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Abstract. The main purpose of this paper is to give examples of effective
semisimple pseudo-Hermitian symmetric spaces satisfying a certain supposition
(S). If an effective semisimple pseudo-Hermitian symmetric space satisfies the
supposition (S), then one can clarify several properties of the pseudo-Hermitian
symmetric space—for example, any holomorphic function on the space is con-
stant, the group of holomorphic automorphisms of the space is a (finite-dimensional)
Lie group, and so on.

1. Introduction

For a complex manifold M we can set complex vector spaces, e.g., the complex
vector space O(M) of holomorphic functions, the complex vector space O(T 1,0M)
of holomorphic vector fields and the complex vector space Ωr(M) of holomorphic
r-forms, or more generally the complex vector space VM of holomorphic cross-
sections of a holomorphic vector bundle over M . These vector spaces sometimes
play important roles in the study of complex manifold M . We think it is meaning-
ful to judge whether the vector space VM is finite-dimensional or not for a given
connected complex manifold M .

This paper is a sequel to the paper [4]. In [4] we have dealt with the complex vec-
tor space VG/L of holomorphic cross-sections of a homogeneous holomorphic vector
bundle over a homogeneous pseudo-Käher manifold G/L of connected semisimple
Lie group G and provided a sufficient condition (S) for the vector space VG/L to be
finite-dimensional in the case where G acts effectively on G/L. When the supposi-
tion (S) holds for G/L, it follows that dimC O(G/L) <∞, dimC O(T 1,0(G/L)) <∞
and dimC Ω

r(G/L) < ∞; and furthermore, one can assert that any holomorphic
function on G/L is constant, the group Hol(G/L) of holomorphic automorphisms
is a Lie group and so on. Then we want to give concrete examples of homogeneous
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pseudo-Käher manifolds G/L satisfying the supposition (S). Now, the open unit
disk D in C, the upper half-plane H in C and the Riemann sphere C ∪ {∞} are
effective semisimple Hermitian symmetric spaces. Any effective semisimple Hermit-
ian symmetric space is one of the effective semisimple pseudo-Hermitian symmetric
spaces. These imply that the set of effective semisimple pseudo-Hermitian symmet-
ric spaces includes significant connected complex manifolds. Fortunately, an effec-
tive semisimple pseudo-Hermitian symmetric space is a homogeneous pseudo-Käher
manifold G/L of connected semisimple Lie group G such that G acts effectively on
G/L.

The main purpose of this paper is to give examples of effective semisimple pseudo-
Hermitian symmetric spaces satisfying the supposition (S). See Theorem 3.25.

This paper consists of three sections. In Section 2 we recall fundamental facts
about pseudo-Hermitian symmetric spaces and explain the supposition (S) more
precisely (cf. Proposition 2.7). In Section 3 we devote ourselves to finding out
pseudo-Hermitian symmetric spaces satisfying (S).

Notation. For a Lie group G, we denote its Lie algebra by the corresponding
Fraktur small letter g and utilize the following notation:

(n1) Ad, ad : the adjoint representations of G and g, respectively,
(n2) CG(T ) := {g ∈ G | Ad g(T ) = T} for an element T ∈ g,
(n3) Z(G) : the center of G,
(n4) m⊕ n : the direct sum of vector spaces m and n,
(n5) i :=

√
−1,

(n6) f |A : the restriction of a mapping f to a set A,
(n7) ϕ∗ : the differential homomorphism of a Lie group homomorphism ϕ,
(n8) In : the unit matrix of degree n,
(n9) Ei,j : the matrix whose (i, j)-element is 1 and whose other elements are all 0.

2. Preliminaries

This section consists of two subsections. In Subsection 2.1 we recall that (a) an
effective semisimple pseudo-Hermitian symmetric space G/L is an elliptic adjoint
orbit,1 (b) G/L can be embedded into a complex flag manifold GC/Q

− via ι :
G/L → GC/Q

−, gL 7→ gQ−, and (c) its image ι(G/L) is a simply connected
domain in GC/Q

−. In Subsection 2.2 we take the complex vector space VG/L of
holomorphic cross-sections of a holomorphic vector bundle ι♯(GC×ρV) and provide
a sufficient condition for the vector space VG/L to be finite-dimensional.

2.1. Pseudo-Hermitian symmetric spaces. In this subsection we recall fun-
damental facts about pseudo-Hermitian symmetric spaces. A pseudo-Hermitian
symmetric space is one of the affine symmetric spaces. First of all, let us recall the
definition of affine symmetric space.

Definition 2.1 (cf. Nomizu [10, p.52, p.56]).

1We refer to Kobayashi [9] for the definitions of elliptic element and elliptic (adjoint) orbit.



EXAMPLES OF PSEUDO-HERMITIAN SYMMETRIC SPACES 29

(i) Let G be a connected (real) Lie group, and let L be a closed subgroup of
G. Then the homogeneous space G/L is called an affine symmetric space,
if there exists an involutive automorphism σ of G satisfying

(Gσ)0 ⊂ L ⊂ Gσ,

where (Gσ)0 stands for the identity component of Gσ := {x ∈ G |σ(x) = x}.
(ii) An affine symmetric space G/L is said to be effective (resp. almost effective),

if G is effective (resp. almost effective) on G/L as a transformation group.
(iii) An affine symmetric space G/L is said to be semisimple (resp. simple), if

the Lie algebra g of G is semisimple (resp. simple).
(iv) An almost effective, semisimple affine symmetric space (G/L, σ) is said to

be irreducible, if ad l in u is irreducible. Here, l = {X ∈ g |σ∗(X) = X}
and u = {Y ∈ g |σ∗(Y ) = −Y }.

Here is the definition of pseudo-Hermitian symmetric space:

Definition 2.2 (cf. Berger [1, p.94]).
(1) An affine symmetric spaceG/L is said to be pseudo-Hermitian, if it admits a

G-invariant complex structure J and aG-invariant pseudo-Hermitian metric
g with respect to J .

(2) A symmetric Lie algebra (g, l, σ) is said to be pseudo-Hermitian, if there
exist an ad l-invariant complex structure j on u and an ad l-invariant pseudo-
Hermitian form 〈 · , · 〉 (with respect to j) on u. Here u = {Y ∈ g |σ(Y ) =
−Y }.

One knows the following fact:

Proposition 2.3 (cf. Shapiro [11, pp.533–534]). Let (G/L, σ, J, g) be any almost
effective, semisimple pseudo-Hermitian symmetric space, and let g = l ⊕ u be the
decomposition of g with respect to σ∗. Then, there exists a unique T ∈ l satisfying

(i) L = CG(T ) = (Gσ)0, (ii) σ(g) = (exp πT )g exp(−πT ) for all g ∈ G,
(iii) Jo = adT on To(G/L) = u.

Here u is identified with the tangent space To(G/L) of G/L at the origin o.

Remark 2.4. Let us comment on the element T in Proposition 2.3.

(1) T is called the canonical central element of l. cf. Shapiro [11, p.533].
(2) T is a non-zero element of g such that the linear transformation adT : g →

g, X 7→ [T,X], is semisimple and its eigenvalue is ±i or zero. Thus T is a
non-zero elliptic element of g.

(3) Proposition 2.3-(i) tells us that the pseudo-Hermitian symmetric space G/L
is the adjoint orbit of G through T , so that G/L is an elliptic adjoint orbit.

From now on, we are going to set the generalized Borel embedding by means
of Shapiro [11] (see Proposition 2.5-(v) below). Let G/L = (G/L, σ, J, g) be an
effective semisimple pseudo-Hermitian symmetric space, and let T be the canonical
central element of l. Proposition 2.3-(i) implies that L = CG(T ) includes the center
Z(G) of G, and therefore Z(G) is trivial because G acts effectively on G/L. That
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is to say, the connected semisimple Lie group G is isomorphic to the adjoint group
of g. Consequently there exists a connected complex semisimple Lie group GC so
that

(1) Z(GC) is trivial,
(2) G is a connected closed subgroup of GC,
(3) g is a real form of gC.

In this setting we put

(2.1)
g0 := {Z ∈ gC | adT (Z) = 0}, g−1 := {W ∈ gC | adT (W ) = −iW},
Q− := {q ∈ GC | Ad q(g0 ⊕ g−1) ⊂ g0 ⊕ g−1}.

In addition, let g = k⊕p be a Cartan decomposition such that T ∈ k, let Gu be the
connected Lie subgroup of GC corresponding to a (maximal compact) subalgebra
gu := k⊕ip of gC, and let Lu := CGu(T ). Define an inner automorphism σu of Gu by
σu(y) := (expπT )y exp(−πT ) for y ∈ Gu. Then, σu is involutive and (Gu/Lu, σu)
is an affine symmetric space. In view of the decomposition gu = lu ⊕ uu of gu with
respect to (σu)∗, one can construct a Gu-invariant complex structure Ju on Gu/Lu

and a Gu-invariant Hermitian metric gu on Gu/Lu from

(Ju)oX := adT (X), (gu)o(Y, Z) := −Bgu(Y, Z)

for X,Y, Z ∈ uu, respectively, where we identify the vector space uu with the
tangent space To(Gu/Lu) at the origin o ∈ Gu/Lu and denote by Bgu the Killing
form of gu.

Proposition 2.5 (cf. Shapiro [11]2). In the setting above;

(i) Gu/Lu = (Gu/Lu, σu, Ju, gu) is an effective semisimple Hermitian symmet-
ric space of the compact type,

(ii) Lu = Gu ∩Q− and L = G ∩Q−,
(iii) Q− is a connected, closed complex parabolic subgroup of GC,
(iv) ιu : Gu/Lu → GC/Q

−, yLu 7→ yQ−, is a Gu-equivariant biholomorphism of
Gu/Lu onto GC/Q

−,
(v) ι : G/L→ GC/Q

−, gL 7→ gQ−, is a G-equivariant biholomorphism of G/L
onto a simply connected domain in GC/Q

−,
(vi) GuQ

− = GC, and GQ
− is a domain in GC.

Remark 2.6. Here are comments on the mapping ι : G/L → GC/Q
−, gL 7→ gQ−,

in Proposition 2.5-(v).

(1) ι is called the generalized Borel embedding. cf. Shapiro [11, p.535].
(2) One can regard G/L as a simply connected domain in GC/Q

− via ι.

2.2. Homogeneous holomorphic vector bundles and a certain supposi-
tion. In this subsection we take the complex vector space VG/L of holomorphic
cross-sections of a holomorphic vector bundle ι♯(GC ×ρ V) and provide a sufficient
condition for the vector space VG/L to be finite-dimensional (see Proposition 2.7).

2We slightly modify Theorem 3.1 in Shapiro [11, p.535]. See Lemma 8.1.11-(1), Proposition
8.2.1-(ii), (iii), (v) and Lemma 11.1.2 in [5] if necessary.
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Let G/L = (G/L, σ, J, g) be an effective semisimple pseudo-Hermitian symmetric
space, and let T be the canonical central element of l. We construct a complex
flag manifold GC/Q

− from (2.1), fix the generalized Borel embedding ι : G/L →
GC/Q

−, gL 7→ gQ−, and identify G/L with ι(G/L).

G/L - GC/Q
−ι? ?

ι♯(GC ×ρ V) GC ×ρ V

Take a finite-dimensional complex vector space V and a holomorphic homomor-
phism ρ : Q− → GL(V), q 7→ ρ(q), where GL(V) is the general linear group on
V. Denote by GC ×ρ V the homogeneous holomorphic vector bundle over GC/Q

−

associated with ρ, and by ι♯(GC×ρV) the restriction of GC×ρV to G/L ⊂ GC/Q
−.

Let

(2.2)
VGC/Q− :=

{
h : GC → V

(i) h is holomorphic,
(ii) h(aq) = ρ(q)−1

(
h(a)

)
for all (a, q) ∈ GC×Q−

}
,

VG/L :=

{
ψ : GQ− → V

(i) ψ is holomorphic,
(ii) ψ(xq) = ρ(q)−1

(
ψ(x)

)
for all (x, q) ∈ GQ−×Q−

}
.

Then one may assume that VGC/Q− and VG/L are the complex vector spaces of
holomorphic cross-sections of the bundles GC ×ρ V and ι♯(GC ×ρ V), respectively.

In general, the vector space VGC/Q− is finite-dimensional (because GC/Q
− is a

connected compact complex manifold), but, in contrast, VG/L is not always finite-
dimensional. From now on, we are going to provide a sufficient condition for VG/L

to be finite-dimensional. Fix a Cartan decomposition g = k ⊕ p of g with T ∈ k,
and a maximal torus ihR of gu = k ⊕ ip containing T . Let hC be the complex
vector subspace of gC generated by ihR, let 4 = 4(gC, hC) be the root system of
gC relative to hC, let gα be the root subspace of gC for α ∈ 4, and let kC be the
complex subalgebra of gC generated by k. Then one has

Proposition 2.7. In the setting of Subsection 2.2; suppose that (S) there exists a
fundamental root system Π△ of 4 = 4(gC, hC) satisfying two conditions

(s1) α(−iT ) ≥ 0 for all α ∈ Π△, and
(s2) gβ ⊂ kC for every β ∈ Π△ with β(T ) 6= 0.

Then, the complex vector space VGC/Q− is linear isomorphic to VG/L via

F : VGC/Q− → VG/L, h 7→ h|GQ− ;

and therefore dimC VG/L = dimC VGC/Q− <∞.

Proof. At this stage, our setting is as follows:

• GC is a connected complex semisimple Lie group with the trivial center,
• G is a connected closed subgroup of GC such that g is a real form of gC,
• T is a non-zero elliptic element of g,
• g = k⊕ p is a Cartan decomposition of g with T ∈ k,
• ihR is a maximal torus of gu = k⊕ ip containing T ,
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• 4 = 4(gC, hC) is the root system of gC relative to hC, where hC is the
complex vector subspace of gC generated by ihR,

• gα is the root subspace of gC for α ∈ 4,
• L = CG(T ),
• Q− is the closed complex subgroup of GC defined by (2.1),
• kC is the complex subalgebra of gC generated by k,
• V is a finite-dimensional complex vector space,
• ρ : Q− → GL(V), q 7→ ρ(q), is a holomorphic homomorphism,
• VGC/Q− and VG/L are the complex vector spaces defined by (2.2).

Since we conform to the setting of Subsection 3.1 in [4], we can apply Theorem 3.1
in [4] to this proposition. Thus we can get the conclusion. □
Remark 2.8. Here are comments on Proposition 2.7.

(1) One can always take a fundamental root system Π△ ⊂ 4(gC, hC) with (s1),
by considering the lexicographic linear ordering on the dual space (hR)

∗

associated with an ordered real basis −iT =: A1, A2, . . . , Aℓ of hR.
(2) If G is compact, then the pseudo-Hermitian symmetric space G/L always

satisfies the supposition (S) because of kC = gC.
(3) If G/L is a symmetric bounded domain in Cn, then it cannot satisfy the

supposition (S) at all. cf. Example 4.2 in [4].

3. Examples of pseudo-Hermitian symmetric spaces satisfying (S)

Our aim is to find out effective semisimple pseudo-Hermitian symmetric spaces
which satisfy the supposition (S) in Proposition 2.7.

3.1. Reduction. An effective semisimple pseudo-Hermitian symmetric space is
biholomorphic to the direct product G1/L1 × G2/L2 × · · · × Gr/Lr, where all
G1/L1, . . . , Gr/Lr are effective simple pseudo-Hermitian symmetric spaces. There
are four types of simple pseudo-Hermitian symmetric spaces:

Table A: four types of simple pseudo-Hermitian symmetric spaces
(I) an irreducible Hermitian symmetric space of the compact type
(II) an irreducible Hermitian symmetric space of the non-compact type
(III) a simple irreducible pseudo-Hermitian (non-Hermitian) symmetric space
(IV) a simple reducible pseudo-Hermitian symmetric space

Here a simple pseudo-Hermitian symmetric space G/L is reducible if and only if
the Lie algebra g is complex (cf. Shapiro [11, p.532]). From the next subsection
we will mainly deal with (III) effective simple irreducible pseudo-Hermitian (non-
Hermitian) symmetric spaces; due to Remark 2.8-(2), (3) and

Proposition 3.1. (IV) Any effective simple reducible pseudo-Hermitian symmetric
space G/L cannot satisfy the supposition (S) in Proposition 2.7 at all.
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Proof. Let g be the complex conjugate Lie algebra to g. Then, the complexification
gC = g⊕ ig of g is complex Lie algebra isomorphic to the direct product g× g via

ϕ : gC → g× g, X + iY 7→ (X + iY,X − iY )

(X,Y ∈ g) since λ(A,B) = (λA, λB) for all λ ∈ C and (A,B) ∈ g× g. Moreover,
the real form g ⊂ gC corresponds to {(X,X) |X ∈ g} = ϕ(g) ⊂ g× g. Identifying
gC with g×g via ϕ, we will explain the reason why G/L cannot satisfy the condition
(s2) gβ ⊂ kC in Proposition 2.7.
Let T be the canonical central element of l, let g = k⊕ p be a Cartan decompo-

sition of g with T ∈ k, and let ihR be a maximal torus of gu = k ⊕ ip containing
T . Besides, let hC and kC be the complex vector subspace and subalgebra of gC
generated by ihR and k, respectively. Then kC corresponds to

(3.1) {(K1 + iK2, K1 − iK2) |K1, K2 ∈ k} = ϕ(kC).

Since g is complex (semi)simple, it follows that p = ik, so that gu corresponds to

k× k = ϕ(gu).

Consequently there exist maximal tori t1, t2 ⊂ k such that T ∈ t1 ∩ t2 and t1× t2 =
ϕ(ihR). Letting c1 and c2 be the complex vector subspaces of g and g generated by
t1 and t2, respectively, one can conclude that

c1 × c2 = ϕ(hC).

From now on, we are going to confirm that G/L cannot satisfy the (s2). Let us use
proof by contradiction. Suppose a root β ∈ 4(g× g, c1× c2) and a non-zero vector
Eβ ∈ g× g to satisfy [C,Eβ] = β(C)Eβ for all C ∈ c1 × c2 and Eβ ∈ ϕ(kC). Then,
4(g × g, c1 × c2) ∼= 4(g, c1) ∪ 4(g, c2) implies that one of the following two cases
only occurs:

(1) β(C1, C2) = β(C1, 0) for all (C1, C2) ∈ c1 × c2 and there exists a non-zero
vector E1 ∈ g such that Eβ = (E1, 0);

(2) β(C1, C2) = β(0, C2) for all (C1, C2) ∈ c1 × c2 and there exists a non-zero
vector E2 ∈ g such that Eβ = (0, E2).

However, in any cases (1) Eβ = (E1, 0) and (2) Eβ = (0, E2) we obtain Eβ 6∈ ϕ(kC)
from (3.1), which is a contradiction to Eβ ∈ ϕ(kC). For this reason G/L cannot
satisfy (s2) at all. □

Table B
type the supposition (S) in Proposition 2.7
(I) O.K.
(II) N.G.
(III) ?
(IV) N.G.

(Here (I), (II), (III) and (IV) correspond to those in Table A (p.32), respectively).
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3.2. Type (III). The main purpose of this subsection is to give examples of simple
irreducible pseudo-Hermitian (non-Hermitian) symmetric Lie algebras (g, l) satis-
fying the supposition (S) in Proposition 2.7.

Remark 3.2. From a simple irreducible pseudo-Hermitian symmetric Lie algebra
(g, l), one can easily construct an effective simple irreducible pseudo-Hermitian
symmetric space G/L. Indeed; for a given simple irreducible pseudo-Hermitian
symmetric Lie algebra (g, l), let us take the canonical central element T ∈ l and
a connected Lie group G whose center Z(G) is trivial and whose Lie algebra is
g. Then (G,CG(T )) is an effective simple irreducible pseudo-Hermitian symmetric
space.

3.2.1. AII. Let gC := sl(2n,C) = {A ∈ gl(2n,C) | trA = 0},

g := su∗(2n) =

{(
X Y
−Y X

)
X,Y ∈ gl(n,C),
trX + trX = 0

}
,

k :=

{(
K1 K2

−K2 K1

)
K1, K2 ∈ gl(n,C),
tK1 = −K1,

tK2 = K2

}
,

p :=

{(
P1 P2

−P 2 P 1

)
P1, P2 ∈ gl(n,C),
tP 1 = P1, trP1 + trP 1 = 0, tP2 = −P2

}
,

hR :=


x1 O

. . .
O x2n

 x1, x2, . . . , x2n ∈ R,∑2n
i=1 xi = 0

,
where n ≥ 2. Then it follows that g = k ⊕ p is a Cartan decomposition of g, that
ihR is a maximal torus of gu := k⊕ ip, and that

(aii.1) kC =

{(
A B
C −tA

)
A,B,C ∈ gl(n,C),
tB = B, tC = C

}
.

By setting a linear mapping αj : hC → C as

αj

 z1 O
. . .

O z2n

 := zj − zj+1 for 1 ≤ j ≤ 2n− 1,

one can get a fundamental root system Π△ := {αj}2n−1
j=1 of 4(gC, hC).

Π△:
α1

e1
α2

e1 · · ·
α2n−1.

e1
Now, let us put

(aii.2) T :=
i

2

(
In O
O −In

)
.

In this setting, we have T ∈ (k∩ ihR) ⊂ g and αj(−iT ) = δj,n for all 1 ≤ j ≤ 2n−1.
Hence the linear transformation adT : g → g is semisimple and its eigenvalue is ±i
or zero, so (g, cg(T )) is a pseudo-Hermitian (non-Hermitian) symmetric Lie algebra
and T is the canonical central element of cg(T ). cf. Lemma 3.1.1 in [3, pp.22–23].
By a direct computation we obtain cg(T ) = sl(n,C)⊕ t. Furthermore,
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Proposition 3.3 (AII). (g, cg(T )) = (su∗(2n), sl(n,C)⊕ t) satisfies the supposition
(S) in Proposition 2.7. Here n ≥ 2 and we refer to (aii.2) for T .

Remark 3.4 (AII). If n = 1, then (su∗(2n), sl(n,C)⊕ t) is an irreducible Hermitian
symmetric Lie algebra of the compact type.

Proof of Proposition 3.3. Let

βk := αk for 1 ≤ k ≤ n− 1,

βn :=
∑2n−1

p=n αp,

βn+k := −α2n−k for 1 ≤ k ≤ n− 1.

Then Π′ := {βj}2n−1
j=1 is a fundamental root system of 4(gC, hC) whose Dynkin

diagram is

Π′:
β1

e1
β2

e1 · · ·
β2n−1.

e1
From (aii.2) we obtain βj(−iT ) = δj,n ≥ 0 for all 1 ≤ j ≤ 2n − 1, and the (s1) in
Proposition 2.7 holds for this Π′. Moreover, (aii.1) implies that

gβn = gαn+···+α2n−1 = spanC{En,2n} ⊂ kC,

so that the (s2) in Proposition 2.7 also holds for Π′. □
3.2.2. AIII. Let gC := sl(p+ q,C) = {A ∈ gl(p+ q,C) | trA = 0},

g := su(p, q) =

{(
K1 Z
tZ K2

)
K1 ∈ u(p), Z : p× q complex matrix,
K2 ∈ u(q), trK1 + trK2 = 0

}
,

k :=

{(
K1 O
O K2

)
K1 ∈ u(p), K2 ∈ u(q),
trK1 + trK2 = 0

}
,

p :=

{(
O Z
tZ O

)
Z : p× q complex matrix

}
,

hR :=


x1 O

. . .
O xp+q

 x1, x2, . . . , xp+q ∈ R,∑p+q
i=1 xi = 0

,
where p, q ≥ 1 and u(n) = {K ∈ gl(n,C) | tK = −K}. Then it turns out that
g = k ⊕ p is a Cartan decomposition, ihR is a maximal torus of gu := k ⊕ ip and
ihR ⊂ k; besides,

(aiii.1) kC =

{(
B1 O
O B2

)
B1 ∈ gl(p,C), B2 ∈ gl(q,C),
trB1 + trB2 = 0

}
.

We define a linear mapping αj : hC → C by

αj

 z1 O
. . .

O zp+q

 := zj − zj+1 for 1 ≤ j ≤ p+ q − 1

and obtain a fundamental root system Π△ := {αj}p+q−1
j=1 of 4(gC, hC).



36 N. BOUMUKI

Π△:
α1

e1
α2

e1 · · ·
αp+q−1.

e1
Here, the dual basis {Zj}p+q−1

j=1 (⊂ hR) of Π△ = {αj}p+q−1
j=1 is as follows:

(aiii.2) Zj =
1

p+ q

(
(p+ q − j)Ij O

O −jIp+q−j

)
(1 ≤ j ≤ p+ q − 1).

From now on, we are going to investigate the following three cases individually:

(1) T = iZa, (2) T = iZp+b, (3) T = i(Za − Zp + Zp+b),

where 1 ≤ a ≤ p − 1, 1 ≤ b ≤ q − 1. Remark that for each of the elements T
above, we obtain T ∈ ihR ⊂ k = (gu ∩ g), the linear transformation adT : g → g
is semisimple and its eigenvalue is ±i or zero; consequently, (g, cg(T )) is a simple
irreducible pseudo-Hermitian symmetric Lie algebra and T is the canonical central
element of cg(T ), cf. [3, pp.22–23].
Case (1). Let T := iZa (1 ≤ a ≤ p−1). Then one has αj(−iT ) = αj(Za) = δj,a ≥

0 for all 1 ≤ j ≤ p+q−1, and the (s1) in Proposition 2.7 holds for Π△ = {αj}p+q−1
j=1 .

Furthermore, it follows from 1 ≤ a ≤ p− 1 and (aiii.1) that

gαa = spanC{Ea,a+1} ⊂ kC,

so that the (s2) in Proposition 2.7 holds for Π△ = {αj}p+q−1
j=1 , also. Hence

Lemma 3.5 (AIII). (g, cg(T )) = (su(p, q), su(a)⊕ su(p− a, q)⊕ t) satisfies the (S)
in Proposition 2.7. Here 1 ≤ a ≤ p− 1, 1 ≤ q and T = iZa.

Case (2). In case of T := iZp+b (1 ≤ b ≤ q−1) one can demonstrate the following
lemma by arguments similar to those in the case (1) above:

Lemma 3.6 (AIII). (g, cg(T )) = (su(p, q), su(p, b)⊕ su(q− b)⊕ t) satisfies the (S)
in Proposition 2.7. Here 1 ≤ p, 1 ≤ b ≤ q − 1 and T = iZp+b.

Case (3). Now, let T := i(Za − Zp + Zp+b) (1 ≤ a ≤ p− 1, 1 ≤ b ≤ q − 1), and
set

βk := αk for 1 ≤ k ≤ a− 1,

βa :=
∑p

n=a αn,

βh := αh−a+p for a+ 1 ≤ h ≤ a+ q − 1,

βq+a := −
∑p+q−1

m=a+1 αm,

βℓ := αℓ−q for q + a+ 1 ≤ ℓ ≤ p+ q − 1.

Then we see that Π′ := {βj}p+q−1
j=1 is a fundamental root system of 4(gC, hC).

Π′:
β1

e1
β2

e1 · · ·
βp+q−1.

e1
Moreover, βj(−iT ) = δj,a+b ≥ 0 for all 1 ≤ j ≤ p + q − 1, and we deduce gβa+b

=
gαp+b

= spanC{Ep+b,p+b+1} ⊂ kC from 1 ≤ b ≤ q− 1 and (aiii.1). Therefore the (s1)

and (s2) in Proposition 2.7 hold for Π′ = {βj}p+q−1
j=1 .
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Lemma 3.7 (AIII). (g, cg(T )) = (su(p, q), su(a, b)⊕su(p−a, q−b)⊕t) satisfies the
(S) in Proposition 2.7. Here 1 ≤ a ≤ p−1, 1 ≤ b ≤ q−1 and T = i(Za−Zp+Zp+b).

Three Lemmas 3.5, 3.6 and 3.7 provide us with

Proposition 3.8 (AIII). The supposition (S) in Proposition 2.7 holds for the fol-
lowing pseudo-Hermitian symmetric Lie algebras (g, cg(T )) :

(1) (su(p, q), su(a)⊕ su(p− a, q)⊕ t), 1 ≤ a ≤ p− 1, 1 ≤ q and T = iZa.
(2) (su(p, q), su(p, b)⊕ su(q − b)⊕ t), 1 ≤ p, 1 ≤ b ≤ q − 1 and T = iZp+b.
(3) (su(p, q), su(a, b) ⊕ su(p − a, q − b) ⊕ t), 1 ≤ a ≤ p − 1, 1 ≤ b ≤ q − 1 and

T = i(Za − Zp + Zp+b).

Here we refer to (aiii.2) for Zj (1 ≤ j ≤ p+ q − 1).

3.2.3. BI. Let gC be the classical complex simple Lie algebra of the typeBn (n ≥ 3).
Assume that the Dynkin diagram of 4 = 4(gC, hC) is as follows:

(b.1) Π△:
α1

e1
α2

e2
α3

e2 . . .
αn−1

e2
αn

e2
��
@@

(cf. Bourbaki [7, p.267]). Taking Chevalley’s canonical basis {H∗
αℓ
}nℓ=1 ∪ {Eα |α ∈

4} of gC, we construct a compact real form gu ⊂ gC from

(b.2)

{
hR := spanR{H∗

αℓ
}nℓ=1,

gu := ihR ⊕
⊕

α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)}.

Denote by {Zℓ}nℓ=1 (⊂ hR) the dual basis of Π△ = {αℓ}nℓ=1 and set an inner auto-
morphism θ of gC as

(bi.1) θ := exp π ad iZk,

where 1 ≤ k ≤ n. Then θ is involutive, and (b.2) yields θ(gu) ⊂ gu, so we can
consider the decomposition gu = k⊕ ip of gu with respect to θ and construct a non-
compact real form g ⊂ gC from g := k⊕p. Here we remark that gC = so(2n+1,C),
gu = so(2n+ 1), g = so(2k, 2n− 2k + 1) and ihR ⊂ k, and that

{αq}nq=2 (k = 1),

{αa}k−1
a=1 ∪ {αb}nb=k+1 ∪ {−α̃} (2 ≤ k ≤ n− 1) and

{αp}n−1
p=1 ∪ {−α̃} (k = n)
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are fundamental root systems of 4(kC, hC) whose Dynkin diagrams are

α2

e1
α3

e2 . . .
αn−1

e2
αn

e2
��
@@ (k = 1),

α1

e1
α2

e2 . . .
αk−2

e2
αk−1

e1
e−α̃ 1

αk+1

e1
αk+2

e2 . . .
αn−1

e2
αn

e2
��
@@

(2 ≤ k ≤ n− 1) and

α1

e1
α2

e2 . . .
αn−2

e2
αn−1

e1
e−α̃ 1

(k = n),

(bi.2)

respectively, where α̃ := α1 + 2
∑n

q=2 αq and kC = {X ∈ gC | θ(X) = X}. In this
setting we prove

Proposition 3.9 (BI). The supposition (S) in Proposition 2.7 holds for the fol-
lowing pseudo-Hermitian symmetric Lie algebras (g, cg(T )) :

(1) (so(2k, 2n − 2k + 1), so(2k − 2, 2n − 2k + 1) ⊕ t), n ≥ 3, 2 ≤ k ≤ n and
T = i(Zk−1 − Zk).

(2) (so(2k, 2n − 2k + 1), so(2k, 2n − 2k − 1) ⊕ t), 1 ≤ k ≤ n − 2 and T =
i(−Zk + Zk+1).

Here {Zℓ}nℓ=1 stands for the dual basis of {αℓ}nℓ=1 in (b.1) and we construct a Cartan
decomposition g = k⊕ p of g = so(2k, 2n− 2k + 1) from (b.2) and (bi.1).

Remark 3.10 (BI). In case of (2) with k = n − 1, we do not know whether
(so(2k, 2n − 2k + 1), so(2k, 2n − 2k − 1) ⊕ t) = (so(2n − 2, 3), so(2n − 2, 1) ⊕ t)
satisfies the supposition (S) or not.

Proof of Proposition 3.9. (1). Let

βa := αk−a for 1 ≤ a ≤ k − 1,

βk := −
∑k

c=1 αc − 2
∑n

b=k+1 αb,

βb := αb for k + 1 ≤ b ≤ n,

where the above implies βa = αn−a (1 ≤ a ≤ n − 1) and βn = −
∑n

c=1 αc in case
of k = n. Then it turns out that Π1 := {βℓ}nℓ=1 is a fundamental root system of 4
whose Dynkin diagram is

(bi-1) Π1:
β1

e1
β2

e2
β3

e2 . . .
βn−1

e2
βn.
e2

��
@@

Besides, αa(Zb) = δa,b yields βℓ(−iT ) = βℓ(Zk−1 − Zk) = δℓ,1 ≥ 0 for all 1 ≤ ℓ ≤ n,
and thus the (s1) in Proposition 2.7 holds for the Π1 = {βℓ}nℓ=1. It follows from
(bi.1) and αa(Zb) = δa,b that θ(Eαk−1

) = Eαk−1
, which enables us to obtain

gβ1 = gαk−1
= spanC{Eαk−1

} ⊂ {X ∈ gC | θ(X) = X} = kC.
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This assures that the (s2) in Proposition 2.7 also holds for Π1. Incidentally, (bi-1),
(bi.2), T = i(Zk−1 − Zk) and αa(Zb) = δa,b give rise to cgu(T ) = so(2n − 1) ⊕ t,
ck(T ) = so(2k − 2)⊕ so(2n− 2k + 1)⊕ t, and cg(T ) = so(2k − 2, 2n− 2k + 1)⊕ t.
cf. Corollary 3.6 in [2, p.1142].

(2). Setting

βs := αk+s for 1 ≤ s ≤ n− k − 1,

βn−k := −
∑n−1

p=1 αp,

βt := αt−n+k for n− k + 1 ≤ t ≤ n− 1,

βn :=
∑n

d=k αd,

we deduce that Π2 := {βℓ}nℓ=1 is a fundamental root system of 4 whose Dynkin
diagram is

(bi-2) Π2:
β1

e1
β2

e2
β3

e2 . . .
βn−1

e2
βn.
e2

��
@@

By αa(Zb) = δa,b and T = i(−Zk + Zk+1) we conclude βℓ(−iT ) = δℓ,1 ≥ 0 for all
1 ≤ ℓ ≤ n. One can complete the rest of proof, in a similar way to (1).3 □

3.2.4. CII. Denote by gC the classical complex simple Lie algebra of the type Cp+q

(p, q ≥ 1), and assume that the Dynkin diagram of 4 = 4(gC, hC) is as follows:

(c.1) Π△:
α1

e2
α2

e2
α3

e2 . . .
αp+q−1

e2
αp+q

e1��
@@

(cf. Bourbaki [7, p.269]). We take Chevalley’s canonical basis {H∗
αℓ
}p+q
ℓ=1 ∪{Eα |α ∈

4} of gC and construct a compact real form gu ⊂ gC from

(c.2)

{
hR := spanR{H∗

αℓ
}p+q
ℓ=1 ,

gu := ihR ⊕
⊕

α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)}.

In addition, let us take the dual basis {Zℓ}p+q
ℓ=1 of Π△ = {αℓ}p+q

ℓ=1 and define an
involutive inner automorphism θ of gC by

(cii.1) θ := exp π ad iZp.

Since θ(gu) ⊂ gu, one has the decomposition gu = k⊕ ip of gu with respect to θ and
a non-compact real form g := k⊕ p of gC. Then it follows that gC = sp(p + q,C),
gu = sp(p + q), g = sp(p, q) and ihR ⊂ k, and that {αa}p−1

a=1 ∪ {αb}p+q
b=p+1 ∪ {−α̃} is

a fundamental root system of 4(kC, hC) and its Dynkin diagram is

(cii.2) −α̃
e1

α1

e2 . . .
αp−2

e2
αp−1

e2
αp+1

e2
αp+2

e2 . . .
αp+q−1

e2
αp+q,
e1��

@@��
@@

where α̃ := αp+q + 2
∑p+q−1

c=1 αc. Now, we are in a position to demonstrate

3Remark. If k = n − 1, then the system Π2 consists of β1 = −
∑n−1

p=1 αp, βt = αt−1 (2 ≤ t ≤
n− 1) and βn = αn−1 + αn; thus the (s2) in Proposition 2.7 cannot hold for Π2.
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Proposition 3.11 (CII). (g, cg(T )) = (sp(p, q), su(p, q) ⊕ t) satisfies the (S) in
Proposition 2.7. Here p, q ≥ 1, we construct a Cartan decomposition g = k ⊕ p of
g = sp(p, q) from (c.2) and (cii.1), and put T = i(−Zp + Zp+q), where {Zℓ}p+q

ℓ=1 is
the dual basis of {αℓ}p+q

ℓ=1 in (c.1).

Proof. Let

βj := αp+j for 1 ≤ j ≤ q − 1,

βq :=
∑p+q

k=p αk,

βh := αp+q−h for q + 1 ≤ h ≤ p+ q − 1,

βp+q := −αp+q − 2
∑p+q−1

c=1 αc.

Then Π′ := {βℓ}p+q
ℓ=1 is a fundamental root system of 4,

(cii) Π′:
β1

e2
β2

e2
β3

e2 . . .
βp+q−1

e2
βp+q

e1��
@@

and it follows from αa(Zb) = δa,b that βℓ(−iT ) = βℓ(−Zp + Zp+q) = δℓ,p+q ≥ 0
for all 1 ≤ ℓ ≤ p + q, so that the (s1) in Proposition 2.7 holds for Π′ = {βℓ}p+q

ℓ=1 .
Furthermore, it follows from (cii.1) and 1 ≤ p ≤ p+ q − 1 that

gβp+q = g−2α1−···−2αp+q−1−αp+q = spanC{E−2α1−···−2αp+q−1−αp+q} ⊂ kC.

Thus the (s2) in Proposition 2.7 also holds for Π′. From (cii), (cii.2), T = i(−Zp +
Zp+q) and αa(Zb) = δa,b we obtain cgu(T ) = su(p+q)⊕ t, ck(T ) = su(p)⊕su(q)⊕ t2,
and cg(T ) = su(p, q)⊕ t. □

Remark 3.12 (CII). (sp(1, 1), su(1, 1)⊕ t) = (so(4, 1), so(2, 1)⊕ t) satisfies the sup-
position (S) in Proposition 2.7. cf. Proposition 3.9-(1).

3.2.5. DI. Let gC := so(2n,C) = {A ∈ gl(2n,C) | tA = −A},

g := so(p, 2n− p) =

{(
K1 iD

−itDK2

)
K1 ∈ so(p), D : p× (2n− p) real matrix,
K2 ∈ so(2n− p)

}
,

k :=

{(
K1 O
O K2

)
K1 ∈ so(p), K2 ∈ so(2n− p)

}
,

p :=

{(
O iD

−itD O

)
D : p× (2n− p) real matrix

}
,

ihR :=




0 x1

−x1 0
O

. . .

O
0 xn

−xn 0

 x1, x2, . . . , xn ∈ R

,
where n ≥ 4, p ≥ 1 and 2n−p ≥ 1, and we note that the above notation so(p, 2n−p)
is different from Helgason’s [8, p.446], but our Lie algebra so(p, 2n−p) is isomorphic
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to Helgason’s one. Here it follows that g = k ⊕ p is a Cartan decomposition of g,
that ihR is a maximal torus of gu := k⊕ ip, and that

(di.1) kC =

{(
B1 O
O B2

)
B1 ∈ so(p,C), B2 ∈ so(2n− p,C)

}
.

Following the notation in Helgason [8, p.187] we put

(di.2)



Hℓ := E2ℓ−1,2ℓ − E2ℓ,2ℓ−1 for 1 ≤ ℓ ≤ n,

Fa,b := Ea,b − Eb,a for 1 ≤ a 6= b ≤ 2n,

G+
k,j := F2k−1,2j−1 + F2k,2j + i(F2k−1,2j − F2k,2j−1) for 1 ≤ k 6= j ≤ n,

G−
k,j := F2k−1,2j−1 − F2k,2j + i(F2k−1,2j + F2k,2j−1) for 1 ≤ k < j ≤ n,

G−
j,k := F2k−1,2j−1 − F2k,2j − i(F2k−1,2j + F2k,2j−1) for 1 ≤ k < j ≤ n.

Since hC = spanC{Hℓ}nℓ=1 one can define linear mappings αr, αn : hC → C by

αr

(∑n
ℓ=1 zℓHℓ

)
:= −i(zr − zr+1) for 1 ≤ r ≤ n− 1,

αn

(∑n
ℓ=1 zℓHℓ

)
:= −i(zn−1 + zn),

respectively. Then it turns out that [H,G+
r,r+1] = αr(H)G+

r,r+1 (1 ≤ r ≤ n − 1),

[H,G−
n,n−1] = αn(H)G−

n,n−1 for allH ∈ hC, and that Π△ := {αℓ}nℓ=1 is a fundamental
root system of 4(gC, hC) and its dual basis {Zℓ}nℓ=1 (⊂ hR) is as follows:

(di.3)

{
Zs = i(H1 +H2 + · · ·+Hs) for 1 ≤ s ≤ n− 2,

Zn−1 = (i/2)(−Hn +
∑n−1

r=1 Hr), Zn = (i/2)
∑n

ℓ=1Hℓ.

Remark that the Dynkin diagram of Π△ = {αℓ}nℓ=1 is

Π△:
α1

e1
α2

e2
α3

e2 . . .
αn−2

e2
αn.
e1

eαn−1 1

In this setting we establish

Proposition 3.13 (DI-1). The supposition (S) in Proposition 2.7 holds for the
following pseudo-Hermitian, non-Hermitian symmetric Lie algebras (g, cg(T )) :

(1) (so(p, 2n − p), so(p − 2, 2n − p) ⊕ t), n ≥ 4, p ≥ 4, 2n − p ≥ 1 and
T = iZ1 = −H1.

(2) (so(p, 2n − p), so(p, 2n − p − 2) ⊕ t), n ≥ 4, p ≥ 1, 2n − p ≥ 4 and
T = i(Zn−1 − Zn) = Hn.

Here we refer to (di.3), (di.2) for Zℓ, Hℓ (1 ≤ ℓ ≤ n).

Remark 3.14 (DI-1). We do not know whether the following two pseudo-Hermitian
symmetric Lie algebras satisfy the supposition (S) or not:

• (so(p, 2n − p), so(p − 2, 2n − p) ⊕ t) = (so(3, 2n − 3), so(1, 2n − 3) ⊕ t) in
case of (1) with p = 3,

• (so(p, 2n − p), so(p, 2n − p − 2) ⊕ t) = (so(2n − 3, 3), so(2n − 3, 1) ⊕ t) in
case of (2) with 2n− p = 3.



42 N. BOUMUKI

Poof of Proposition 3.13. (1). In view of αa(Zb) = δa,b we see that αℓ(−iT ) =
αℓ(Z1) = δℓ,1 ≥ 0 for all 1 ≤ ℓ ≤ n. Furthermore, (di.1) and p ≥ 4 give rise to

gα1 = spanC{G+
1,2} ⊂ kC.

Therefore the (s1) and (s2) in Proposition 2.7 hold for the Π△ = {αℓ}nℓ=1. By a
direct computation with T = −H1, one obtains cg(T ) = so(p−2, 2n−p)⊕ t, where
we remark that H1 ∈ (k ∩ ihR) ⊂ g comes from p ≥ 2.

(2). Set

βr := αn−r for 1 ≤ r ≤ n− 1,

βn := −α1 − 2
∑n−2

c=2 αc − αn−1 − αn.

Then, Π′ := {βℓ}nℓ=1 is a fundamental root system of 4(gC, hC) whose Dynkin
diagram is

Π′:
β1

e1
β2

e2
β3

e2 . . .
βn−2

e2
βn
e1

eβn−1 1

and it follows from T = i(Zn−1 − Zn) and αa(Zb) = δa,b that βℓ(−iT ) = δℓ,1 ≥ 0
for all 1 ≤ ℓ ≤ n, so that the (s1) in Proposition 2.7 holds for the Π′ = {βℓ}nℓ=1.
Moreover, (di.1) and 2n − p ≥ 4 yield gβ1 = gαn−1 = spanC{G+

n−1,n} ⊂ kC. Thus
the (s2) in Proposition 2.7 also holds for Π′ = {βℓ}nℓ=1. □

Now, let p = 2m. Then we have g = so(2m, 2n− 2m) and

Proposition 3.15 (DI-2). (g, cg(T )) = (so(2m, 2n−2m), su(m,n−m)⊕t) satisfies
the supposition (S) in Proposition 2.7, where n ≥ 4, m ≥ 1, n − m ≥ 2 and
T = iZn = (−1/2)

∑n
ℓ=1Hℓ. Here we refer to (di.3), (di.2) for Zℓ, Hℓ (1 ≤ ℓ ≤ n).

Proof. By a direct computation one obtains αℓ(−iT ) = αℓ(Zn) = δℓ,n ≥ 0 for all
1 ≤ ℓ ≤ n, and it follows from (di.2), 2n− 2m ≥ 4 and (di.1) with p = 2m that

gαn = spanC{G−
n,n−1} ⊂ kC.

Therefore the (s1) and (s2) in Proposition 2.7 hold for Π△ = {αℓ}nℓ=1. □

3.2.6. DIII. Let gC be the classical complex simple Lie algebra of the type Dn

(n ≥ 3). Let us assume that the Dynkin diagram of 4 = 4(gC, hC) is

(diii.1)
Π△:

α1

e1
α2

e2
α3

e2 . . .
αn−2

e2
αn

e1
eαn−1 1

(cf. Bourbaki [7, p.271]), take Chevalley’s canonical basis {H∗
αℓ
}nℓ=1 ∪ {Eα |α ∈ 4}

of gC and define a compact real form gu ⊂ g by

(diii.2)

{
hR := spanR{H∗

αℓ
}nℓ=1,

gu := ihR ⊕
⊕

α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)};



EXAMPLES OF PSEUDO-HERMITIAN SYMMETRIC SPACES 43

in addition, denote by {Zℓ}nℓ=1 (⊂ hR) the dual basis of Π△ = {αℓ}nℓ=1. We are
going to set a non-compact real form g ⊂ gC. In order to do so, we first construct
an involutive inner automorphism θ of g from

(diii.3) θ := exp π ad iZn.

Then (diii.2) tells us that gu is stable under θ, so one can obtain the decomposition
gu = k ⊕ ip of gu with respect to θ and set a non-compact real form g ⊂ gC as
follows: g := k⊕ p. Here it turns out that

gC = so(2n,C), gu = so(2n), k = u(n), g = so∗(2n), ihR ⊂ k = (gu ∩ g),

and that {αj}n−1
j=1 is a fundamental root system of 4(kC, hC) whose Dynkin diagram

is

(diii.4)

α1

e1
α2

e1
α3

e1 . . .
αn−2,

e1
eαn−1 1

where kC = {X ∈ gC | θ(X) = X}. Now, let us demonstrate

Proposition 3.16 (DIII). The supposition (S) in Proposition 2.7 holds for the
following pseudo-Hermitian, non-Hermitian symmetric Lie algebras (g, cg(T )) :

(1) (so∗(2n), su(k, n− k)⊕ t), 1 ≤ k ≤ n− 2 and T = i(Zk − Zn).
(2) (so∗(2n), so∗(2n− 2)⊕ t), n ≥ 3 and T = iZ1.

Here {Zℓ}nℓ=1 is the dual basis of {αℓ}nℓ=1 in (diii.1) and we construct a Cartan
decomposition g = k⊕ p of g = so∗(2n) from (diii.2) and (diii.3).

Proof. (1). We set

βa := −αk+1+a for 1 ≤ a ≤ n− k − 2,

βn−k−1 := −
∑n−2

s=1 αs − αn,

βb := αb−n+k+1 for n− k ≤ b ≤ n− 1,

βn := αk + 2
∑n−2

c=k+1 αc + αn−1 + αn,

where the above implies β1 = −
∑n−2

s=1 αs − αn, βb = αb−1 (2 ≤ b ≤ n − 1),
βn = αn−2 + αn−1 + αn in case of k = n− 2. Then Π1 := {βℓ}nℓ=1 is a fundamental
root system of 4 whose Dynkin diagram is

(diii-1)
Π1:

β1
e1

β2
e2

β3
e2 . . .

βn−2

e2
βn.
e1

eβn−1 1

In view of αa(Zb) = δa,b we see that βℓ(−iT ) = βℓ(Zk − Zn) = δℓ,n−1 ≥ 0 for all
1 ≤ ℓ ≤ n. Accordingly the (s1) in Proposition 2.7 holds for the Π1 = {βℓ}nℓ=1.
From (diii.3) and k 6= n we deduce that

gβn−1 = gαk
⊂ kC,
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and therefore the (s2) in Proposition 2.7 also holds for Π1 = {βℓ}nℓ=1. It is easy to
see that cg(T ) = su(k, n− k)⊕ t by virtue of αa(Zb) = δa,b, T = i(Zk −Zn), (diii-1)
and (diii.4).

(2). One can show (2) by fixing the Π△ = {αℓ}nℓ=1 in (diii.1). □

3.2.7. EII & EIII. Let us denote by gC the exceptional complex simple Lie algebra
of the type E6, and assume that the Dynkin diagram of 4 = 4(gC, hC) is as follows
(cf. Bourbaki [7, p.276]):

(e6.1) Π△:
α1

e1
α3

e2
α4

e3
α5

e2
α6.

e1
eα2 2

Taking Chevalley’s canonical basis {H∗
αℓ
}6ℓ=1∪{Eα |α ∈ 4} of gC into account, one

can construct a compact real form gu ⊂ gC from

(e6.2)

{
hR := spanR{H∗

αℓ
}6ℓ=1,

gu := ihR ⊕
⊕

α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)};

and then we denote by {Zℓ}6ℓ=1 (⊂ hR) the dual basis of Π△ = {αℓ}6ℓ=1. In this
setting, we are going to consider the following four simple irreducible pseudo-
Hermitian (non-Hermitian) symmetric Lie algebras:

(EII-1) (e6(2), so(6, 4)⊕ t),
(EII-2) (e6(2), so

∗(10)⊕ t),
(EIII-1) (e6(−14), so

∗(10)⊕ t),
(EIII-2) (e6(−14), so(8, 2)⊕ t).

• Case (EII-1). Define an inner automorphism θ of gC by

(eii.1) θ := exp π ad i(Z2 + Z3 + Z5).

Then it turns out that θ is involutive and θ(gu) ⊂ gu. Let gu = k ⊕ ip denote the
decomposition of gu with respect to θ, and let g := k⊕ p. Setting

γ1 := α2 + α3 + α4,

γ2 := α1,

γ3 := α3 + α4 + α5,

γ4 := α6,

γ5 := α2 + α4 + α5,

γ6 := α4,

we deduce that {γℓ}6ℓ=1 is a fundamental root system of 4(kC, hC) and its Dynkin
diagram is

(eii.2) γ1
e1

γ2
e1

γ3
e1

γ4
e1

γ5
e1

γ6,
e1

where kC = {X ∈ gC | θ(X) = X}. Therefore it follows that k = su(6)⊕ su(2) and
g = e6(2). Now, put

T := iZ1.
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Then T ∈ ihR ⊂ k = (gu ∩ g), and αℓ(−iT ) = αℓ(Z1) = δℓ,1 ≥ 0 for all 1 ≤ ℓ ≤ 6.
This assures that (g, cg(T )) is a pseudo-Hermitian symmetric Lie algebra, and that
T is the canonical central element of cg(T ). Moreover, the (s1) in Proposition 2.7
holds for Π△ = {αℓ}6ℓ=1. From (eii.1) and αa(Zb) = δa,b we see that θ(Eα1) = Eα1 ,
so that gα1 ⊂ kC. Hence, the (s2) in Proposition 2.7 also holds for Π△ = {αℓ}6ℓ=1.

Proposition 3.17 (EII-1). (g, cg(T )) = (e6(2), so(6, 4)⊕ t) satisfies the supposition
(S) in Proposition 2.7. Here we construct a Cartan decomposition g = k ⊕ p of
g = e6(2) from (e6.2) and (eii.1), and put T = iZ1, where {Zℓ}6ℓ=1 stands for the
dual basis of {αℓ}6ℓ=1 in (e6.1).

Proof. The rest of proof is confirm that cg(T ) = so(6, 4) ⊕ t. However, that is
immediate from (e6.1), (eii.2), T = iZ1 and αa(Zb) = δa,b. □

• Case (EII-2). By arguments similar to those in Case (EII-1), one can assert

Proposition 3.18 (EII-2). (g, cg(T )) = (e6(2), so
∗(10)⊕ t) satisfies the supposition

(S) in Proposition 2.7. Here we construct a Cartan decomposition g = k ⊕ p of
g = e6(2) from (e6.2) and (eii.1), and put T = i(−Z4 + Z5), where {Zℓ}6ℓ=1 stands
for the dual basis of {αℓ}6ℓ=1 in (e6.1).

Proof. Setting

β1 := −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6,

β2 := α6,

β3 := α2,

β4 := α4 + α5,

β5 := α3,

β6 := α1

and Π′ := {βℓ}6ℓ=1, one has

(eii-2) Π′:
β1

e1
β3

e2
β4

e3
β5

e2
β6.

e1
eβ2 2

Then, it follows that Π′ = {βℓ}6ℓ=1 is a fundamental root system of 4, and that
βℓ(−iT ) = βℓ(−Z4 + Z5) = δℓ,1 ≥ 0 for all 1 ≤ ℓ ≤ 6. Furthermore, we see that

gβ1 = g−α1−2α2−2α3−3α4−2α5−α6 ⊂ kC

in view of (eii.1) and αa(Zb) = δa,b. Consequently the (s1) and (s2) in Proposition
2.7 hold for the Π′ = {βℓ}6ℓ=1. We obtain cg(T ) = so∗(10) ⊕ t from (eii-2), (eii.2),
T = i(−Z4 + Z5) and αa(Zb) = δa,b. □

• Cases (EIII-1) & (EIII-2). Let us define an involutive inner automorphism θ
of gC by

(eiii.1) θ := exp π ad i(Z1 − Z6),
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denote by gu = k ⊕ ip the decomposition of gu with respect to θ, and construct a
non-compact real form g ⊂ gC from g := k ⊕ p, where we note that gu is stable
under θ (recall (e6.2) for gu). Setting

γ1 := −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6,

γ2 := α2,

γ3 := α4,

γ4 := α3,

γ5 := α5,

we deduce that {γk}5k=1 is a fundamental root system of 4(kC, hC) and its Dynkin
diagram is

(eiii.2)

γ1
e1

γ2
e2

γ3
e2

γ4.
e1

eγ5 1

This shows that k = so(10)⊕ t, and g = e6(−14). In this setting we demonstrate two
propositions.

Proposition 3.19 (EIII-1). (g, cg(T )) = (e6(−14), so
∗(10)⊕ t) satisfies the supposi-

tion (S) in Proposition 2.7. Here we construct a Cartan decomposition g = k⊕p of
g = e6(−14) from (e6.2) and (eiii.1), and put T = i(Z1 − Z3), where {Zℓ}6ℓ=1 stands
for the dual basis of {αℓ}6ℓ=1 in (e6.1).

Proof. Set βℓ (1 ≤ ℓ ≤ 6) as follows:

β1 := −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6,

β2 := α1 + α3,

β3 := α2,

β4 := α4,

β5 := α5,

β6 := α6.

Then we see that Π1 := {βℓ}6ℓ=1 is a fundamental root system of 4, its Dynkin
diagram is

(eiii-1) Π1:
β1

e1
β3

e2
β4

e3
β5

e2
β6

e1
eβ2 2

and βℓ(−iT ) = βℓ(Z1 − Z3) = δℓ,1 ≥ 0 for all 1 ≤ ℓ ≤ 6. Moreover, we conclude

gβ1 = g−α1−2α2−2α3−3α4−2α5−α6 ⊂ {X ∈ gC | θ(X) = X} = kC

by (eiii.1) and αa(Zb) = δa,b. Therefore the (s1) and (s2) in Proposition 2.7 hold
for this Π1 = {βℓ}6ℓ=1. □
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Proposition 3.20 (EIII-2). (g, cg(T )) = (e6(−14), so(8, 2)⊕ t) satisfies the supposi-
tion (S) in Proposition 2.7. Here we construct a Cartan decomposition g = k ⊕ p
of g = e6(−14) from (e6.2) and (eiii.1), and put T = i(−Z3 + Z5), where {Zℓ}6ℓ=1

stands for the dual basis of {αℓ}6ℓ=1 in (e6.1).

Proof. Setting

β1 := α1 + α2 + α3 + 2α4 + 2α5 + α6,

β2 := α4,

β3 := −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6,

β4 := α2,

β5 := α3 + α4 + α5,

β6 := α6,

we deduce that Π2 := {βℓ}6ℓ=1 is a fundamental root system of 4 and βℓ(−iT ) =
βℓ(−Z3 + Z5) = δℓ,1 ≥ 0 for all 1 ≤ ℓ ≤ 6.

(eiii-2) Π2:
β1

e1
β3

e2
β4

e3
β5

e2
β6.

e1
eβ2 2

In addition, gβ1 = gα1+α2+α3+2α4+2α5+α6 ⊂ kC due to (eiii.1). Therefore the (s1) and
(s2) in Proposition 2.7 hold for Π2 = {βℓ}6ℓ=1. □

3.2.8. EV, EVI & EVII. Denote by gC the exceptional complex simple Lie algebra
of the type E7, and assume that the Dynkin diagram of 4 = 4(gC, hC) is

(e7.1) Π△:
α1

e2
α3

e3
α4

e4
α5

e3
α6

e2
α7

e1
eα2 2

(cf. Bourbaki [7, p.280]). Taking Chevalley’s canonical basis {H∗
αℓ
}7ℓ=1 ∪ {Eα |α ∈

4} of gC, we construct a compact real form gu ⊂ gC from

(e7.2)

{
hR := spanR{H∗

αℓ
}7ℓ=1,

gu := ihR ⊕
⊕

α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)}.

Let {Zℓ}7ℓ=1 (⊂ hR) be the dual basis of Π△ = {αℓ}7ℓ=1. From now on, we are going
to consider the following four simple irreducible pseudo-Hermitian (non-Hermitian)
symmetric Lie algebras:

(EV) (e7(7), e6(2) ⊕ t),
(EVI-1) (e7(−5), e6(2) ⊕ t),
(EVI-2) (e7(−5), e6(−14) ⊕ t),
(EVII) (e7(−25), e6(−14) ⊕ t).

• Case (EV). Define an involutive inner automorphism θ of gC by

(ev.1) θ := exp π ad iZ2.
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Then it follows from (e7.2) that θ(gu) ⊂ gu, which enables us to obtain the decom-
position gu = k⊕ ip of gu with respect to θ and construct a non-compact real form
g of gC from g := k⊕ p. Setting

γ1 := −2α1 − 2α2 − 3α3 − 4α4 − 3α5 − 2α6 − α7,

γ2 := α1,

γp := αp for 3 ≤ p ≤ 7,

we have a fundamental root system {γℓ}7ℓ=1 of 4(kC, hC), and see that its Dynkin
diagram is

(ev.2) γ1
e1

γ2
e1

γ3
e1

γ4
e1

γ5
e1

γ6
e1

γ7,
e1

where kC = {X ∈ gC | θ(X) = X}. This implies k = su(8) and g = e7(7). Now, let

T := iZ7.

Then one has T ∈ ihR ⊂ k ⊂ g and αℓ(−iT ) = αℓ(Z7) = δℓ,7 ≥ 0 for all 1 ≤ ℓ ≤ 7.
Moreover, (ev.1) yields gα7 = spanC{Eα7} ⊂ kC. Consequently the (s1) and (s2) in
Proposition 2.7 hold for Π△ = {αℓ}7ℓ=1. For this reason we establish

Proposition 3.21 (EV). (g, cg(T )) = (e7(7), e6(2) ⊕ t) satisfies the supposition (S)
in Proposition 2.7. Here we construct a Cartan decomposition g = k⊕p of g = e7(7)
from (e7.2) and (ev.1), and put T = iZ7, where {Zℓ}7ℓ=1 stands for the dual basis
of {αℓ}7ℓ=1 in (e7.1).

• Cases (EVI-1) & (EVI-2). Define an involutive inner automorphism θ of gC by

(evi.1) θ := exp π ad i(Z2 + Z7).

Let gu = k⊕ ip be the decomposition of gu with respect to θ, where we remark that
θ(gu) ⊂ gu comes from (e7.2) and (evi.1). Let us set g := k⊕ p and

γ1 := α1,

γ2 := α2 + α4 + α5 + α6 + α7,

γq := αq for 3 ≤ q ≤ 6,

γ7 := α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6.

Then it turns out that {γℓ}7ℓ=1 is a fundamental root system of 4(kC, hC) and its
Dynkin diagram is

(evi.2)

γ1
e1

γ3
e2

γ4
e2

γ5
e2

γ6
e1

γ7.
e1

eγ2 1

So it follows that k = so(12)⊕ su(2) and g = e7(−5). We are in a position to verify

Proposition 3.22 (EVI). The supposition (S) in Proposition 2.7 holds for the
following two pseudo-Hermitian symmetric Lie algebras (g, cg(T )) :

(1) (e7(−5), e6(2) ⊕ t) and T = iZ7.
(2) (e7(−5), e6(−14) ⊕ t) and T = i(Z6 − Z7).
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Here {Zℓ}7ℓ=1 is the dual basis of {αℓ}7ℓ=1 in (e7.1) and we construct a Cartan
decomposition g = k⊕ p of g = e7(−5) from (e7.2) and (evi.1).

Proof. (1). Let T := iZ7, and let

β1 := −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6,

β2 := α6,

β3 := α1 + α2 + α3 + α4,

β4 := α5,

β5 := α4,

β6 := α3,

β7 := α2 + α4 + α5 + α6 + α7.

Then Π1 := {βℓ}7ℓ=1 is a fundamental root system of 4 whose Dynkin diagram is

(evi-1) Π1:
β1

e2
β3

e3
β4

e4
β5

e3
β6

e2
β7.

e1
eβ2 2

Moreover, αa(Zb) = δa,b and (evi.1) imply that βℓ(−iT ) = βℓ(Z7) = δℓ,7 ≥ 0 for all
1 ≤ ℓ ≤ 7 and gβ7 = gα2+α4+α5+α6+α7 ⊂ kC, so that the (s1) and (s2) in Proposition
2.7 hold for this Π1 = {βℓ}7ℓ=1. In addition, cg(T ) = e6(2) ⊕ t follows from (evi-1),
(evi.2) and T = iZ7.

(2). One can conclude (2) by arguments similar to those above, and by setting
T := i(Z6 − Z7) and

β1 := −α2 − α3 − α4,

β2 := −α1 − α3 − α4,

β3 := α3,

β4 := α4,

β5 := α1 + α2 + α3 + α4 + α5 + α6 + α7,

β6 := −α6 − α7,

β7 := α6,

where we remark that Π2 := {βℓ}7ℓ=1 is a fundamental root system of 4 and its
Dynkin diagram is

(evi-2) Π2:
β1

e2
β3

e3
β4

e4
β5

e3
β6

e2
β7.

e1
eβ2 2

□

• Case (EVII). First, let us realize the exceptional real simple Lie algebra e7(−25).
Define an involutive inner automorphism θ of gC by

(evii.1) θ := exp π ad iZ7.
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Since (e7.2) we have θ(gu) ⊂ gu. So, one can consider the decomposition gu = k⊕ip
of gu with respect to θ, and set a non-compact real form g ⊂ gC as g := k ⊕ p.
It follows from (evii.1) and (e7.1) that {αk}6k=1 is a fundamental root system of
4(kC, hC) whose Dynkin diagram is

(evii.2)

α1

e1
α3

e2
α4

e3
α5

e2
α6.

e1
eα2 2

Therefore we show that k = e6 ⊕ t and g = e7(−25). Now, let us prove

Proposition 3.23 (EVII). (g, cg(T )) = (e7(−25), e6(−14)⊕t) satisfies the supposition
(S) in Proposition 2.7. Here we construct a Cartan decomposition g = k ⊕ p of
g = e7(−25) from (e7.2) and (evii.1), and put T = i(Z6 −Z7), where {Zℓ}7ℓ=1 stands
for the dual basis of {αℓ}7ℓ=1 in (e7.1).

Proof. Setting

β1 := −α2 − α3 − α4,

β2 := −α1 − α3 − α4,

β3 := α3,

β4 := α4,

β5 := α1 + α2 + α3 + α4 + α5 + α6 + α7,

β6 := −α6 − α7,

β7 := α6,

we deduce that Π′ := {βℓ}7ℓ=1 is a fundamental root system of 4 whose Dynkin
diagram is

(evii) Π′:
β1

e2
β3

e3
β4

e4
β5

e3
β6

e2
β7.

e1
eβ2 2

Then it turns out that βℓ(−iT ) = βℓ(Z6 − Z7) = δℓ,7 ≥ 0 for all 1 ≤ ℓ ≤ 7, and
that gβ7 = gα6 ⊂ {X ∈ gC | θ(X) = X} = kC due to (evii.1) and αa(Zb) = δa,b.
Accordingly the (s1) and (s2) in Proposition 2.7 hold for Π′ = {βℓ}7ℓ=1. □
Remark 3.24. Seven Propositions 3.17 through 3.23 tell us that the supposition
(S) in Proposition 2.7 holds for every simple irreducible pseudo-Hermitian, non-
Hermitian symmetric Lie algebra of the exceptional type.

(EII-1) (e6(2), so(6, 4)⊕ t),
(EII-2) (e6(2), so

∗(10)⊕ t),
(EIII-1) (e6(−14), so

∗(10)⊕ t),
(EIII-2) (e6(−14), so(8, 2)⊕ t),
(EV) (e7(7), e6(2) ⊕ t),
(EVI-1) (e7(−5), e6(2) ⊕ t),
(EVI-2) (e7(−5), e6(−14) ⊕ t),
(EVII) (e7(−25), e6(−14) ⊕ t).
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Remark 2.8-(2), Remark 3.2 and the propositions in Subsection 3.2 lead to

Theorem 3.25. The supposition (S) in Proposition 2.7 holds for every effective
semisimple Hermitian symmetric space of the compact type and each effective sim-
ple irreducible pseudo-Hermitian (non-Hermitian) symmetric space G/L given in
Table C.

Table C
G/L, where we assume the center Z(G) to be trivial for the G/L below.
(1) SU∗(2n)/(SL(n,C) · T ), n ≥ 2.

cf. Proposition 3.3 (AII)
(2) SU(p, q)/S(U(a)× U(p− a, q)), 1 ≤ a ≤ p− 1, 1 ≤ q.
(3) SU(p, q)/S(U(p, b)× U(q − b)), 1 ≤ p, 1 ≤ b ≤ q − 1.
(4) SU(p, q)/S(U(a, b)× U(p− a, q − b)), 1 ≤ a ≤ p− 1, 1 ≤ b ≤ q − 1.

cf. Proposition 3.8 (AIII)
(5) SO0(2k, 2n− 2k + 1)/(SO0(2k − 2, 2n− 2k + 1) · SO(2)), n ≥ 3, 2 ≤ k ≤ n.
(6) SO0(2k, 2n− 2k + 1)/(SO0(2k, 2n− 2k − 1) · SO(2)), 1 ≤ k ≤ n− 2.

cf. Proposition 3.9 (BI)
(7) Sp(p, q)/U(p, q), p, q ≥ 1.

cf. Proposition 3.11 (CII)
(8) SO0(p, 2n− p)/(SO0(p− 2, 2n− p) · SO(2)), n ≥ 4, p ≥ 4, 2n− p ≥ 1.
(9) SO0(p, 2n− p)/(SO0(p, 2n− p− 2) · SO(2)), n ≥ 4, p ≥ 1, 2n− p ≥ 4.

cf. Proposition 3.13 (DI-1)
(10) SO0(2m, 2n− 2m)/U(m,n−m), n ≥ 4, m ≥ 1, n−m ≥ 2.

cf. Proposition 3.15 (DI-2)
(11) SO∗(2n)/U(k, n− k), 1 ≤ k ≤ n− 2.
(12) SO∗(2n)/(SO∗(2n− 2) · SO∗(2)), n ≥ 3.

cf. Proposition 3.16 (DIII)
(13) E6(2)/(SO0(6, 4) · SO(2)).

cf. Proposition 3.17 (EII-1)
(14) E6(2)/(SO

∗(10) · SO∗(2)).
cf. Proposition 3.18 (EII-2)

(15) E6(−14)/(SO
∗(10) · SO∗(2)).

cf. Proposition 3.19 (EIII-1)
(16) E6(−14)/(SO0(8, 2) · SO(2)).

cf. Proposition 3.20 (EIII-2)
(17) E7(7)/(E6(2) · T ).

cf. Proposition 3.21 (EV)
(18) E7(−5)/(E6(2) · T ).
(19) E7(−5)/(E6(−14) · T ).

cf. Proposition 3.22 (EVI)
(20) E7(−25)/(E6(−14) · T ).

cf. Proposition 3.23 (EVII)
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Remark 3.26. The pseudo-Hermitian symmetric spaces G/L in Table C, together
with

(i) SL(2n,R)/(SL(n,C) · T ), n ≥ 2,
(ii) SO0(2n− 2, 3)/(SO0(2n− 2, 1) · SO(2)), n ≥ 3,
(iii) SO0(3, 2n− 3)/(SO0(1, 2n− 3) · SO(2)), n ≥ 4,
(iv) SO0(2n− 3, 3)/(SO0(2n− 3, 1) · SO(2)), n ≥ 4,
(v) Sp(n,R)/U(k, n− k), 1 ≤ k ≤ n− 1,

exhaust all the simple irreducible pseudo-Hermitian, non-Hermitian symmetric
spaces in Tableau II of Berger [1, pp.157–161]. Unfortunately, we do not know
whether the above pseudo-Hermitian symmetric spaces (i) through (v) satisfy the
supposition (S) or not.

3.3. An appendix. It is known that for any effective irreducible Hermitian sym-
metric space Gu/Lu of the compact type, the complex vector space O(T 1,0(Gu/Lu))
is linear isomorphic to gC, where gC is the complexification of gu (e.g. Corollary
4.1-(ii) in [6, p.145]). So, Theorem 3.25, and two Propositions 2.7 and 2.5-(iv) lead
to

Corollary 3.27. For each effective simple irreducible pseudo-Hermitian symmetric
space G/L in Table C, the complex vector space O(T 1,0(G/L)) is linear isomorphic
to the complexification gC of g.

Acknowledgment. The author is very grateful to the referee for valuable comments
on an earlier version of this paper.
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85–177.

[2] N. Boumuki, Isotropy subalgebras of elliptic orbits in semisimple Lie algebras, and the canon-
ical representatives of pseudo-Hermitian symmetric elliptic orbits, J. Math. Soc. Japan, 59
(2007), 1135–1177.

[3] N. Boumuki, The classification of simple irreducible pseudo-Hermitian symmetric spaces:
from a viewpoint of elliptic orbits, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci.,
41 (2008), 13–122.

[4] N. Boumuki, A topic on homogeneous vector bundles over elliptic orbits: A condition for the
vector spaces of their cross-sections to be finite dimensional, arXiv:1901.07818v1 [math.DG]
23 Jan 2019.

[5] N. Boumuki, Continuous representations of semisimple Lie groups concerning homogeneous
holomorphic vector bundles over elliptic adjoint orbits, arXiv:1912.07769v1 [math.DG] 17
Dec 2019.

[6] N. Boumuki, An indecomposable representation and the complex vector space of holomorphic
vector fields on a pseudo-Hermitian symmetric space, “Recent Topics in Differential Geom-
etry and its Related Fields” (ed. T. Adachi and H. Hashimoto), 139–148, World Scientific
Publishing, 2019.

[7] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6, Translated from the 1968 French
original by Andrew Pressley, Elements of Mathematics, Springer-Verlag, Berlin-Heidelberg-
New York, 2002.



EXAMPLES OF PSEUDO-HERMITIAN SYMMETRIC SPACES 53

[8] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Corrected reprint
of the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society,
Providence, RI, 2001.

[9] T. Kobayashi, Adjoint action, Encyclopedia of Mathematics. URL: http:

//encyclopediaofmath.org/index.php?title=Adjoint_action&oldid=11210

[10] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954),
33–65.

[11] R. A. Shapiro, Pseudo-Hermitian symmetric spaces, Comment. Math. Helv., 46 (1971), 529–
548.

Division of Mathematical Sciences, Faculty of Science and Technology, Oita
University, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan

Email address: boumuki@oita-u.ac.jp


