, K-homogeneous loops, which can be characterized
by the closed figure (K) in Fig. 4. A K-homogeneous loop is a left 1. P. loop with the
following property: (K) For any x and y in G, there exists a unique element z in G
such that L,L,=L,L,. In fact, we can show that the left inner mappings of a left
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I. P. loop G are automorphisms of G if the condition (K) is satisfied (Proposition 4).

In 1936, S. S. Chern introduced in his thesis [9] a differential geometric method
to the theory of 3-webs in differentiable manifolds whose ‘lines’ are given by differential
systems, and found an affine connection on 3-webs invariant under differentiable
equivalences of 3-webs, which we will call the Chern connection in this paper. He
characterized closure conditions of some figures in 3-webs by means of relations of the
torsion and the curvature of the Chern connection.

In this paper, after recalling the formulas for the torsion and the curvature of the
Chern connection, we will apply them to 3-webs of differentiable left I. P. loops and of
differentiable homogeneous loops (homogeneous Lie loops), and then clarify the inter-
relation between the canonical connection of homogeneous Lie loops and the bilinear
operations on the tangent spaces at the unit elements, induced by multiplications and
left inner mappings of the loops. On our way to this investigation, we will get the
relation of tangent Lie triple algebras of homogeneous Lie loops and their Akivis
algebras (cf. [3] or Ch. IX of [8]). Recently, K. H. Hofmann-K. Strambach have
treated it in [12]. We will also show that geodesic K-homogeneous Lie loops are
reduced to Lie groups.
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§2. Chern connections of 3-webs

In this section, we will recall the results about Chern connections of differentiable
3-webs in [9]. Let M be a 2r-dimensional differentiable manifold of class C*. A
differentiable 3-web W of dimension r (codimension 7) in M is a triple of foliations
@), p=1, 2, 3, of codimension r on an open subset W of M with the following pro-
perties: Given any point p in W, there exists exactly one leaf F,, of () through
p, for each p=1, 2, 3, such that the tangent spaces T,(F, () of F(,) at psatisfy {T,(F,) N
T(F ) =10} and {T(F U T(F)>=T,(W)for p#1,1=p, 7= 3, with ) denoting
the linear span in the tangent space T,(W). This can be described in terms of differ-

_ential systems as follows: A differentiable 3-web W with foliations Y.»), p=1, 2, 3,
is given by three families of involutive differential systems ®fy)s---» 0, on Wwith which
the foliation Y is defined by the equations wf,y=0, k=1,..., 1, where each of the
families of 1-forms {w}),..., Wf1y; Olaysees D)}y {OF1)sees Dty wls),..., 03} and
{@h)se..s 025 Ofz)se-05 D3y} 18 linearly independent at each point of W. In this case,
we can choose the forms wf,, to satisfy

(2.1) CO{%):CO{CI)‘I‘CU{CZ), k=1,..., r,

without loss of generality.

Let W be a differentiable 3-web of codimension r in a differentiable manifold M
of dimension 2r and assume that it is given by involutive differential systems {wf,)},
p=1, 2, 3, satisfying (2.1). Then there exist 1-forms 6¢»* on W such that

(2.2) dw{‘p) = a){p) AN ggp)k.
If we put
(2.3) 0Pk =0+ A¥; ;) + BY; ;)

=0{Vk + C¥; wly)+ D¥;0ly,

we can show the relations Bf;=B¥;, Ck;=C¥%; and Ak, — A%, =D}; —D¥;, by using

dowky, =dwk,, +dok,,. In the following, we denote

(3) 1) 2)

Also, we can show that the forms {1V —0{»* are described as follows:
(2.5) 951)"—052)k=/lf})" wzl)'l'AE?)kCO‘(’z),

where APk —APk=AD*— APk=ql;. Now, from (2.5) we can consider 1-forms
¥ given by

(2.6) wlic=0£k)_Ag})kw.(il)=9$2)k+Ag3,)k .
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From (2.2) and (2.3) the following formulas follow:

da)'(‘l) = wfl) AN a){‘+a{‘1 wzl) A w‘(ll)

2.7 ) ) .
dwécz) = (th) A U)? —ai‘(j wzz) A 60{2),

with differentiable functions a¥; and b%,, satisfying, af;+a%=0. The Chern
connection of the 3-web W is, by definition, the affine connection on W whose con-
nection forms @j, 1<a, f<2r, are given by d¥=dItf=wh and ®F ;=@ ¢ =0,
1=i,k<r, with respect to the linearly independent 1-forms {w},..., W1y
Wfay,..., )},  The formulas (2.7) and (2.8) show that the torsion tensor Tﬁy and the
curvature tensor R;’;,é with respect to the base forms {wf,; wf,)} are given by*

T¥=—Tith, ;= —2a}; and T%,=0 otherwise;

R’; r+m™= — R_l)?r+ml = ﬁ:1§1r+m =- R;:’)‘H- m= b_I;lma
4,6 =0 otherwise.
For brevity, we will call the functions a¥; and b%,, the torsion and the curvature of
the Chern connection of the 3-web. One of the most significant facts is that the Chern

connection is invariant under any diffeomorphism which induces an equivalence of
3-webs.

RemArk. In [10] and [11], V. Goldberg introduced another connection on
3-web by choosing 0{3’* as the connection forms with respect to the base forms {wf1);
), and he generalized it on d-webs w(d, n, r) of codimension r in nr-dimensional
manifolds (cf. Ch. X of [8]).

Now, we show some relations of the torsion and the curvature of the Chern
connection of a differentiable 3-web, which owe to S. S. Chern [9]. By substituting
the first equation of (2.7) to the equation ddwf,,=0, we have

iy A (dok— o) A 0¥) = Vak, +ak,ab, +akal, ) w0l A ol A of,
+ 7 Paf,wlyy A oy A oly,
where
V {Dal, i, =0Pak,0l, +al,0* —dk, 0@ —ak;0{,
dat,=0Wal,wly)+0Pak,0f,,

o=V + Pk ol =TDkoi,, a=1, 2.

* In this paper, we adopt the opposite signs of torsion and curvature of affine connection to
those appeared in usual bibliography.
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Then, from (2.8), we obtain
(7 Pak, +ak,ai, —akai,) ol A ol A o) =0,
(7 Pak, — bk, ) 0l1y A 0T A w{y=0,
which imply the following formulas:
S;,1,m(F Pak, +2ak,a%;) =0,

(2.9)
27 Pak, =bk,;—

mlj,

where &, denotes the cyclic summation with respect to j, I, m. In the same way,
by the equation ddwf,,=0, we get

6j i, m(V('Z)a;‘m-l-za{’(laj'm):O’
(2.10)
2V(l)alm"bljm mjl

By the formulas (2.9) and (2.10) we have

(2 11) jlm(bj Im~— bl]m) 46j,l,ma£"ja§ma

27 af,=(bf;m— mjl)w{1)+(b;‘mj_br’:tlj)w{2)'

On the other hand, by using (2.7) and (2.8), the following formulas are obtained from
the equation ddw*=0: '

V;al)b,;lm—Vgl) b1€ m=2 b?imaim
(2.12) .
7 @Obk, 7 Dbk =25k al,,

where
P @pk . =0L0bk,, @F + bl 0@ — by, 00

_b_l;;imwga)i —b_’;liwfna)i, o= 15 2.

§3. 3-Webs of differentiable left 1. P. loops

Let (G, p) be a differentiable loop of dimension r with unit element e. As con-
sidered in §1, a differentiable 3-web of (G, u) on G x G is given by the following three
families ¢, p=1, 2, 3, of r-dimensional submanifolds F,(g), g € G, of GxG, ie.,
vertical lines F;,(g)={g} x G, horizontal lines F,)(g)=G X {g} and transversal lines
Fi)(9)={(u, v)|u(u, v)=g}. Let U be a coordinate neighborhood of e and choose a
neighborhood V of e such that u(V, V) is contained in U. Then, for the coordinate
neighborhood W=VxV of (e, €) in Gx G with coordinates (u’,..., u"; vl,..., v"), the
3-web {6} on G x G induces a local 3-web on W defined by the following differential
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systems; > W =0W|y, duk=0; Y@ =¢®)|,, dv*=0; T @ =6@)|,, du¥=0. We
set- ofy)=Phdu’, of,=Q%dv' and wf;=du* for P¥=0,.u* and Q=0 u*, where
pu, v)=pkut,..., u"; v',...,v"). Then the 3-web {3} on W is described by the
equations wf,, =0 with wf;,=wl;)+wk,, so that we can apply the results in §2. The
r X r-matrices (P%) and (Q¥) are nonsingular on Wwhose inverse matrices will be denoted
by (P}) and (Q}), respectively. Since dwly,=PidP% Ay, and dok,=0idQ% A W2y,
we can write the 1-forms 6V% and 0(»’* given in (2.2) by the following manner;

9§~”"=(ﬁﬁfi—PﬁP?@qu,’i)wfl)—P‘}Q?aual”p‘%) s
fPk= —ﬁ?Qﬂfaquza)h) + (v} —070%0,.0%) i,

where Bf; and y}; are suitable functions satisfying B¥ =g and y¥;=7%. From
(3.1) we can obtain the torsion a¥; of the Chern connection in the following;

(3.1)

(3.2) aly= 5 (P31 — P20 00,01t%

For the connection form ¥ of the Chern connection, we have

(33) wz‘=ffjwf1)+ﬁf,a)fz), fﬁ, = - Fgé?aupavqﬂk.

A straightforward calculation of the 2-form dw*—w} A w% shows the followings:

(34) b_,;lm=a§1)f_,;m_al(n2)ffcj +f£€1f;m+f'¥zf§m_f‘l;szm_ficmf;,]a

and
agl)ﬁfnj"5;(nl)f5‘j=f.’f1ifb—f{°if5u
(3.5) o py M e a4
652)r§m_ar(nz)f_’;l=r{’cmr;‘l_F{'CIF?im’
where

0Tty =0yo,nl'.

Together with these formulas we get a local expression of the curvature b%,, of the
Chern connection as follows:

(3‘7) b.l;':lm= _P’Il,ﬁ_gg:n auPau‘lav':uk
+ Pgé?érnaiwavqau":uk
+P’Ii,Q’guauPavql'tk(}?;ﬁj:au"ausiu'i— P"I.Q"?au"avsﬂi)
+ P2010,00,0pt* (P505,0,0 st — 050,000 ot?).

Hence, we have the following;
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ProposITION 1. Let (G, p) be a differentiable loop of dimension r. Choose a
coordinate neighborhood of the unit element e. Then, for a neighborhood V of e,
the coefficients of the Chern connection, its torsion and curvature of the local 3-web
on W=VxV are evaluated at (e, e) as follows:

(38) f'{'cj(ea e)= _6u"av/uk(e5 e)
(39) atye, &= L @Qudu(e, - dud,mikCe, ),

b,’)glm(ea e) = aulaufav"':uk(e, e) - au'aufavm:uk(e, e)

(3.10) B _ . _
+F¥i(e9 e)FS'm(e9 e)—'r{'cm(ea e)[';.j(ea e)a

where the components are indexed with respect to the base forms {ofy,; wf)} with
oy =0, du’ and wly=0u*dv'.

Proor. To show the formulas, we are only to notice the following facts in the
formulas (3.2), (3.3) and (3.7); Pk, e)=Q¥(e, e)=5% Pi(e, e)=0i(e, e)=05; and
0,10,;4%(e, €)= 0,:0,;1*(e, €)=0. g.e.d.

In the rest of this section, we assume that the differentiable loop (G, u) has the left
inverse property, that is, there exists an inverse x~! of each x in G such that x~!(xy)=y
for ye G. We use the notation J, L, and L,, for the transformations of G defined
by the inversion J(x)=x"1, left translations L,(x)=ax and left inner mappings L, ,=
L;LL,L,. Choose a coordinate neighborhood U of e and denote by u*(ul,...,u";
v1,..., v") the coordinates of u(u, v) when pu(u, v)e U. We investigate the relations of
the torsion and the curvature of the Chern connection at the point (e, €) of the 3-web
W=VxV. The following is seen immediately from u(u, e)=u and u(e, v)=v:

0,1, €)=235%, 0,u*(e, v)=0%
(3.11) 0,10, Omp*(u, €)=0,
0,410, ++ 0 gt (e, )=0.

By the relation

(3.12) plx, x")=p(x"1, x)=e,
we have
(3.13) 0, J¥(e)= — ¥,

0,0;J%(€)=0,:0,.;u*(e, )+ 0,:0,:1*(e, €) .

Furthermore, from the third order partial derivatives of the equations (3.12), the
followings are obtained:
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(3 14) aj‘alam‘]k(e) = 6j,l,m(au-iav‘01}"‘/'lk - au’au"‘avf:u'k - ff}(f;m + f:nl)) (e’ e)
= 6j,I,m(auJ'au'av"‘/'tk - aufav'avm:u'k - f‘,;l(f"'im + Frlnl)) (e, e) ’

where I’ ki(e, ©= —0,:0,;u*(e, e) are the components of the Chern connection of the
3-web evaluated at (e, ¢). By (3.14) and (3.10) of Proposition 1, we have;

ProposiTION 2. (Cf. [9]) If the 3-web of a differentiable loop (G, p) is hexagonal
at e (Fig. 2 in §1), that is, if each x has an inverse x~1 such that x"1x=xx"t=e, then
the curvature b%,,, of the Chern connection satisfies the following relation at (e, €):

(315) Zj,l,m b‘,;lm(ea e) = 0

Now, we derive some formulas from the left inverse property; u(u=1, u(u, v))=v.
Differentiating this equation in u and v, we get

0u0,o (U™, o), )P, 0)
(3.16) + 0,10, (1™, uv)0,;ut (u, v)0,uP(u, v)
+ 0, (w1, uv)0,;0,4% (1, v)=0.
By differentiating (3.16) once again in u and evaluating it at (e, ¢) we have
(3.17) (20,10,10m}t* — 8,10 0yt — 0,10,10,mpt*) (e, €)
=(FY4 P+ T, — T, (T 4+ T)) (e, €).
Hence, from (3.10) of Proposition 1, we obtain

bk ia(e, e)+bk;n(e, €)=(0,10,:0,mu* + 045010 ym t*
~20,104,0mp*) (e, &)+ (P4 + I Ty,
=55+ T ) (e, €)=0.

Thus, we have;

ProposiTioN 3. (Cf. [2]) If the 3-web of a differentiable loop (G, p) satisfies the
(B)-closure condition along the vertical line {e} x G (Fig. 3 in §1), that is, if (G, p)
has the left inverse property, then the curvature b%,, of the Chern connection satisfies
the following relation at (e, e):

(3.18) b% (e, €)+ bf;,(e, €)=0.

For any elements a, b in G, the left inner mapping L, , is a diffeomorphism of G
onto itself and it leaves the unit element e fixed. Let & =T,(G) be the tangent space
of G at e, L} y(e) the linear tansformation of & induced from L,,. Choose a co-
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ordinate neighborhood U of e. Then, L¥,eGL(®) has the following matrix-
represention with respect to the natural coordinate basis at e:

(3.19) (L} () =0,o1((ab)™", ab)d,ap?(a, b)o,:n(b, €).

The differentiable map L*: Gx G—»GL(®) given by L*(a, b)=L} ,(e) induces a
bilinear map dL: ® x ®—End (®) in the following way: :

(3.20) AL(X, Y)k=X?Y40,,0,.L}*(e, )
for X=X9,(e) and Y=Y!9{(e) in ®. Then, we can show the following equation
3.21) 010pmL¥*(e, €)=0,0,m0,:*(e, €)

— 0 ym0 10,514 (e, €)

+0,0,314(e, €)0ymOppii(e, €)

— OymO,ipt(e, €)0,a0,pi'(e, €).

We consider another bilinear map du: & x ®— 6 at e induced from the multiplication
p of the loop, that is, in any local coordinates around e, we set

(3.22) : d(X, Y)=X"'Y70,0,;u*(e, €)0,(e)
for X =Xi0,e) and Y=Y?3e).

THeOREM 1. Let (G, p) be a differentiable left 1. P. loop, ® the tangent space of
G at the unit element e. The bilinear maps dL: ® x &—End (6) and dy: 6 x6-6
given by (3.20) and (3.22), respectively, are described with respect to any-local co-
ordinates around e by the curvature and the torsion of the Chern connection in the

following way;
(3.23) dL(X, Y)k= —X'Y™b, (e, €)
(3.24) du(X, Y)k—du(Y, X)k=—2X'Y/ak(e, e)

for any X =X'0(e) and Y=Y'de) in ®, where a¥; and bf,; are indexed with respect
to the base forms {w},; wk,} given by wf,=Pkdu’ and wfy=Q¥kdv'.

Proor. Comparing the equation (3.10) of Proposition 1 with (3.21), we get
(3.23). The equation (3.24) is obtained directly from (3.9) of Proposition 1 and the
definition (3.22) of dpu. g.e.d.

From Proposition 3 and the equation (3.23), we have

CorOLLARY 1. dL(X, Y)+dL(Y, X)=0 for X, Ye 6.
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In his work [3], M. Akivis introduced a tangent algebra of a differentiable loop,
which was given the name ‘Akivis algebra’ by K. H. Hofmann-K. Strambach in [8],
[12]. The Akivis algebra of a differentiable loop (G, p) is, by definition, the tangent
space ® at e with the bilinear operation [X, Y] and the trilinear operation <X, Y, Z)
given by (cf. Ch. X of [8])

[X, Y]* = —2XiYiak,

ijos
(X, Y, ZYk=X'Y"Zibk,,

for X=X%0,(e), Y=Y!0(e) and Z=2Z'3,(e) with respect to any local coordinates at e.
It satisfies the following axioms;

(A [X, X]=0
(Az) S(KX, Y, Z)—<Y, X, Z))=C[[X, Y], Z],

where & denotes the cyclic summation with respect to X, ¥, Z. The condition (A,)
is assured by the first equation of the formula (2.11) of S. S. Chern.

CoROLLARY 2. The Akivis algebra (®, [, 1], {,,>) of a differentiable left 1. P.
loop is given by

X, Y, Z)=dL(X, 2)Y
for X, Y, Ze®.

§4. Canonical connections of homogeneous Lie loops and Chern connections

Let (G, p) be an r-dimensional differentiable left I. P. loop of class C*. If (G, )
satisfies the condition; (L) each left inner mapping L, is an automorphism of (G, p);
itis called a homogeneous Lie loop ([13]). In this section, we consider the differentiable
homogeneous system # of a homogeneous Lie loop (G, p) and describe the relations of
the torsion and the curvature tensor of the canonical connection with those of the
Chern connection of the 3-web of (G, p). The concept of canonical connections has
been introduced in [13] for homogeneous Lie loops and for differentiable homogeneous
systems in [16-I]. More generally, we define the canonical connection on a differ-
entiable left I. P. loop (G, p) as follows: Let # be the ternary system on G defined by
n(x, y, z)=x((x"1y)(x~1z)) (cf. §1). Then 5 is differentiable and it satisfies (H)),
(H) and (H3) in §1. Since each left translation L, is a diffeomorphism of G, any
displacement 5(x, y): G—G given by n(x, y)z=#(x, y, z) is a diffeomorphism of G.
We denote by dn(x, y) the linear map of T(G) to T,(G) induced by the displacement
n(x, y). At an arbitrary point x in G, we choose a coordinate neighborhood U and
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we denote by E?=04(x), i=1, 2,..., r, the natural basis of the tangent space T(G) at
x with respect to the local coordinates (u¥). Put EF(y)=dn(x, y)E? for ye U. Then,
we have differentiable vector fields E¥,..., E¥ on U which are linearly independent at
each point in U. For any differentiable vector field Y on G, wecanset Y=Y'E} on U
with differentiable functions Y? on U. Let X be another differentiable vector field
on G. We can define the covariant differentiation of Y at x with respect to X in the
following;;

(4.1) (PxY),=(XT*)(x)EY.

The connection on G defined by the operator of the covariant differentiation V above
will be called the canonical connection of the differentiable left I. P. loop (G, w).
From the definition above, we can see that the canonical connection V of (G, )
coincides with one introduced in [13] if (G, u) is a homogeneous Lie loop. By the
property (H,), there exists a neighborhood V of x such that #(a, b, ¢)e U for a, b, ce V.
We denote the coordinates of 5(a, b, ¢) and their partial derivatives by 5*(a’, b/, c™),
0,m*, 0ym*, O.m1*, and so on. The properties (H,) and (H,) imply the followings;

(42) ac"”’k(a9 a, c)=5£c’ abi”k(aa ba a)=5£'ca
acfacf"'ac"'r’k(a: a, C)=abiabf"'ab’"”k(aa b9 a)=0

Since E¥(y)=dn(x, y)E¢=(0,m*(x, y, u))y=x0(y)=0.m*(x, y, x)0(y) for yeU, we
can set

() =YIMEFY),
where (Y}()) is the inverse matrix of (0,,4*(x, y, x)). By the equation
ay'ijac"rlm(x’,ya JC)'I‘ Y.,;(y)abiacknm(xs Y, X)=0

and by the definition (4.1) of the covariant derivatives, we get the components of the
canonical connection;

4.3) : I'ti(x)= — 00, .M*(x, x, X),
where F,,0;=I%0, in the coordinate neighborhood U. Hence, we have
“4.4) T¥,(x) = 0pi0,m*(x, X, X) — OpsOi*(x, X, X),

where T¥ =I% —TI%; are the components of the torsion tensor of the canonical
connection 7.

In the following, we assume that (G, ) is a homogeneous Lie loop. Then, we
have seen in §1 that the associated homogeneous system # satisfies (H;) and (H,).
Differentiate the both sides of the equation
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(Hy) n(e, x, nle, u, v))=n(x, n(e, x, u), n(e, x, v))
in # and v, in_ a neighborhood of e contained in U. Then, we get
4.5) 0Opa0c™(x, n(e, x, u), n(e, x, v))0.n4e, x, u)d,m (e, x, v)
=0.40.1*(e, x, n(e, u, 0))0pmne, u, v)0,m"(e, u, v)
+0,m*(e, x, n(e, u, 0))0ymd. mi(e, u, v).
We use the notation in §3 for u(u, v)=n(e, u, v); i.e.,
Pl(x, y)=0,m e, x, y), Q¥(x, y)=0.m"(e, x, y)

and (P}), (0}) are the inverse matrices of (P%) and (Q%), respectively. The equation
(4.5) evaluated at u=v=-e implies :

(4.6) Tl(x)=Tb (Qkx, 9T(x, TUx, €) —0,d,at*(x, )TE(x, )Ti(x, €)
for xe U. From the equation (4.5), we can obtain
“.7 (0420500 1 (X, X, X) 4 04p0pa0 " (x, X, X)
+ 050001 (x, X, X))O5 (x, €)QJ(x, €)
=0pp0cm0.M*(e, X, €) + T§(X)03:0.mt' (e, x, €)Q5(x, €)
+T%(x)0p00.m' (e, X, €)QL (X, €)
—T'ii(e)0:0 1% (e, x, €).

Evaluating the both sides of the equation (4.7) at x=e and substituting the equation

(48) - alrlcnj(e) = aa’ab"‘acﬂ']k(e: e, e) + ab'abmacfnk(ea e, e) + ab’"ac’acf”k(ea e, e) s
we get
4.9) R¥,,(€)=0y0.m0.m*(e, e, €)— 000, .m*(e, e, €)

+Ii(@r}(e)— Tkl (e)+T¥(e)Ti,(e),

where RY,=—0,I'k;+0,['f;—I}T};+TkI'i; are the components of the curvature
tensor of the canonical connection.

By the way, the equations (4.7) and (4.8) also imply the following;
(4.10) atTilﬁj(e)= -r ’fi(e)Trinj(e)'Fr %m(e)T{'cj(e)'I'F ;.j(e)TrI:ti(e)>

that is, V' T(e)=0, which has been shown in [13] to hold at each point of the homo-
geneous Lie loop G.
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The Chern connection of the local 3-web of the homogeneous Lie loop (G, p)
has the components ['¥ (1, v) written in the form (3.3). Hence, we have

Boil =PI P70 0,000 t"0,n 0 ,st"
13‘1’ 08070,00,a1*0,nd 511"
— Pp0,10,00,40,:1%,
and, evaluating it at (e, ), we have
0,0k (e, e)=T"%(e, &)} (e, €)= 0,0,m0,iu* (e, €).

Since Ik (e, e)=T%,(e), we obtain from (4.8) and (4.10)
(4.11) 0,i(Ik; =Tk ) (e, €)= R, (e)+0; T}, (e)

+ TH(e) Ti(e) + Tin(e) Thi(e)

+ Tiy(e) Th(e).

TueoreM 2. Let (G, ) be a homogeneous Lie loop. Denote by dp and dL the
bilinear maps on the tangent space ®=TJG) at the unit element e, induced from the
multiplication pu and left inner mappings, respectively (cf. (3.20), (3.22)). Then, the
torsion tensor T and the curvatire tensor R of the canonical connection of (G, p) admit
the following experessions:

(4.12) T(X, Y)=duX, Y)—du(Y, X),
(4.13) R(X, V)=2 dL(X, Y)

for X, Yin ®. The components of T and R with respect to any local coordinates
(u) around e are related with the Chern connection of the local 3-web as follows;

(4.14) Tki(e)=—2alj(e, ¢),

(4.15) R}in(€)= —2bln e, €),

where a¥; and bf,,; are the torsion and the curvature of the Chern connection with
respect to the base forms {wl,; wlk)} given by wfy=Ptdu’ and wf)=Q%dv'.

PrOOF. Since p*(u, v)=n*(e, u, v), we have I'¥;j(e)=—0,0,u*(e, €), which im-
plies (4.12) and (4.14) by virtue of (3.22), (3.24) and (4.4). On the other hand, by using
the components of dL(X, Y) given in (3.20) and (3.21), we get

X'Y"RE,(e)=dL(X, Y)t—dL(Y, X)k.

Then, Corollary 1 to Theorem 1 and the equation (3.23) in Theorem 1 lead us to the
equations (4.13) and (4.15). g.e.d.
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In [13] we have introduced the concept of tangent Lie triple algebra of a homo-
geneous Lie loop (G, p) as follows: Let = T,(G) be the tangent space of G at the unit
e. Weset XY=T, (X, Y)and D(X, Y)=R, (X, Y) for X, Ye ®, where Tand R denote
the torsion and the curvature of the canonical connection of (G, x). We have seen
that the bilinear product XY and the trilinear product D(X, Y)Z satisfy the axiom of
Lie triple algebra (general Lie triple system of K. Yamaguti [26]);

(L) XX=0

(L, D(X, X)=0

(Ls) S(D(X, Y)Z+(XY)Z)=0

(Lo SD(XY, Z)=0

(Ls) DX, Y)(UV)=(D(X, NU)V+U(D(X, Y)V)

Ly DX, Y), DU, V)]I=D(D(X, Y)U, V)+D(U, DX, Y)V),

where & denotes the cyclic summation with respect to X, Yand Z. We have developed
in the series of articles [13]-[23] an analogy of the theory of Lie groups and Lie algebras
for homogeneous Lie loops or, in more general case, for differentiable homogeneous
systems. Now, from Theorem 2 and Corollary 2 to Theorem 1, it follows that the
tangent Akivis algebra and the tangent Lie triple algebra coincide with each other for
homogeneous Lie loops, up to the order and a scalar multiple of the trilinear product,
that is,

COROLLARY. Let & be the tangent space of a homogeneous Lie loop (G, p) at
the unit element e. Then, the tangent Lie triple algebra {®; XY, D(X, Y)Z} and
the tangent Akivis algebra {G; [X, Y], <X, Y, Z>} are related in the following;

XY=[X, Y], DX, V)Z=2%(X,Z, Y> for X,Y,Ze6.

ReMark. The same result has been shown recently in [12].
Finally, we consider the canonical connection of a K-homogeneous Lie loop.

PrOPOSITION 4. Let (G, p) be a left 1. P. loop. If it satisfies the condition (K)
in §1, then it is a homogeneous loop.

Proor. The condition (K) implies that, for any x, y, u in G, there exists an
element w in G such that

L L LLLL;L,,=L,.

Operating both sides of this equation to the unit e, we get w=L, ju. Therefore, we
have L, ,L,=L,L,,, that is,

DA
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L, (uv)=(L, u)(L,,v). g.e.d.

PROPOSITION 5. A homogeneous loop (G, p) is K-homogeneous if and only if the
homogeneous system n: G x G x GG satisfies
(K") For any x, y € G, there exists an element z € G such that, y(x, y)=n(e, z).

Proor. For any x, yeG, set u=x"1y. By (H;) and (H,), the equation
L .L,L;1=L, can be rewritten as #(x, xu)=n(e, z). : q.e.d.

Now, we assume that (G, p) is a K-homogeneous Lie loop. By the proposition
above, the differentiable homogeneous system # of (G, y) must satisfy the condition
(K’). Let x be a fixed point in G and set n(x, y, v)=n(e, u, v) with y=p(u, x) for y,
ve G. In a coordinate neighborhood around e, we can see

ay"uk(y)z P’l((ua x) )
ab'acfnk(x$ ) U)':abmacfr’k(er u, U)P’l"(u, x) .
Hence, the components ['¥; of the Chern connection can be evaluated at (e, x) as
follows:
f;,i‘j (ey X)= _P’?(ea X)Qf;'(e, x)au"av"',uk(e9 x)
= _P’?(e> x)au"av.i,uk(e9 X)
= _abiacf"k(x’ X, x)7
that is, I'¥;(e, x)=T"¥;(x).
Thus, we have

PROPOSITION 6. The canonical connection of a K-homogeneous Lie loop satisfies
rs(x)=r%fe, x)

in a neighborhood of the unit e, where f’;j are the components of the Chern connection
with respect to the base forms {wf;y; 0y}

TueoreM 3. Let (G, ) be a K-homogeneous Lie loop. Then, the curvature R
of the canonical connection vanishes identically on G.

Proor. Since T ifj(x):f’;- (e, x)=T ¥(e, x) by Proposition 6, we can use (4.11)
with 8;T%,(x)=0,(I"%,—I'%,) (e, x) and we can see
RE () + G,,n 5@ Thn(€) =0.
From the condition (L) of the tangent Lie triple algebra, which is equivalent to the
condition (A,) of Akivis algebra, we can show

0=, ; m(R%u(e) + T;(e) Ti.(e))
=46j,l,m T{(J(e) Tim(e)’
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Hence, we have RY,,(¢)=0, and this holds at every point of G since (G, x) is homo-

geneous. g.e.d.
By Theorem 1.1 in [16-II] we have immediately the following;

CoroLLARY. Let (G, p) be a connected analytic K-homogeneous Lie loop. If
(G, w) is geodesic, then it is reduced to a Lie group.

References

[1] A.A. Albert, Quasigroups I, Trans. Amer. Math. Soc. 54 (1943), 507-519.

[2] M. A. Akivis, Local differentiable quasigroups and three-webs of multidimensional surfaces
(Russian), Shtiinsta Kishinev (1973), 3-12.

[3] ———— Local algebras of a multidimensional 3-web (Russian), Sibir. Math. J. 17 (1976),
5-11.

[4] ———, Geodesic loops and local triple systems in an affinely connected spaces, ibid.
19 (1978), 243-253.

[5] A. Barlotti-K. Strambach, The geometry of binary systems, Adv. Math. 49 (1983), 1-105.

[6] G.Bol, Gewebe und Gruppen, Math. Ann. 144 (1937), 414-431.

[7] R.H.Bruck, A survey of binary systems, Springer 1958.

_[81 O. Chein-H. Pfulugfelder-J. D. Smith (eds.), Theory and applications of quasigroups and

loops, Helderman (to appear).

[9]1 S.S.Chern, Eine Invariantentheorie der Dreigewebe aus r-dimensionalen Mannigfaltigkeiten
im R,,, Abh. Math. Sem. Univ. Hamburg 11 (1936), 333-358.

[10] V.V.Goldberg, (n+1)-webs of multidimensional surfaces (Russian), Dokl. Akad. Nauk
SSSR 210 (1973), 756-759.

[11] ———, (n+1)-webs of multidimensional surfaces (Russian), Bulagr. Akad. Nauk Izv.
Mat. Inst. 15 (1974), 405-424.

(12] K. H.Hofmann-K. Strambach, The Akivis algebra of a homogeneous loop, Fach. Math.
Tech. Hoch. Darmstadt Preprint 908 (1985).

[13] M. Kikkawa, Geometry of homogeneous Lie loops, Hiroshima Math. J. 5 (1975), 141-179.

[14] ———, A note on subloops of a homogenous Lie loop and subsystems of its Lie triple
algebra, ibid. 5 (1975), 439-446. _

[15] —, On the left translations of homogeneous loops, Mem. Fac. Lit. & Sci., Shimane
Univ. Nat. Sci. 10 (1976), 19-25.

[16) ———, On homogeneous systems I, ibid. 11 (1977), 9-17; II, ibid. 12 (1978), 5-13;
III, Mem. Fac. Sci. Shimane Univ. 14 (1980), 41-46; IV, ibid. 15 (1981), 1-7; V, ibid. 17
(1983), 9-13.

[177 ————, Remarks on solvability of Lie triple algebras, Mem. Fac. Sci. Shimane Univ.
13 (1973), 17-21.

[18] ———, On Killing-Ricci forms of Lie triple algebras, Pacific J. Math. 96 (1981), 153-161.

[191 ——, On the decomposition of homogeneous systems with nondegenerate Killing-Ricci
tensor, Hiroshima Math. J. 11 (1981), 525-531.

[200 ———, On the Killing radical of Lie triple algebras, Proc. Japan Acad. 58-A (1982),
212-215.

[21] ————, Remarks on invariant forms of Lie triple algebras, Mem. Fac. Sci. Shimane Univ.

16 (1982), 23-27.



[22]
[23]
[24]
[23]

[26]

Canonical Connections of Homogeneous Lie Loops and 3-Webs 55

. Naturally reductive metrics on homogeneous systems, Nederal. Acad. Wetensch.
Proc. A-87 (1984), 203-208.

., Totally geodesic imbeddings of homogeneous systems into their enveloping Lie
groups, Mem. Fac. Sci. Shimane Univ. 18 (1984), 1-8.
K. Reidemeister, Gewebe und Gruppen, Math. Z. 29 (1928), 427-435.
L. Sabinin, Methods of nonassociative algebras in differential geometry (Russian), an added
chapter to the Russian translation of Kobayashi-Nomizu ‘Foundations of Differential Geometry
I’, Nauka 1981.
K. Yamaguti, On the Lie triple systems and its generalization, J. Sci. Hiroshima Univ.
A-21 (1958), 155-160.



