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Langevin's equation as an adequate description of Brownian motion is applicable in large 

variety of systems which are close to equilibrium. For these systems hydrodynamic equations 

describe the long wave-length, Iow-frequency phenomena. The equation of motion for these 

systems of continuous media is generalized to the similar type of Langevin equation and 

correlation of fluctuation is discussed. 

S 1. All Abridged Descriptiom of Browmiam Motion 

Fluctuations about the equilibrium state decay on the average by the linear macro-

scopic law which describes the decay of the system from a nonequilibrium state to 

equilibrium state. A sufiiciently small macroscopic particle immersed in a liquid 

exhibit a random motion, which is called Brownian motion, and this phenomenon 

reveals very clearly the statistical fluctuations which occur in a system in thermal 

equilibrium. There are a variety of similar phenomena which are recognized earlier 

For instance, random motion of the mirror suspended by a fiber of a sensitive galvano-

meter, or fluctuating noise voltage due to thermal fluctuating current in an electric 

resrstor. Thus Brownian motion can serve as a prototype case, and its analysis is 

described in standard textsl) and provides considerable insight into mechanisms 

responsible for the existence of fluctuations and dissipation of energy 

For the simplicity we shall treat one-dimensional motion of the Brownian particle 

The equation of motion of a particle is expressed phenomenologically 

d v 

m dt = ~myv+F(t) (1.1) 
where the term - myv represents the usual viscous drag on a particle moving with 

velocity v, and F(t) is a random force due to density fluctuations in the medium with 

average value zero. For the given function F(t) the equation is integrated and one 

obtains 

- - Jt v(t) v(t )e y(t to)+ I e~y(t~.)F(s)ds (t~to) (1.2) 
m to 
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For simplicity, v(to) is assumed finite and in the limit to~> - oo 

= 1: - -v(t) I e y(t s)F(s)ds and 
=0 (1.3) m oo 

The correlation function of the fluctuating force F(t) is assumed to be 

 = 2F6(t - t') (1 .4) 
To derive the correlation function of velocities 

i j:co Ct  -12 e~y(t~s) ds ) e~y(t' ~s')2r~(s - s')ds' 

m -oo 

J J, 
2
~
 

1 e~vu'2F6(t - t' - u + u')du' e~vud u 

m 
-, J - J~ _ 2yF ey(t t ) (1.5) 

co 

o e 2yudu ~(t-t'-u+u')du' 
m2 

- Jm'x(o,t-t') _ 2yF ev(t t') e~2vudu oo 

m2 

we obtain 

2r = . e~v(t-t ) (1.6) 
m 

This functional dependence means that the velocity correlations are only in a time in-

terval of the order of I /y. The larger the magnitude of the friction constant this time 

interval is shorter. Mean square displacement is also evaluated easily and we find 

the relation 

 = 2Dt (1 .7) 
where D is the diffusion coefiicient, and famous Einstein relation 

D = IlkB T 

is derived, and which relates D and mobility // of the particle in the system of tem= 

perature T. 

S 2. Phemolnenological Equatiom for Tramsport Processes 

We consider systems which are not in equilibrium but are close to equilibrium 

We assume that all disturbances are slowly varying in space and have small amplitude 

If the system is in equilibrium and its states can be specified via the thermodynamic 

variables. However, the values of such state variable can vary from one part to the 
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other gradually in the system. When a system is disturbed from its equilibrium state, 

most of the quantity decay rapidly to their equilibrium through the impact of molecular 

collison, several quantities which are not conserved during molecular collison remain 

out of equilibrium. These quantities are densities of state variables and characterize the 

nonequilibrium behavior of the fluid after long times. For the equation of motion of 

these densities of such quantity we call the hydrodynamic equation from the pheno-

menological point of view. Examples of these quantities are the number of particles, 

the total momentum of particles, and the total kinetic energy of particles. If there are 

inhomogeneities in ~he densities of these quantities, the particles, momentum, or 

kinetic energy must be transported from one part of the fluid to another to achieve 

equilibrium. The rate at which the currents induced by the density gradients to 

return back to equilibrium state is determined by the transport coefficlents. These 

transport phenomena are the self-diffusion, viscosity, and thermal conductivity and 

many other processes. The macroscopic equations Fick's law for diffusion, 
Fourier 's law for thermal conduction are derivable from a more rigorous micro-

scopic equation, the Boltzmann equation. The Boltzmann equation is a nonlinear 

integrodifferential equation for the distribution, but for small amplitude of disturbance 

we can linearize the equation. 

As an example of linearized hydrodynamic equation, we illustrate the self diffusion 

process. For the particle density m(r, t) at some point r 

e
 at m(r, t) DV m(r t) (2.1) 

To find the dispersion relation for hydrodynamic modes we define the Fourier transform 

1 C m(r t) (2lc)4 (2.2) = dk Jdcoe~(k"~~t)//(k, co) 

which allows us to examine each Fourier component of diffusion equation. If we 

substitute Eq. (2.2) into Eq. (2.1) we obtain 

- icoll(k, co) + Dk2//(k, co) = O (2.3) 

Note that different Fourier components do not couple, because the hydrodynamic 

equation is linear. From Eq. (2.3) we obtain the following dispersion relation for the 

self-diffusion mode : 

co = - IDk2 (2.4) 
The diffusion frequency is imaginary, which means that the contribution to the density 

m(r, t) with wave vector k, decay out m a time which depends on the diffusion coeffi-

cient D and the wave number k, 

m(r, t) ~: eik"e~Dk't. (2.5) 
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Thus, component of very long wavelength disturbance take a long time to decay. 

This behavior is characteristic of a hydrodynamic mode 

S 3･ Tfilme-Depemdemt Correlatiom Fumctiom amd Microscopic Reversibility 

Onsager showed that the reversibility of the dynamical laws on the microscopic 

level requires that, without any 1;eference to a particular physical system, certain 

relation exist between the transport coefiicients for coupled transport processes 

We assume that the macroscopic state of the system is described by n independent 

macroscopic state variable Ai (i= 1, 2,..., n), and in an equilibrium state A~･ Let us 

denote oei the fluctuations 

oci = Ai - A~ (3･ 1) 
The time dependent correlation functions of macroscopic fluctuations, a = (cel' oc2, " ' , oc~), 

obey the relations 

 = 
 (3.2) 

Eq. (3.2) tells us that the correlation between a fluctuation cei at time t = O and 

a fiuctuation ocj at time t = T is the same as that of a fluctuation oej at time t = O and a 

fluctuation oci at time t = T. The quantities oci and ocj can correspond to fluctuations in 

the same state variables at different points in space. Thus, Eq. (3.2) can also be 

understood as an equation relating correlations between space- and time-dependent 

fluctuations. 

Probability distribution for fiuctuations about the equilibirum state is obtained 

by Einstein3) in the following way. Let us consider a closed adiabatic isolated system, 

which is ergodic so that all possible microscopic states of the system are equally pro-

bable. Let F(E) denote the number of microscopic systems with energy (E, E + dE) 

Then the entropy of the system is given by 

S = kB In F(E) (3.3) 
We assume that, in addition to the energy E, the macroscopic state of the system is 

describable in terms of n independent macroscopic state variables Ai (i=1,..., n) 

Then the probability that the system is in a macroscopic state described by variables E, 

Al, A2," ', A~ is given 'by 

F(E A A ) p(E, A1,...,A~)- ' 1""' ~ (3.4) ~ F(E) 
The entropy of the system wrth vanables (E, A1,. . . , A~) is given by 

S(E, A1,...,A~) kB InF(E A1, A ) (3.5) 
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Hence 

1
 p(E A1, A~)= F(E) exp [S(E Al, A~)lkB] (3.6) 

The entropy will be a maximum when the system is in an equilibrium state A~,･ ･ ･, A~ 

Any fluctuation about the equilibrium state must cause the entropy to decrease. If 

we let c~i denote the fluctuations oci = Ai-A~ then we can expand the entropy about its 

equilibrium value to obtain 

1
 S(E Al,..., A~)=S(E, A~,･･･, A~) - ~ ~ 9ijociocj+ "' (3.7) 
.
 ~ ,=1J=1 

where 

_ e2S I JJ 9ij~~ OAid~A (3'8) )o 

The matrix (gij) is positive definite and the first order term in Eq. (3.5) must be 

identically zero since the quantities are symmetric. We can obtain the following 

expression for the probability distribution of fluctuations about the equilibrium state 

{- } p(a)=Cexp I Gaa (3.9) 2kB 

where a =(ocl""' oc~) is a vector and 

Gaa = ~ Gijocioej 
',J 

A normalization constant is defined 

(2lckB)n 1/2 l
 
C p(a)d a = C [ J I (3. 10) "
-

where da dal""'docn' Thus 

C IGI 1/2 (3.11) [ ~ (2lckB) 

and I G is the determinat of the matrix G 

The correlatio~l matrix has the property 

Caa(T)~
=
=
 C..( T) (3.12) 

where we have taken t = - T and .T 'denotes the transpose of the correlation matix. 

From the Onsager relation 

 = 

T, and therefore, Caa(T) = C.~.(T) (3. 1 3) 
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To find the moments of the fluctuation, rt is convenient to introduce a more generalized 

integral 

Cjrooexp - 1 1 kBG Ihh (3.14) }
 

(Gaa) + h a}da =exp { ~ {
 

where h is a vector of n dimension 

The second moment 

 is derived in the following relation 

=1hi_j~o aa~hi ae~h' J I Gaa+h'a}da] =kB(G-1)ij (3 15) I
 

c
o
_
 

{
 

C
 

ex p 
2k 

J ~) 
and we have 

Caa(O) = 
 = kBG-1 (3. 1 6) 

S 4. Tfilme Evolwtiom of Flluctuations 

We must remind that a is a ~lacroscopic variable. Thus for each value of a 

the given mitial value of a was ao' Then for the conditional average of a at time t 

we can write 

l
 

.*= P(aola:, T)dT. (4.1) 

P(e;ola, T) is the conditional probability that a system turn from the state ao to the 

state a at time t = T. Onsager assumed that, on the average, the fluctuations decay 

according to the similar law by the hydrodynamic equations. Thus the average 

fluctuation 

.o obeys an equation of the form 
d
 dt 
.. Q 
 (4.2) Eq. (4.2) has the solution 

.0= e~Qt a (4.3) 
Eq. (4.1) imposes a condition on the matrix Q, if we expand Eq. (4.3) for short times, 

.0=ao~Q a t+0(t ) (4.4) 
and substitute into Eq (3.2) 

 = 
 (4.5) If we now use the fact that Qa = aTQT and use Eq. (3.13), we obtain 

G- I Q T = Q G- I (4. 6) 
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We can define a new tensor 

then Eq. (4.6) becomes 

L=LT or Lij=Lji (4.8) 
Eqs. (4.8) are Onsager relations. If the system is subject to the generalized force F, 

which is introduced from the equation with A S = S - So 

( = =- ) aa 

the time rate of change of the fluctuation can be written 

d
 dt 
.o L 
.. (4.10) This is the general expression of linearized hydrodynamic equations. These equations 

describe the evolution of slowly varying modes. We can account for the effects of 

rapidly fluctuating modes on hydrodynamic evolution by adding a random noise term 

to these equations. We can write for oei 

dai(t) = _ Lioci(t)+Fi(t) (4.11) 
d t 

where Li is an Onsager coefficient and is related to the inverse damping of the mode and 

Fi(t) is a delta correlated noise source, 

 = 2Fi6ij6(t - t') and Fi is the strength of the noise. Assume that 

=0(This means that oci(t) varies slowly compared to Fi(t)). As in Brownian motion 

Fi = Li
 (4. 12) The power spectral density is given by the Wiener-Khinchin 's theorem 

J
r
 

S**(co) = 

ei~'d T " 

and 

Sij(co) = 2Fi6ij/[co2 + L~] (4. 1 3) 

S 5. Spiun Waves im a Macroscopic Comtinuum Modell 

In the ferromagnetic system, the exchange interaction which give rise to the spon-

taneous magnetization M* resrst strongly any change in the direction of M* from point 

to point. The excitation of spin waves of precessing magnetization can be interpreted 
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quantitatively by treating the magnetic material as a continuous field of magnetization 

M, having constant magnitude and with the variation in direction from point to point 

there is associated an excess energy density. This continuum approach for gradual 

disturbances of a uniform magnetization will break down if the spin on one site vary 

markedly in direction, but a phenomenological approach is justified for gradual vari-

ations, and is analogous to continua theories of the elastic properties of solids 

We need an expression for the excess energy associated with nonuniform magneti-

zation to the lowest order in the deviation of M. Herring and Kittel4) pointed out 

that, for a field of constant magnitude, - M ･ V2Mis the expression of the lowest order 

among those which are invariant to rotations of coordinate axes for isotropic exchange 

interactions and which give the uniform field as uniquely that of least energy 

The existence of an excess energy implies that a torque acts on M whenever M is 

non-uniform, tending to make it uniform. To determine this torque we can recognize 

the excess energy - M･ V2M as a potential energy in an effective fleld equal to V2M, 

and it follows that the torque (due to the effective field) is M x V 2M. Therefore the 

torque due to exchange interaction acting on M equal to 

where the stiffness constant A measures the strength of the exchange interaction 

The magnetization is associated with the angular momenta of electrons. If they 

are related by a magneto-mechanical ratio y, the equation of motion equating the local 

rate of change of angular momentum to the local torque is 

d M 
dt =vMx(AV M+H) (5.2) 

where H is the applied field and other anisotropic effects are neglected. 

The solutions we seek are deviations from the uniformly ordered state and we 

therefore write 

M= Mo + m (5.3) 
where Mo is the uniform magnetization. To find the travelling wave solutions for 

m having the following form 

In = mo sin (k ･ r - cot)i + mo cos (k ･ r - cot)j (5.4) 

where k is a wave vector and i and j are unit vectors in the x and y directions. It is 

because if Mo is in the z-direction, and m is small compared to Mo, m is nearly in the 

xy plane. Substitution in the equation of motion above gives directly the dispersion 

relation between co and k, if we put H= O for the present, 

co= - yAMok2 = -Dk2 (5.5) 
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for the spin waves. Suitable combination of these waves produce the standing wave 

solutions, of course. 

Thus, the magnetization density also obeys the linearized hydrodynamic equation 

dM(k, t) _ 
dt ~ ~Dk2M(k, t) +F(k t) (5.6) 

where D is the diffusion coefficient and the random noise F(k, t) is delta correlated 

 =2rk25(k- 'k)6(t- t') (5.7) 

As in the previous section, the correlation strength is 

F = D
 (5 . 8) Near the critical point 

 ~; (k2 + ~2)-1 (5.9) 
where ~ is the correlation length and ~ -> oo as T-> T., where T. is the critical temperature, 

because near the critical point 

~ ~~ (T- T.)-1/2 (5. 10) 
Power sp. ectral density is also able to evaluate. Critical behavior of the dispersion 

relation rs co(k) - k4 as T-> T., whereas away from the critical point co(k) - k2 for small 

k. Thus we say that long wave length mode. of magnetization fluctuation have very 

long relaxation times, and refered to as critical slowing down 
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