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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Extremal EV distribution of RMs

Gap probability & integrability

Prob(no EV in (a1, a2)) = Det(I−K|(a1,a2))

Jimbo-et al. 1980 : β = 2 spec.bulk : Ksinc|(0,s) → Painleve V
Tracy-Widom 1993 : β = 2 soft edge : KAiry|(s,∞) → Painleve II
Tracy-Widom 1993 : β = 2 hard edge : KBessel|(0,s) → Painleve III’
Tracy-Widom 1996 : β = 1, 4 (Pf) related to β = 2 (Det)
+ finite-N kernels (e.g. CUEN : Ksin / sin → Painleve VI), beyond-Airy, ...
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Joint distributions of extremal EVs

Extremal EV distribution of RMs

What about joint distributions?

2 largest EVs 2 smallest SVs

N = 128, #samples = 107

Joint distr. P12(t, s) of 1st & 2nd EVs → Isomonodromic Systems

Forrester-Witte 2007 (70 pages) : hard edge → IS for Painleve III’

Witte-Bornemann-Forrester 2013 (29 pages) : soft edge → IS for Painleve II

Perret-Schehr 2014 (34 pages) : soft edge → Lax pair for Painleve XXXIV 4 / 25
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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Tracy-Widom method

Revisit this problem for

More user-friendly analytical formulation!

Universally applicable to K(x, y) =
φ(x)ψ(y)− ψ(x)φ(y)

x− y

Easily generalizable to P12···p(s1, . . . , sp)

Solution : apply T-W method

if

m(x)
d

dx

[
φ(x)
ψ(x)

]
=

[
A(x) B(x)

−C(x) −A(x)

] [
φ(x)
ψ(x)

]
with polynomials

m,A,B,C,

then ∂ai logDet(I−K|(a1,a2)) satisfy a system of PDEs containing
coefficients of m,A,B,C

to the kernel with conditioned EVs
5 / 25
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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Determinantal point process

Consider DPP on a countable set

X

Joint prob of N pts : P (n1, . . . , nN ) =
1

N !
det [K(ni, nj)]

N
i,j=1

with kernel K =
[
K(n, n′)

]
n,n′∈X = Kt = K ·K, trK = N

⇓
Joint prob of k pts : ρk(n1, . . . , nk) = det [K(ni, nj)]

k
i,j=1

Gap probability = det(I−KI), KI =
[
K(n, n′)

]
n,n′∈I

everything carries over to DPPs on continuum

ρk({n}) → ρk({x})dx1 · · · dxk , det → Det
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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Conditional probability

fix a point m and define ‘modified kernel’

K̃(n, n′) = K(n, n′)− K(n,m)K(m , n′)

K(m ,m)

satisfies K̃ =
[
K̃(n, n′)

]
n,n′∈X

= K̃t = K̃ · K̃, tr K̃ = N − 1

conditional joint prob of k pts, with m already occupied:

ρ̃1(n|m) =
ρ2(n,m)

ρ1(m)
=
K(n, n)K(m ,m)−K(n,m)K(m , n)

K(m ,m)
= K̃(n, n)

ρ̃2(n1, n2|m) =
ρ3(n1, n2,m)

ρ1(m)

=
K(n1, n1)K(n2, n2)K(m ,m)± (5 terms)

K(m ,m)
= det

[
K̃(ni, nj)

]2
i,j=1

, etc.
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Conditional probability

thus the modified kernel

K̃(n, n′) = K(n, n′)− K(n,m)K(m , n′)

K(m ,m)

corresponds to a DPP, governing the conditional joint prob

ρ̃k(n1, . . . , nk|m) = det
[
K̃(ni, nj)

]k
i,j=1

now fix more points one by one. by induction it generalizes to ...
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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Conditional probability

Lemma (1)

fix p distinct points m1, . . . ,mp and let

κ = [K(m i,m j)]
p
i,j=1 , k = [K(m i, n)]

n∈X
i=1,...,p , K =

[
K(n, n′)

]
n,n′∈X

then K̃ = K− k tκ−1k

governs the conditional joint prob with m1, . . . ,mp already occupied:

ρ̃k(n1, . . . , nk|m1, . . . ,mp) = det
[
K̃(ni, nj)

]k
i,j=1

it immediately leads to...
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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Janossy density

Lemma (2)

Probability that a subset I ⊂ X is otherwise empty under the condition
that m1, . . . ,mp ∈ I are already occupied is given by

J̃p(I|m1, . . . ,mp) = det(I− K̃I) , K̃I =
[
K̃(n, n′)

]
n,n′∈I

Janossy density = Probability that a subset I ⊂ X contains exactly
p points at m1, . . . ,mp is given by

Jp(I;m1, . . . ,mp) = detκ · det(I− K̃I)

10 / 25



Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Janossy density

Lemma (2)

Probability that a subset I ⊂ X is otherwise empty under the condition
that m1, . . . ,mp ∈ I are already occupied is given by

J̃p(I|m1, . . . ,mp) = det(I− K̃I) , K̃I =
[
K̃(n, n′)

]
n,n′∈I

Janossy density = Probability that a subset I ⊂ X contains exactly
p points at m1, . . . ,mp is given by

Jp(I;m1, . . . ,mp) = detκ · det(I− K̃I)

10 / 25



Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Janossy density

so far, nothing new actually.

using

∣∣∣∣ A B
C D

∣∣∣∣ = |D| ·
∣∣A−CD−1B

∣∣, Janossy density allows for 3 disguises

Jp(I;m1, . . . ,mp) = detκ · det
(
I− (K− k tκ−1k)I

)
= (−1)k det

∣∣∣∣ −κ −k
−k t I−KI

∣∣∣∣
= det(I−KI) · det

[
⟨mi|KI(I−KI)

−1|mj⟩
]p
i,j=1

• 3rd line is listed e.g. in textbook of Daley-Vere Jones (1988), p.140

• 1st line is suited for applying T-W method to Det(I− K̃I)
11 / 25
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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

T-W method for K̃

Tracy-Widom criteria (1994) :

1 kernel is of Christoffel-Darboux form K(x, y) =
φ(x)ψ(y)− ψ(x)φ(y)

x− y

2 2 functions satisfy linear DEs

m(x)
d

dx

[
φ(x)
ψ(x)

]
=

[
A(x) B(x)

−C(x) −A(x)

] [
φ(x)
ψ(x)

]
with polynomials

m,A,B,C,

then ∂ai logDet(I−K|(a1,a2)) is determined from a system of PDEs in ai

now comes the punchline:

Theorem

If a kernel K satisfies the T-W criteria, so does the modified kernel K̃

12 / 25
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Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Proof of Theorem

by induction, sufficient to prove for fixing one point at t.

1 K̃ is of Christoffel-Darboux form

almost trivial, because for K consisting of polynomials orthogonal by weight w(x)

K̃ consists of polynomials orthogonal by weight w̃(x) = (x− t)2w(x).

more explicitly,

K̃(x, y) =
φ(x)ψ(y)− ψ(x)φ(y)

x− y︸ ︷︷ ︸
K(x,y)

−
φ(x)ψ(t)− ψ(x)φ(t)

x− t︸ ︷︷ ︸
K(x,t)

1

ρ1(t)︸ ︷︷ ︸
K(t,t)−1

φ(t)ψ(y)− ψ(t)φ(y)

t− y︸ ︷︷ ︸
K(t,y)

=
φ̃(x)ψ̃(y)− ψ̃(x)φ̃(y)

x− y
, where

φ̃(x) := φ(x)−
b(aφ(x)− bψ(x))

x− t
a =

ψ(t)√
ρ1(t)

, b =
φ(t)√
ρ1(t)

ψ̃(x) := ψ(x)−
a(aφ(x)− bψ(x))

x− t
13 / 25
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Applicability of T-W method
Joint distributions of extremal EVs

Proof of Theorem

2 φ̃(x), ψ̃(x) satisfy linear DEs of T-W form

nontrivial. differentiate them to get

m(x)
d

dx

[
φ̃(x)

ψ̃(x)

]
=

[
Ã(x) B̃(x)

−C̃(x) −Ã(x)

] [
φ̃(x)

ψ̃(x)

]
, with

Ã(x) = A(x) +
a2B(x)− b2C(x)

x− t
−
ab

(
2abA(x) + a2B(x) + b2C(x)−m(x)

)
(x− t)2

B̃(x) = B(x)−
2b(bA(x) + aB(x))

x− t
+
b2

(
2abA(x) + a2B(x) + b2C(x)−m(x)

)
(x− t)2

C̃(x) = C(x) +
2a(aA(x) + bC(x))

x− t
+
a2

(
2abA(x) + a2B(x) + b2C(x)−m(x)

)
(x− t)2

since m,A,B,C are polymomials in x, so are Ã, B̃, C̃ after redefinition

(x− t)2m(x) 7→ m(x), (x− t)2Ã(x) 7→ Ã(x), etc

14 / 25
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Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Remarks

K̃(x, y) vanishes at x, y = t :

K̃(t, y) = K(t, y)− K(t, t)K(t, y)

K(t, t)
= 0 ⇒

(K̃I · f)(t) = 0 ⇒ ((I− K̃I)
−1 · f)(t) = f(t)

φ̃(x), ψ̃(x) vanish at x = t by def. thus, for j ∈ N

qj(t) := ((I− K̃I)
−1 · xjφ̃)(t) = tjφ̃(t) = 0

pj(t) := ((I− K̃I)
−1 · xjψ̃)(t) = tjψ̃(t) = 0

... will be used for consistency check of the solution qj(s), pj(s)
obtained from BC imposed at s = ∞ or s = 0

15 / 25
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... will be used for consistency check of the solution qj(s), pj(s)
obtained from BC imposed at s = ∞ or s = 0
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Remarks

• Fixing EVs on tj ⇔ Multiplying the measure by
∏
j det(H − tj)

2

N∏
i=1

w(xi) ·
N∏
i>j

(xi − xj)
2

∣∣∣∣∣∣
xN=t

∝
N−1∏
i=1

w(xi)(xi − t)2︸ ︷︷ ︸
w̃(xi)

·
N−1∏
i>j

(xi − xj)
2

conditional prob. ρ̃k(x1, . . . , xk|t1, . . . , tp), J̃p(I|t1, . . . , tp) for weight w(x)
= unconditional prob. ρk(x1, . . . , xk), J0(I) for weight w̃(x)

“QCD with pairwise-degenerated quarks
with masses m2

j = −tj”
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Janossy density for KAiry

Evaluate Det(I− K̃|(s,∞)) = J1((s,∞); t)

φ(x) = Ai(x) , ψ(x) = Ai′(x) satisfy LDEs with

m(x) = 1 , A(x) = 0 , B(x) = 1 , C(x) = −x
⇓

φ̃(x) , ψ̃(x) satisfy LDEs with

m(x) = (x− t)2

Ã(x) = −ab(a2 − 1)− a2t+
(
a2 + ab3 − b2t

)
x+ b2x2 :=

∑2

j=0
αjx

j

B̃(x) = b2(a2 − 1) + 2abt+ t2 −
(
2ab+ b4 + 2t

)
x+ x2 :=

∑2

j=0
βjx

j

C̃(x) = a2(a2 − 1)− (ab− t)2x− 2(ab− t)x2 − x3 :=
∑3

j=0
γjx

j
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Applicability of T-W method
Joint distributions of extremal EVs

Janossy density for KAiry

Evaluate Det(I− K̃|(s,∞)) = J1((s,∞); t)

R(s) = ∂s logDet(I− K̃(s,∞)) = p0(s)q
′
0(s)− q0(s)p

′
0(s)

qk(s) = ((I− K̃I)
−1 · xkφ)(s), pk(s) = ((I− K̃I)

−1 · xkψ)(s)

uk(s) =

∫
I
dxφ(x)xk((I− K̃I)

−1 · φ)(x), vk(s) =

∫
I
dxψ(x)xk((I− K̃I)

−1 · φ)(x)

ṽk(s) =

∫
I
dxφ(x)xk((I− K̃I)

−1 · ψ)(x), wk(s) =

∫
I
dxψ(x)xk((I− K̃I)

−1 · ψ)(x)

satisfy a closed system of ODEs in s, with coefficients α0,1,2, β0,1,2, γ0,1,2,3(t):
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Joint distributions of extremal EVs

Janossy density for KAiry

T-W system of ODEs

(s − t)
2
q
′
0 =

2∑
j=0

(
αj +

1∑
k=0

αj+k+1vk +
2∑

k=0

γj+k+1uk

)
qj − v0q0

+
2∑

j=0

(
βj +

1∑
k=0

αj+k+1uk +
1∑

k=0

βj+k+1vk

)
pj + u0p0

(s − t)
2
p
′
0 =

3∑
j=0

(
−γj +

1∑
k=0

αj+k+1wk +
2∑

k=0

γj+k+1ṽk

)
qj − w0q0

+
2∑

j=0

(
−αj +

1∑
k=0

αj+k+1ṽk +
1∑

k=0

βj+k+1wk

)
pj + ṽ0p0

u
′
0 = −q0q0, u

′
1 = −q0q1, u

′
2 = −q0q2, v

′
0 = −q0p0, v

′
1 = −q0p1, v

′
2 = −q0p2

w
′
0 = −p0p0, w

′
1 = −p0p1

q1 = s q0 − v0q0 + u0p0, q2 = s
2
q0 − v0q1 − v1q0 + u0p1 + u1p0

q3 = s
3
q0 − v0q2 − v1q1 − v2q0 + u0p2 + u1p1 + u2p0

p1 = s p0 − w0q0 + ṽ0p0, p2 = s
2
p0 − w0q1 − w1q0 + ṽ0p1 + ṽ1p0

ṽ0 = v0, ṽ1 = v1 − v0ṽ0 + u0w0, ṽ2 = v2 − v0ṽ1 − v1ṽ0 + u0w1 + u1w0

with appropriate BCs at s ≫ 1
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Janossy density for KAiry

q0(s) and p0(s)

R(s) = ∂s logDet(I− K̃(s,∞)) = p0(s)q
′
0(s)− q0(s)p

′
0(s)

-2.00010 -2.00005 -2.00000 -1.99995 -1.99990

-0.00006

-0.00004

-0.00002

0.00000

0.00002

0.00004

0.00006

s

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

s

q
0
(s
),
p
0
(s
)

NDSolve from q0(8) = Ai(8), p0(8) = Ai′(8) for t = −2
⇒ q0(−2) = p0(−2) = 0.000000...

numerically very stable!
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Janossy density for KAiry

Joint distribution of 1st & 2nd largest EVs

P12(t, s) = Θ(t− s)ρ1(t)∂s exp

(
−
∫ ∞

s

ds′R(s′)

)

21 / 25



Introduction
Janossy density in DPP

Applicability of T-W method
Joint distributions of extremal EVs

Janossy density for KBessel

Evaluate Det(I− K̃|(0,s)) = J1((0, s); t)

φ(x) = Jν(
√
x), ψ(x) =

√
x

4

(
Jν−1(

√
x)− Jν+1(

√
x)

)
m(x) = x, A(x) = 0, B(x) = 1, C(x) =

1

4
(x− ν2)

⇓

m(x) = x(x− t)2

Ã(x) = −ab(a2 − 1)− a2t+
ν2b2

4
(ab− t) +

(
a2 −

ab3

4
+
b2t

4
+
ν2b2

4

)
x−

b2

4
x2

B̃(x) = b2(a2 − 1) + 2abt+ t2 −
ν2b4

4
+

(
−2ab+

b4

4
− 2t

)
x+ x2

C̃(x) = a2(a2 − 1)−
ν2

4
(ab− t)2 +

(1

4
(ab− t)2 −

ν2

2
(ab− t)

)
x+

(1

2
(ab− t)−

ν2

4

)
x2 +

x3

4

⇒ repeat the same tedious procedure ... 22 / 25
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Janossy density for KBessel

Joint distribution of 1st & 2nd smallest SVs

P12(t, s) = −Θ(s− t)ρ1(t)∂s exp

(
−
∫ s

0

ds′R(s′)

)
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Janossy density in DPP
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Conclusion

Summary

T-W method is proven to be directly applicable to Janossy density / Joint
EV distribution for a K if it is applicable to its gap probability.

Evaluated P12(t, s) for KAiry & KBessel by brute force of NDSolve[· · · ].
Results are in agreement with quadrature approx of Det(I− K̃I).

Pros: Universal method, applicable to ∀q-orthogonal, finite-N ,... kernels
of your choice.

Cons: Zero elegance. Lacks beauty of [Forrester-Witte 2007]. Hard to see
relationship with PII & PIII’ and associated isomonodromic systems.
Not suited for asymptotic analysis.
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Conclusion

Perspectives

P1···k(s1, . . . , sk) can be obtained by k×repeating the procedure. Orders
of polynomials Ã(x) etc. increase by 2k, but Mathematica R⃝ cares not.

Although analytical application of our strategy to quaternion kernels of
β = 1, 4 or transitive ensembles does not look promising, quadrature
approx of Det(I− K̃I)

1/2 works perfectly well.
⇒ Individual distributions Pk(s;m;µ) of staggered Dirac EVs of LQCD
with NC = 2, NF = 4, 8 at finite chem. pot. can be predicted from the
chGSE-chGUE transitive kernel of [Forrester-Nagao-Honner 1999].
Precise determination of Σ(m,µ), Fπ(m,µ) by fitting Dirac spectra is
ongoing [Kanamori-SN 2021].

Should we press Wolfram to include the WBF distribution
A(x) =

∫
dsP12(x+ s, s) to basic Mathematica R⃝ commands?
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