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ABSTRACT. The main purpose of this paper is to give examples of effective
semisimple pseudo-Hermitian symmetric spaces satisfying a certain supposition
(S). If an effective semisimple pseudo-Hermitian symmetric space satisfies the
supposition (S), then one can clarify several properties of the pseudo-Hermitian
symmetric space—for example, any holomorphic function on the space is con-
stant, the group of holomorphic automorphisms of the space is a (finite-dimensional)
Lie group, and so on.

1. INTRODUCTION

For a complex manifold M we can set complex vector spaces, e.g., the complex
vector space O(M) of holomorphic functions, the complex vector space O(T°M)
of holomorphic vector fields and the complex vector space Q"(M) of holomorphic
r-forms, or more generally the complex vector space Vj; of holomorphic cross-
sections of a holomorphic vector bundle over M. These vector spaces sometimes
play important roles in the study of complex manifold M. We think it is meaning-
ful to judge whether the vector space V), is finite-dimensional or not for a given
connected complex manifold M.

This paper is a sequel to the paper [4]. In [4] we have dealt with the complex vec-
tor space Vg, of holomorphic cross-sections of a homogeneous holomorphic vector
bundle over a homogeneous pseudo-Kéher manifold G/L of connected semisimple
Lie group G and provided a sufficient condition (S) for the vector space Vg, to be
finite-dimensional in the case where G acts effectively on G/L. When the supposi-
tion (S) holds for G/ L, it follows that dimec O(G/L) < oo, dime O(T°(G/L)) < oo
and dime Q"(G/L) < oo; and furthermore, one can assert that any holomorphic
function on G/L is constant, the group Hol(G/L) of holomorphic automorphisms
is a Lie group and so on. Then we want to give concrete examples of homogeneous
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pseudo-Kéher manifolds G/L satisfying the supposition (S). Now, the open unit
disk D in C, the upper half-plane H in C and the Riemann sphere C U {oc} are
effective semisimple Hermitian symmetric spaces. Any effective semisimple Hermit-
ian symmetric space is one of the effective semisimple pseudo-Hermitian symmetric
spaces. These imply that the set of effective semisimple pseudo-Hermitian symmet-
ric spaces includes significant connected complex manifolds. Fortunately, an effec-
tive semisimple pseudo-Hermitian symmetric space is a homogeneous pseudo-Kaher
manifold G/ L of connected semisimple Lie group G such that G acts effectively on
G/L.

The main purpose of this paper is to give examples of effective semisimple pseudo-
Hermitian symmetric spaces satisfying the supposition (S). See Theorem 3.25.

This paper consists of three sections. In Section 2 we recall fundamental facts
about pseudo-Hermitian symmetric spaces and explain the supposition (S) more
precisely (cf. Proposition 2.7). In Section 3 we devote ourselves to finding out
pseudo-Hermitian symmetric spaces satisfying (S).

Notation. For a Lie group G, we denote its Lie algebra by the corresponding
Fraktur small letter g and utilize the following notation:

nl) Ad, ad : the adjoint representations of G and g, respectively,
n ( ):={9€ G| Adg(T) =T} for an element T" € g,

n3) Z(G) : the center of G,

n @ n : the direct sum of vector spaces m and n,

iy

2) C.

3)

4) m

5) i:

n6) f|a : the restriction of a mapping f to a set A,

7)

8)

9)

=

n7) ¢, : the differential homomorphism of a Lie group homomorphism ¢,
n8) [, : the unit matrix of degree n,
n9) E;; : the matrix whose (7, j)- element is 1 and whose other elements are all 0.

(
(
(
(
(
(
(
(
(

2. PRELIMINARIES

This section consists of two subsections. In Subsection 2.1 we recall that (a) an
effective semisimple pseudo-Hermitian symmetric space G/L is an elliptic adjoint
orbit,! (b) G/L can be embedded into a complex flag manifold G¢/Q~ via ¢ :
G/L — Gc/Q, gL — ¢gQ~, and (c) its image «(G/L) is a simply connected
domain in G¢/Q~. In Subsection 2.2 we take the complex vector space Vg, of
holomorphic cross-sections of a holomorphic vector bundle *(G¢ x,V) and provide
a sufficient condition for the vector space Vg, to be finite-dimensional.

2.1. Pseudo-Hermitian symmetric spaces. In this subsection we recall fun-
damental facts about pseudo-Hermitian symmetric spaces. A pseudo-Hermitian
symmetric space is one of the affine symmetric spaces. First of all, let us recall the
definition of affine symmetric space.

Definition 2.1 (cf. Nomizu [10, p.52, p.56]).

'We refer to Kobayashi [9] for the definitions of elliptic element and elliptic (adjoint) orbit.
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(i) Let G be a connected (real) Lie group, and let L be a closed subgroup of
G. Then the homogeneous space G/L is called an affine symmetric space,
if there exists an involutive automorphism o of GG satisfying

(G°)CLCG,

where (G7)g stands for the identity component of G7 := {z € G | o(x) = z}.
(ii) An affine symmetric space G/ L is said to be effective (resp. almost effective),
if G is effective (resp. almost effective) on G/L as a transformation group.
(iii) An affine symmetric space G/L is said to be semisimple (resp. simple), if
the Lie algebra g of G is semisimple (resp. simple).
(iv) An almost effective, semisimple affine symmetric space (G/L, o) is said to
be irreducible, if adl in u is irreducible. Here, | = {X € g|o.(X) = X}
andu={Y € glo.(Y)=-Y}.

Here is the definition of pseudo-Hermitian symmetric space:

Definition 2.2 (cf. Berger [1, p.94]).

(1) An affine symmetric space G/ L is said to be pseudo-Hermitian, if it admits a
G-invariant complex structure J and a G-invariant pseudo-Hermitian metric
g with respect to J.

(2) A symmetric Lie algebra (g,[,0) is said to be pseudo-Hermitian, if there
exist an ad [-invariant complex structure j on u and an ad l-invariant pseudo-
Hermitian form (-, -) (with respect to j) on u. Here u={Y € glo(YV) =
-Y}.

One knows the following fact:

Proposition 2.3 (cf. Shapiro [11, pp.533-534]). Let (G/L,o,J,g) be any almost
effective, semisimple pseudo-Hermitian symmetric space, and let g = [ & u be the
decomposition of g with respect to o.. Then, there exists a unique T' € | satisfying

(i) L=Cq(T) =(G)o, (ii) o(g) = (expnT)gexp(—nT) for all g € G,
(iii) J, =adT on T,(G/L) = u.

Here u is identified with the tangent space T,(G/L) of G/L at the origin o.

Remark 2.4. Let us comment on the element T in Proposition 2.3.

(1) T is called the canonical central element of I. cf. Shapiro [11, p.533].

(2) T is a non-zero element of g such that the linear transformation ad 7 : g —
g, X — [T, X], is semisimple and its eigenvalue is 4i or zero. Thus T is a
non-zero elliptic element of g.

(3) Proposition 2.3-(i) tells us that the pseudo-Hermitian symmetric space G/ L
is the adjoint orbit of G through 7', so that G/L is an elliptic adjoint orbit.

From now on, we are going to set the generalized Borel embedding by means
of Shapiro [11] (see Proposition 2.5-(v) below). Let G/L = (G/L,0,J,g) be an
effective semisimple pseudo-Hermitian symmetric space, and let T be the canonical
central element of [. Proposition 2.3-(i) implies that L = C(T') includes the center
Z(G) of G, and therefore Z(G) is trivial because G acts effectively on G/L. That
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is to say, the connected semisimple Lie group G is isomorphic to the adjoint group
of g. Consequently there exists a connected complex semisimple Lie group G¢ so
that

(1) Z(Gc) is trivial,

(2) G is a connected closed subgroup of Gc,

(3) g is a real form of gc.

In this setting we put
g ={Ze€gc|adT(Z)=0}, gl:={We€gc|adT(W)=—iW},
Q :={qeGe|Adg(g"®g™") Ca’@g '}

In addition, let g = €& p be a Cartan decomposition such that T € ¢, let G, be the
connected Lie subgroup of G¢ corresponding to a (maximal compact) subalgebra
gu 1= tDip of gc, and let L, := Cg,(T'). Define an inner automorphism o, of G,, by
ou(y) := (expnT)yexp(—nT) for y € G,. Then, o, is involutive and (G,/ Ly, 0v,)
is an affine symmetric space. In view of the decomposition g, = [, ® u,, of g, with
respect to (O’u)*, one can construct a GG,-invariant complex structure .J, on G, / L,
and a G,-invariant Hermitian metric g, on G, /L, from

(2.1)

for XY, Z € u,, respectively, where we identify the vector space u, with the
tangent space T,(G,/L,) at the origin o € G, /L, and denote by By, the Killing
form of g,.

Proposition 2.5 (cf. Shapiro [11]). In the setting above;

(i) Gu/Ly = (Gy/ Ly, 04, Ju,gu) is an effective semisimple Hermitian symmet-
ric space of the compact type,

(ii)) L,=G,NQ " and L=GNQ",

(iii) @~ is a connected, closed complex parabolic subgroup of G,

(iv) ty 2 Gu/Ly — Gc/Q, yLy — yQ~, is a Gy-equivariant biholomorphism of
Gu/ Ly onto Ge/Q,

(v) t: G/L — G¢c/Q~, gL — gQ~, is a G-equivariant biholomorphism of G/L
onto a simply connected domain in G¢c/Q~,

(vi) G,Q~ = Gg¢, and GQ~ is a domain in Gc.

Remark 2.6. Here are comments on the mapping ¢ : G/L — G¢/Q~, gL — gQ~,
in Proposition 2.5-(v).

(1) ¢ is called the generalized Borel embedding. cf. Shapiro [11, p.535].

(2) One can regard G/L as a simply connected domain in G¢/Q~ via «.

2.2. Homogeneous holomorphic vector bundles and a certain supposi-
tion. In this subsection we take the complex vector space Vg, of holomorphic
cross-sections of a holomorphic vector bundle (*(G¢ x, V) and provide a sufficient
condition for the vector space Vg, to be finite-dimensional (see Proposition 2.7).

2We slightly modify Theorem 3.1 in Shapiro [11, p.535]. See Lemma 8.1.11-(1), Proposition
8.2.1-(ii), (iii), (v) and Lemma 11.1.2 in [5] if necessary.
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Let G/L = (G/L, o, J,g) be an effective semisimple pseudo-Hermitian symmetric
space, and let T" be the canonical central element of [. We construct a complex
flag manifold G¢/Q~ from (2.1), fix the generalized Borel embedding ¢ : G/L —
Gc/Q, gL — ¢gQ~, and identify G/L with «(G/L).

LWG(C XPV) G(C XpV

G/L — Ge/Q~
Take a finite-dimensional complex vector space V and a holomorphic homomor-
phism p : Q= — GL(V), ¢ — p(q), where GL(V) is the general linear group on
V. Denote by G¢ X,V the homogeneous holomorphic vector bundle over G¢/Q~
associated with p, and by *(G¢ x, V) the restriction of G¢ x,V to G/L C Gec/Q™.
Let

VGC/Q* = {h :Ge —V

(i) h is holomorphic, }
(2.2) ((11)wh(a(il) lzp(q);.(h(a)) for all (a,q) € Gex Q™ [’
] _ i) 1 is holomorphic,
Vorui= {0 VI LB T ) ot 0) € G0 <}
Then one may assume that V.- and Vg are the complex vector spaces of
holomorphic cross-sections of the bundles G¢ x, V and *(G¢ X, V), respectively.
In general, the vector space Vg, g~ is finite-dimensional (because G¢/Q~ is a
connected compact complex manifold), but, in contrast, Vg1, is not always finite-
dimensional. From now on, we are going to provide a sufficient condition for Vg, 1,
to be finite-dimensional. Fix a Cartan decomposition g = €& p of g with T' € ¢,
and a maximal torus ihg of g, = € & ip containing 7. Let hc be the complex
vector subspace of gc generated by ibg, let A = A(gc, be) be the root system of
gc relative to hc, let g, be the root subspace of g¢ for @ € A, and let €- be the
complex subalgebra of g¢ generated by €. Then one has

Proposition 2.7. In the setting of Subsection 2.2; suppose that (S) there exists a
fundamental root system Ia of A = A(gc, be) satisfying two conditions

(s1) a(—iT) > 0 for all a« € 1A, and

(s2) g5 C tc for every B € U with B(T) # 0.

Then, the complex vector space Vg, o- s linear isomorphic to Vg1, via
F: VG@/Q* — Vg/L, h— h|GQ*;
and therefore dime Vg, = dime Vg /g- < 00.

Proof. At this stage, our setting is as follows:

e (¢ is a connected complex semisimple Lie group with the trivial center,
e (5 is a connected closed subgroup of G¢ such that g is a real form of gc,
e T is a non-zero elliptic element of g,

e g=1t®dpisa Cartan decomposition of g with 7" € ¢,

e ihr is a maximal torus of g, = € @ ip containing 7',
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e A = A(gc, be) is the root system of gc relative to hc, where he is the
complex vector subspace of gc generated by thg,

e g, is the root subspace of gc for a € A,

o L=Cq(T),

e ()~ is the closed complex subgroup of G¢ defined by (2.1),

e £ is the complex subalgebra of gc generated by ¢,

e V is a finite-dimensional complex vector space,

e p:Q — GL(V), ¢ — p(q), is a holomorphic homomorphism,

® Vi./o- and Vg, are the complex vector spaces defined by (2.2).

Since we conform to the setting of Subsection 3.1 in [4], we can apply Theorem 3.1
in [4] to this proposition. Thus we can get the conclusion. 0

Remark 2.8. Here are comments on Proposition 2.7.

(1) One can always take a fundamental root system IIn C A(gc, he) with (s1),
by considering the lexicographic linear ordering on the dual space (hg)*
associated with an ordered real basis —iT =: Ay, As, ..., Ay of bg.

(2) If G is compact, then the pseudo-Hermitian symmetric space G/L always
satisfies the supposition (S) because of t¢c = gc.

(3) If G/L is a symmetric bounded domain in C", then it cannot satisfy the
supposition (S) at all. cf. Example 4.2 in [4].

3. EXAMPLES OF PSEUDO-HERMITIAN SYMMETRIC SPACES SATISFYING (S)

Our aim is to find out effective semisimple pseudo-Hermitian symmetric spaces
which satisfy the supposition (S) in Proposition 2.7.

3.1. Reduction. An effective semisimple pseudo-Hermitian symmetric space is
biholomorphic to the direct product Gi/L; x Gy/Ly X +-+ X G,/L,, where all
G1/Ly,...,G,/L, are effective simple pseudo-Hermitian symmetric spaces. There
are four types of simple pseudo-Hermitian symmetric spaces:

Table A: four types of simple pseudo-Hermitian symmetric spaces
(I) | an irreducible Hermitian symmetric space of the compact type
(IT) | an irreducible Hermitian symmetric space of the non-compact type
(II) | a simple irreducible pseudo-Hermitian (non-Hermitian) symmetric space
(IV) | a simple reducible pseudo-Hermitian symmetric space

Here a simple pseudo-Hermitian symmetric space G/L is reducible if and only if
the Lie algebra g is complex (cf. Shapiro [11, p.532]). From the next subsection
we will mainly deal with (III) effective simple irreducible pseudo-Hermitian (non-
Hermitian) symmetric spaces; due to Remark 2.8-(2), (3) and

Proposition 3.1. (IV) Any effective simple reducible pseudo-Hermitian symmetric
space G /L cannot satisfy the supposition (S) in Proposition 2.7 at all.
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Proof. Let g be the complex conjugate Lie algebra to g. Then, the complexification
gc = g @ 1ig of g is complex Lie algebra isomorphic to the direct product g x g via

G gc—9xg X+iY = (X +iY, X —iY)

(X,Y € g) since A(A, B) = (A, AB) for all A\ € C and (4, B) € g x g. Moreover,
the real form g C gc corresponds to {(X, X)| X € g} = ¢(g) C g x g. Identifying
gc with g x g via ¢, we will explain the reason why G /L cannot satisfy the condition
(s2) gs C ¢ in Proposition 2.7.

Let T be the canonical central element of [, let g = €& p be a Cartan decompo-
sition of g with T € €, and let ihg be a maximal torus of g, = € @ ip containing
T. Besides, let he and € be the complex vector subspace and subalgebra of g¢
generated by ihr and &, respectively. Then €¢ corresponds to

(31) {(Kl—{—iKQ,Kl—iKQ)'Kl,KQ EE} :¢(Ec)
Since g is complex (semi)simple, it follows that p = i€, so that g, corresponds to
txt=0(gy).

Consequently there exist maximal tori t;, to C € such that 7' € t; Nty and ¢; X t; =
¢(ibr). Letting ¢; and ¢3 be the complex vector subspaces of g and g generated by
t; and ty, respectively, one can conclude that

€1 X ¢y = ¢(f)@)
From now on, we are going to confirm that G/ L cannot satisfy the (s2). Let us use
proof by contradiction. Suppose a root § € A(g X g, ¢; X ¢2) and a non-zero vector
Ej € g x g to satisty [C, Es] = 5(C)Es for all C' € ¢; x ¢ and Eg € ¢(€c). Then,
A(g X g,¢1 X 6) = Alg, 1) UA(g,c2) implies that one of the following two cases
only occurs:
(1) B(Cy,Cy) = B(C1,0) for all (Cy,Cy) € ¢; X o and there exists a non-zero
vector F € g such that Es = (E,0);
(2) B(Cy,Cy) = B(0,Cy) for all (Cy,Cy) € ¢; X o and there exists a non-zero
vector Fy € g such that Ez = (0, Es).
However, in any cases (1) Eg = (E1,0) and (2) Ez = (0, Ey) we obtain Ez ¢ ¢(f¢)
from (3.1), which is a contradiction to Ez € ¢(€c). For this reason G/L cannot

satisfy (s2) at all. O
Table B
type | the supposition (S) in Proposition 2.7
(I) O.K.
() N.G.
(IT0) 7
(V) N.G.

(Here (I), (IT), (III) and (IV) correspond to those in Table A (p.32), respectively).
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3.2. Type (IIT). The main purpose of this subsection is to give examples of simple
irreducible pseudo-Hermitian (non-Hermitian) symmetric Lie algebras (g, [) satis-
fying the supposition (S) in Proposition 2.7.

Remark 3.2. From a simple irreducible pseudo-Hermitian symmetric Lie algebra
(g,0), one can easily construct an effective simple irreducible pseudo-Hermitian
symmetric space G/L. Indeed; for a given simple irreducible pseudo-Hermitian
symmetric Lie algebra (g, [), let us take the canonical central element 7' € [ and
a connected Lie group G whose center Z(G) is trivial and whose Lie algebra is
g. Then (G, Cq(T)) is an effective simple irreducible pseudo-Hermitian symmetric
space.

3.2.1. AIl Let g¢ := sl(2n,

~—

{A € gl(2n,C)| tr A =0},

X Y\|X,Y €gl(n,C),
Y X )| tr X+trX =0

Py, P, € gl(n, <C)
P1 Pl,trP1+trP1—OtP2 P2 ’

T1,To,...,Toy € R,

bR = 2n ;
,—0

where n > 2. Then it follows that g = £ & p is a Cartan decomposition of g, that
thr is a maximal torus of g, := £ & ip, and that

) A B \|A,B,C € gl(nC),
(ail.1) EC:{(O—m) ‘B=B, tcg*ic)}'

By setting a linear mapping «; : he — C as

21 O
; =2zj — 2y for 1 <j <2n -1,
O 2y
one can get a fundamental root system I := {o;}527" of A(gc, be).
IIA: Ol ol .. Ol

631 Q9 op—1-
Now, let us put

. i (I, O
(aii.2) T := E(O _[n).

In this setting, we have T" € (¢Nihr) C g and oj(—iT) = 6;,, forall 1 < j < 2n—1.
Hence the linear transformation ad 7" : g — g is semisimple and its eigenvalue is +i
or zero, so (g, ¢g(7")) is a pseudo-Hermitian (non-Hermitian) symmetric Lie algebra
and 7T is the canonical central element of ¢4(7"). cf. Lemma 3.1.1 in [3, pp.22-23].
By a direct computation we obtain ¢;(7") = sl(n,C) & t. Furthermore,
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Proposition 3.3 (All). (g,¢,(7)) = (su*(2n),sl(n, C)®1t) satisfies the supposition
(S) in Proposition 2.7. Here n > 2 and we refer to (aii.2) for T.

Remark 3.4 (AIL). If n = 1, then (su*(2n),sl(n,C) @ t) is an irreducible Hermitian
symmetric Lie algebra of the compact type.

Proof of Proposition 3.3. Let

O :=apfor 1 <k<n-—1,

2n—1

Bn = Zp:n aP’

Bnik = —aoy_ for 1 <k <n-—1.
Then TI' := {#;};~ 21 is a fundamental root system of A(ge, he) whose Dynkin
diagram is

H/Z Ol r\l oo Ol
61 52 ﬁ2n71-
From (aii.2) we obtain ;(—i1") = §;, > 0 for all 1 < j < 2n — 1, and the (s1) in
Proposition 2.7 holds for this IT". Moreover, (aii.1) implies that
96, = Ban+tazn 1 = spanc{E,on} C e,

so that the (s2) in Proposition 2.7 also holds for IT'. O

3.2.2. AIIl Let gc := 5[(p +¢,C)={Acgllp+4¢C)| tr A= 0},

—su(p,q) = 1 Z \| Ky €u(p), Z: px q complex matrix,
o tZKQ ngu(q),trK1+trK2:0 ’

K, e u( ) Ky € u(q),
trK1+trK2_0 ’

(65%)
(1

A O) Z : p X q complex matrlx}

{
a

[)R L . L1, X2y, Tpiq ER)
. . p+{] T; = 0 3

O Zpiq

where p,q > 1 and u(n) = {K € gl(n,C)|'K = —K}. Then it turns out that
g = £ P p is a Cartan decomposition, ihg is a maximal torus of g, := € & ip and
ihr C €; besides,

= {(50) Pt )
We define a linear mapping «; : hc¢ — C by
21 O
a; =zj—zipfor1<j<p+qg-—1
O Zpq

and obtain a fundamental root system Il := {aj}g.’ig‘l of A(gc, be).
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HAI Ol Ol e Ol
a1 (%) Aptg—1-
Here, the dual basis {Zj}?:r‘f_l (C hr) of Tx = {aj}gif_l is as follows:
L ((p+q—173)L @) ) .
aiii.2 Z; = —— I : 1<j<p+q-—1).
( ) ’ p+q( 0 —JHpiq—j I=jspta-1)

From now on, we are going to investigate the following three cases individually:
()T =iZe, (2)T =1Zpsy, 3)T =1i(Za—Zp+ Zpss),

where 1 <a <p—-—1,1<b < ¢g—1. Remark that for each of the elements T
above, we obtain 7' € ihg C € = (g, N g), the linear transformation ad7 : g — g
is semisimple and its eigenvalue is i or zero; consequently, (g, c¢y(7")) is a simple
irreducible pseudo-Hermitian symmetric Lie algebra and 7' is the canonical central
element of ¢y(T), cf. [3, pp.22-23].

Case (1). Let T':=iZ, (1 < a < p—1). Then one has a,;(—iT) = a;j(Z,) = 0, >
0forall1 <j <p+q—1,and the (s1) in Proposition 2.7 holds for ITn = {ozj}?:fl.
Furthermore, it follows from 1 < a < p — 1 and (aiii.1) that

Ya, = Span(C{Ea,a-i—l} - E(Ca
so that the (s2) in Proposition 2.7 holds for IIn = {ozj}g’:f_l, also. Hence

Lemma 3.5 (AILI). (g,¢,(7)) = (su(p, q),su(a) ®su(p —a,q) 1) satisfies the (S)
i Proposition 2.7. Herel1 <a<p—1,1<qandT =1iZ,.

Case (2). Incase of T :=iZ, 4, (1 < b < ¢—1) one can demonstrate the following
lemma by arguments similar to those in the case (1) above:

Lemma 3.6 (AIll). (g, ¢y(7)) = (su(p, q),su(p,b) & su(q —b) & t) satisfies the (S)
in Proposition 2.7. Here 1 <p, 1 <b<qg—1and T =1iZ,..

Case (3). Now, let T':=i(Z, — Z,+ Zpp) (1 <a<p—1,1<b<qg—1), and
set

B =ap for 1 <k <a-—1,

/Ba = Z:a Qp,

Br = pqip fora+1<h<a+qg—1,
. +g-1

Bq—&—a == Z:,Dn:qa_;_l Olyp,

Bei=ay_qforg+a+1<l<p+q-—1

Then we see that I := {ﬂj}gii’_l is a fundamental root system of A(gc, bhe).

H/I 1 1 e Ol

ﬁlo B; ﬁp-i-q—l-
Moreover, 3;(—iT) = djq1s > 0 for all 1 < j < p+ ¢ — 1, and we deduce gg,,, =
Japy = SPANC{ Epyppipi1} C Ec from 1 <b < g—1 and (aiii.1). Therefore the (s1)
and (s2) in Proposition 2.7 hold for I" = {3; }?if_l.
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Lemma 3.7 (AIIl). (g,¢,(7)) = (su(p, q),su(a,b)® (p a,q—0b)@t) satisfies the
(S) in Proposition 2.7. Herel <a <p—1,1< b <q-landT =i(Zy—Zy+Zps).

Three Lemmas 3.5, 3.6 and 3.7 provide us with

Proposition 3.8 (AIlLl). The supposition (S) in Proposition 2.7 holds for the fol-
lowing pseudo-Hermitian symmetric Lie algebras (g, ¢g(1)) :

(1) (su(p,q),su(a) Bsu(p—a,q)®t),1<a<p—-1,1<qgandT =iZ,.
(2) (su(p,q),su(p, )@5u(q—b) 1), 1<p, 1<b<qg—1andT =iZy.
(3><up q),5u(a,b) Dsu(p—a,q—0) @), 1<a<p—-1,1<b<g—1and

= (Z Zp + Zp+b)

Here we refer to (aiii.2) for Z; (1 <j<p+q—1).

3.2.3. BI. Let g¢ be the classical complex simple Lie algebra of the type B, (n > 3).
Assume that the Dynkin diagram of A = A(gc, be) is as follows:

(b.1) Ha: ol ... ﬂ%@Q
(€3] &%) as Op_1 /Oy

(cf. Bourbaki [7, p.267]). Taking Chevalley’s canonical basis {H},}7_; U{FEs|a €
A} of ge, we construct a compact real form g, C gc from

(b 2) br = SpanR{H;g}?:h
' gu = ihr ® P, cp sPang{ Ly — E_o} ® spang{i(Ey + E_)}.

Denote by {Z;}}_; (C br) the dual basis of IIn = {a,}}_; and set an inner auto-
morphism 6 of g¢ as

(bi.1) 0 .= expmadiZy,

where 1 < k < n. Then 6 is involutive, and (b.2) yields 6(g,) C gu, S0 we can
consider the decomposition g, = €@ ip of g, with respect to 6 and construct a non-
compact real form g C g¢ from g := €@ p. Here we remark that gc = so(2n+1,C),
gy =50(2n+ 1), g = s0(2k,2n — 2k + 1) and ibg C ¢, and that

{odos (k= 1)
{0t Ui U (-6} (2 <k <n—1) and

{op}mi U{=a} (k=n)



38 N. BOUMUKI

are fundamental root systems of A(£c, hc) whose Dynkin diagrams are

01—02— e 2 2 (k; — 1)7
o, o7
—anl
@—L S L Y S A 2 N2
(bi 2) A2 Op—1 Opy1 Ofy2 Qp—1 /Oy
' 2 < k‘ <n-—1) and
—anl
1 2 o 2 1 (k; = n),
aq Qo Qp_2 Qp_1

respectively, where & := ay +23 7, o and ¢ = {X € gc|0(X) = X}. In this
setting we prove

Proposition 3.9 (BI). The supposition (S) in Proposition 2.7 holds for the fol-
lowing pseudo-Hermitian symmetric Lie algebras (g, cy(T)) :
(1) (so(2k,2n — 2k +1),50(2k —2,2n —2k+ 1)@ t), n > 3,2 < k <n and
T =i(Z — Z).
(2) (s0(2k,2n — 2k + 1),80(2k,2n — 2k — 1) ®t), 1 <k <n—-2and T =
i(—Zk + Zita).
Here {Z,}}_, stands for the dual basis of {a}}_; in (b.1) and we construct a Cartan
decomposition g = €S p of g = s50(2k,2n — 2k + 1) from (b.2) and (bi.1).

Remark 3.10 (BI). In case of (2) with & = n — 1, we do not know whether
(s0(2k,2n — 2k + 1),80(2k,2n — 2k — 1) & t) = (so(2n — 2,3),s0(2n — 2,1) ® t)
satisfies the supposition (S) or not.
Proof of Proposition 3.9. (1). Let

Ba i=ap_qforl <a<k-—1,

By = — 215:1 e —2 Zzzkﬂ Qp,

By :=ap for k+1<b<n,

where the above implies 5, = a,,—q (1 <a <n—1)and 8, = —>._, a. in case
of k = n. Then it turns out that IT; := {f,}}_; is a fundamental root system of A
whose Dynkin diagram is

. 1 2 2 2 2
( ! ) 61 52 53 Bn—l n -

Besides, aq(Zp) = dap yields So(—iT) = Bi(Zy—1 — Z) = g1 > 0 for all 1 < <mn,
and thus the (s1) in Proposition 2.7 holds for the II; = {3,}}_,. It follows from
(bi.1) and a,(Zp) = 644 that 0(E,,_,) = Ea,_,, which enables us to obtain

98 = Bay, = spanc{Ea,_,} C {X € gc|0(X) = X} = tc.
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This assures that the (s2) in Proposition 2.7 also holds for II;. Incidentally, (bi-1),
(bi.2), T = i(Zy—1 — Zi) and o, (Zy) = 04p give rise to ¢, (T) = s0(2n — 1) B t,
ce(T) =502k —2)®so(2n — 2k + 1)@ t, and ¢;(T) =s0(2k —2,2n — 2k + 1) B t.
cf. Corollary 3.6 in [2, p.1142].

(2). Setting

ﬂ =apsfor 1 <s<n-—k-—1,

:_Zp lap’
b’t = g forn—k4+1<t<n-—1,

671 = ZZ:]C g,

we deduce that Il := {§,}}_, is a fundamental root system of A whose Dynkin
diagram is

b1—2 2 O O O

(bi-2) 5 B By But 7

By au(Zy) = 6ap and T = i(—Zy + Zy4+1) we conclude fy(—iT") = 0,1 > 0 for all
1 < ¢ < n. One can complete the rest of proof, in a similar way to (1).? O

3.2.4. CII. Denote by gc the classical complex simple Lie algebra of the type C,,
(p,q > 1), and assume that the Dynkin diagram of A = A(gc, bhe) is as follows:

(c.1) s 2o —@%@1
Q1 2 O3 Qp+y—1 Optq

(cf. Bourbaki [7, p.269]). We take Chevalley’s canonical basis {H: YT U{E,|a €
A} of ge and construct a compact real form g, C gc from

) { b spana{H )L .
gu = thr ® @ o sPang{Ey — E_o} @ spang{i(Ey + E_,)}.

In addition, let us take the dual basis {Z,}}°7 of IIn = {a/}}"7 and define an
involutive inner automorphism 6 of g¢ by

(cii.1) 6 :=expmadiZ,.

Since 0(g,) C g, one has the decomposition g, = €@ ip of g, with respect to 6 and
a non-compact real form g := €@ p of gc. Then it follows that gc = sp(p+4q,0C),
gu = 5p(p +q), 8 = 5p(p, q) and ihg C €, and that {ax}_; U{ap}p 0, U {—a} is

b=p+1
a fundamental root system of A(fc, hc) and its Dynkin dlagram is
(cii.2) G e - N !
Qp—2 Qp—1 Apt1 Qpi2 Op+y—1 Optqs

1 : o
where & 1= a4 + 2 Zp 97! a.. Now, we are in a position to demonstrate

SRemark. If k =n — 1, then the system Il consists of 81 = — Z; llap, Br=ar—1 (2<t<
n—1) and B, = ayp—1 + ay; thus the (s2) in Proposition 2.7 cannot hold for II,.
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Proposition 3.11 (CII). (g,¢(7)) = (sp(p,q),su(p,q) B t) satisfies the (S) in
Proposition 2.7. Here p,q > 1, we construct a Cartan decomposition g = €& p of
g = sp(p,q) from (c.2) and (cii.1), and put T = i(=Z, + Zpy,), where {Z 07 is
the dual basis of {a}o=d in (c.1).

Proof. Let

Bji=apy;for 1 <j<q-1,

Bq = Zziiaka
Bh = pig—nfor q+1<h<p+q-1,

. p+q—1
Bptq = —Qprq =22 ey Qe

Then II' := {B,}027 is a fundamental root system of A,

Cl1 O O O 4@%1 ;
( ) 51 62 ﬁ?) ﬁer 1 Mp+q

and it follows from a,(Zy) = dap that Be(—iT) = Bi(—Z, + Zptq) = Ot prq > 0
for all 1 < ¢ < p+ ¢, so that the (s1) in Proposition 2.7 holds for II' = {3, }°7.
Furthermore, it follows from (cii.1) and 1 < p < p+ ¢ — 1 that

BBp+q = B-201——20piq-1-aptg = SpanC{E_QO‘l_“'_Qap-&-q—l_ap+q} C EC'

Thus the (s2) in Proposition 2.7 also holds for II'. From (cii), (cii.2), T =i(—Z, +
Zpiq) and a,(Zy) = 04 we obtain ¢g, (T) = su(p+q) ®t, co(T) = su(p) ®su(q) 2,
and ¢g(T') = su(p,q) ® t. O

Remark 3.12 (CII). (sp(1,1),su(1,1)®t) = (so0(4,1),50(2,1) D t) satisfies the sup-
position (S) in Proposition 2.7. cf. Proposition 3.9-(1).

3.2.5. DI. Let gc :=s0(2n,C) = {A € gl(2n,C) |'A = —A},

o B K, iD \| K; € so(p), D : p x (2n — p) real matrix,
g'_ﬁo(p’Qn_p)_{(—itDK2>K2€50(2n—p) ’

- {([(()1 ]%) K, € s0(p), Ky 650(2n—p)},
i

O iD .
pi= DO > D : px (2n — p) real matrlx},
0 T
—X1 0 0
ihr := T1,%o, ..., Ty €ER 3,
0 =z,
0 —x, 0

wheren > 4, p > 1 and 2n—p > 1, and we note that the above notation so(p, 2n—p)
is different from Helgason’s [8, p.446], but our Lie algebra so(p, 2n—p) is isomorphic
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to Helgason’s one. Here it follows that g = € & p is a Cartan decomposition of g,
that i is a maximal torus of g, := € @ ip, and that

(di.1) tc = {(% 32) By € s0(p,C), By € s0(2n — p, (C)}.

Following the notation in Helgason [8, p.187] we put

Hy:= Ey 120 — Eaga0-1 for 1 <0 <,

Fop:=E.p — Epq for 1 <a#b<2n,

(di.2) Gy = Fa 1951+ Fargj +i(Far-125 — Fargj1) for 1 <k #j <n,
G;;j = Fop_12j-1 — Fopoj + 1(Fop—12j + Fogoj_1) for 1 <k < j <n,

\G;k = F2k71,2j71 - F2k,2j - Z'(F2k71,2j + F2k,2j71) for 1<k <j<n.
Since hc = spanc{H,}}_, one can define linear mappings «,, a,, : hc — C by

Q, (22:1 ZZHZ) = —i(z, — 2zp41) for 1 <r<n-1,

a, (Z’Zzl Z@Hg) = —i(zn_1+ 2n),
respectively. Then it turns out that [H, G}, ] = a,(H)G},; (1 <7 <n—1),
H,G,, ,_1] = an(H)G for all H € ¢, and that IIa := {a,}}_, is a fundamental

n,n—1 n,n—1

root system of A(gc, hc) and its dual basis {Z,}7_, (C bhr) is as follows:
Zs=1i(Hy +Hy+ -+ H) for 1 <s<n-—2,

{Zn—l = (i/2)(~Hu + 32000 Hy), Zo = (i/2) X, He.

Remark that the Dynkin diagram of IIn = {ay}}_; is

(07} 1

(65} Q9 (0% Qp—2 Q.

(di.3)

In this setting we establish

Proposition 3.13 (DI-1). The supposition (S) in Proposition 2.7 holds for the
following pseudo-Hermitian, non-Hermitian symmetric Lie algebras (g, ¢g(T)) :
(1) (so(p,2n — p),so(p —2,2n —p) ®t), n > 4, p >4, 2n—p > 1 and
T - ZZl == _Hl-
(2) (so(p,2n — p),so(p,2n —p—2)dt), n >4, p >1, 2n—p > 4 and
T =i(Zy— 2,) = H,.
Here we refer to (di.3), (di.2) for Zy,, Hy (1 < ¢ <n).

Remark 3.14 (DI-1). We do not know whether the following two pseudo-Hermitian
symmetric Lie algebras satisfy the supposition (S) or not:
o (so(p,2n —p),s0(p—2,2n —p) ®t) = (s0(3,2n — 3),50(1,2n — 3) & t) in
case of (1) with p = 3,
e (so(p,2n — p),s0(p,2n —p —2) dt) = (s0(2n — 3,3),80(2n — 3,1) B t) in
case of (2) with 2n —p = 3.
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Poof of Proposition 3.13. (1). In view of a,(Zy) = 0, we see that oy(—iT) =
ay(Zy) =641 > 0 for all 1 < ¢ < n. Furthermore, (di.1) and p > 4 give rise to

o, = spanc{G{,} C c.
Therefore the (s1) and (s2) in Proposition 2.7 hold for the IIn = {as}}_,. By a
direct computation with 7' = — Hj, one obtains ¢4(7") = so(p — 2, 2n—p) &, where
we remark that Hy; € (8N ibg) C g comes from p > 2.
(2). Set
By =ay_, for 1 <r<n-1,
Bn = —ay — 2 22;22 Qe — Qppq — Oty

Then, II' := {B,}}_; is a fundamental root system of A(gc,bhc) whose Dynkin
diagram is

w2 2
B B2 B3

and it follows from T = i(Z,_1 — Z,,) and a,(Z) = 64 that S,(—iT) = dp1 > 0

for all 1 < ¢ < n, so that the (s1) in Proposition 2.7 holds for the II' = {3,}}_;.

Moreover, (di.1) and 2n —p > 4 yield gg, = ga, , = spanc{G,_,,} C tc. Thus
the (s2) in Proposition 2.7 also holds for II" = {3,}}_;. O

Now, let p = 2m. Then we have g = so(2m, 2n — 2m) and

Proposition 3.15 (DI-2). (g,¢,(T)) = (s0(2m, 2n—2m), su(m,n—m)@t) satisfies
the supposition (S) in Proposition 2.7, where n > 4, m > 1, n —m > 2 and
T =iZ,=(-1/2)>",_, H;. Here we refer to (di.3), (di.2) for Z,, H, (1 < { <n).

Proof. By a direct computation one obtains ay(—iT") = ay(Z,) = d¢,, > 0 for all
1 < ¢ <n, and it follows from (di.2), 2n — 2m > 4 and (di.1) with p = 2m that

Ga, = spanc{G, 1} C tc.
Therefore the (s1) and (s2) in Proposition 2.7 hold for ITx = {a,}}_;. O

3.2.6. DIII. Let gc be the classical complex simple Lie algebra of the type D,
(n > 3). Let us assume that the Dynkin diagram of A = A(gc, be) is

[e77 ] 1
diii. 1
(diii.1) Ma: oL 2 2 . 2 1
(631 Qg as Ap_2 Oy

(cf. Bourbaki [7, p.271]), take Chevalley’s canonical basis { H} }}_, U{E, |a € A}
of g¢ and define a compact real form g, C g by

(diii.2) by := spang {H}, }i_,, |
| B = i & Do a0z { o — B} & spang (B + o)}
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in addition, denote by {Z,}}_; (C br) the dual basis of [In = {a,}}_,;. We are
going to set a non-compact real form g C g¢. In order to do so, we first construct
an involutive inner automorphism 6 of g from

(diii.3) 0 :=expmadiZ,.

Then (diii.2) tells us that g, is stable under 6, so one can obtain the decomposition
g, = @ ip of g, with respect to € and set a non-compact real form g C g¢ as
follows: g := €@ p. Here it turns out that

gc = 50(277/7 C)v Iu = 50(271), t= u(”)? g= 50*(277’)7 ihR ct= (gu N g),

and that {a;}}Z} is a fundamental root system of A (£, he) whose Dynkin diagram
is

Oén_ll
diii.4
(diii.4) Qo1 1

(651 %) Qg3 ap—2,

where ¢c = {X € gc|0(X) = X}. Now, let us demonstrate

Proposition 3.16 (DIII). The supposition (S) in Proposition 2.7 holds for the
following pseudo-Hermitian, non-Hermitian symmetric Lie algebras (g, ¢g(T)) :

(1) (so*(2n),su(k,n —k)®t), 1 <k<n—2and T =i(Zx — Z,).
(2) (s0*(2n),s0"(2n —2)dt), n>3 and T = 17;.

Here {Z,}}_, is the dual basis of {a,}}_, in (diii.1) and we construct a Cartan
decomposition g = €@ p of g = s0*(2n) from (diii.2) and (diii.3).
Proof. (1). We set
Bo = —piiiqgfor 1 <a<n-—k—2,
5nk1::_z 1&8_ ns
By = ppipr1 forn—k<b<n-—1,
6 _ak+220 k+1ac+an 1+ Qy,
where the above implies f; = —> ] 20y — am, By = p (2 <b<n-1),

Bn = Qn—2 + y_1 + o, in case of k =n — 2. Then Iy := {f,}}_, is a fundamental
root system of /A whose Dynkin diagram is

diiic1

(diii-1) meo 2
B B2 B3

In view of a,(Zy) = dap we see that Be(—iT) = Bi(Zk — Z) = dpn—1 > 0 for all

1 < ¢ < n. Accordingly the (s1) in Proposition 2.7 holds for the II; = {8,}}_;.
From (diii.3) and k # n we deduce that

98,1 = Bay, C E(C7
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and therefore the (s2) in Proposition 2.7 also holds for IT; = {3,}}_;. It is easy to
see that ¢y(T) = su(k,n — k) @t by virtue of a,(Z) = dup, T = i(Zy — Z,,), (diii-1)
and (diii.4).

(2). One can show (2) by fixing the IIn = {a,}}_, in (diii.1). O

3.2.7. EIl & EIII. Let us denote by g¢ the exceptional complex simple Lie algebra
of the type Eg, and assume that the Dynkin diagram of A = A(gc, be) is as follows
(cf. Bourbaki [7, p.276]):

(6%) 2
I
(e6.1) Ma: ol 2 13 2 1

051 (0%} Yy (071 Q.

Taking Chevalley’s canonical basis { H;, }{_ U{E, |« € A} of g¢ into account, one
can construct a compact real form g, C gc from

(66 2) hR = SpanR{H;g}?:D
' gu = ihr ® @, cp sPang{Ey — E_o} @ spang{i(E, + E_,)};

and then we denote by {Z,}%_, (C bg) the dual basis of ITx = {a,}_;. In this

setting, we are going to consider the following four simple irreducible pseudo-
Hermitian (non-Hermitian) symmetric Lie algebras:

(EII-l) (86(2),50(6, 4) © t),
(EII-2) (66(2),50*(10) NP t)7
(EIII—l) (66(_14),50*(10) S5 t),
(EIII—2) (26(_14),50(8, 2) D t)

e Case (EII-1). Define an inner automorphism 6 of g¢ by
(eii.1) 0 :=expmadi(Zy + Zs + Zs).

Then it turns out that € is involutive and 6(g,) C g,. Let g, = € @ ip denote the
decomposition of g, with respect to 8, and let g := € @ p. Setting

Y1 = Qg+ 3+ Oy,

Yo = O,
V3 1= a3+ ay + as,
Y4 = O,
Y5 = Qg + g + O,
Yo ‘= Qy,

we deduce that {y,}%_, is a fundamental root system of A(€c, hc) and its Dynkin
diagram is
1 1 1 1 1 1
i O O O O O O
(eii.2) Mmoo B’ B
where tc = {X € gc |0(X) = X}. Therefore it follows that ¢ = su(6) @ su(2) and

g = eg(2)- Now, put

T := ZZI



EXAMPLES OF PSEUDO-HERMITIAN SYMMETRIC SPACES 45

Then T € thg C ¢ = (g, N g), and oy(—iT) = o(Z1) = g1 > 0 for all 1 < ¢ < 6.
This assures that (g, ¢5(7")) is a pseudo-Hermitian symmetric Lie algebra, and that
T is the canonical central element of ¢,(7"). Moreover, the (s1) in Proposition 2.7
holds for ITx = {a,}S_,. From (eii.1) and a,(Zy) = 04 we see that 0(E,,) = Ea,,
so that g,, C Ec. Hence, the (s2) in Proposition 2.7 also holds for ITxn = {a,}5_;.

Proposition 3.17 (EII-1). (g,¢(T)) = (¢s(2),50(6,4) ©t) satisfies the supposition
(S) in Proposition 2.7. Here we construct a Cartan decomposition g = € & p of
g = eg2) from (€6.2) and (eil.l), and put T = iZy, where {Z,}S_, stands for the
dual basis of {a,}S_, in (e6.1).

Proof. The rest of proof is confirm that ¢(7)) = s0(6,4) & t. However, that is
immediate from (e6.1), (eii.2), T'=iZ; and aq(Zp) = 0qp- O

e Case (EII-2). By arguments similar to those in Case (EII-1), one can assert

Proposition 3.18 (EII-2). (g, ¢ (7)) = (¢s2),50"(10) @ t) satisfies the supposition
(S) in Proposition 2.7. Here we construct a Cartan decomposition g = €t D p of
g = eg2) from (6.2) and (eil.1l), and put T = i(—Zy + Zs), where {Z,}5_, stands
for the dual basis of {a,}5_, in (e6.1).

Proof. Setting

b1 = —aq — 20 — 203 — 3oy — 205 — g,
B2 = ag,

B3 := g,

B = a4 + as,

Bs := as,

Be == a1

and 1" := {3,}%_,, one has

B2 02
1A2I3 2 1

O O

8> B Be Bs B

Then, it follows that II' = {3,}%_, is a fundamental root system of A, and that
Be(—iT) = Be(—Zy + Z5) = 0g1 > 0 for all 1 < ¢ < 6. Furthermore, we see that

(eii-2) G

9,81 = P—01—200—20a3—3a4—205—0g C E(C

in view of (eii.1) and a,(Zp) = dqp. Consequently the (s1) and (s2) in Proposition
2.7 hold for the II" = {5,}9_,. We obtain ¢;(T) = s0*(10) & t from (eii-2), (eii.2),
T = Z(—Z4 + Z5) and Oéa(Zb) = 5a,b- [

e Cases (EIII-1) & (EIII-2). Let us define an involutive inner automorphism 6
of dc by

(eiii.1) 0 :=exprmadi(Z, — Zs),
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denote by g, = £ & ip the decomposition of g, with respect to #, and construct a
non-compact real form g C g¢ from g := € & p, where we note that g, is stable
under 0 (recall (e6.2) for g,). Setting

Y= —Qp — 20090 — 2003 — 3oy — 205 — g,
V2 = O,
V3 = Qy,
V4 1= Qs
V5 = Qs,

we deduce that {7;};_, is a fundamental root system of A(c, hc) and its Dynkin
diagram is

Y501
(eiii.2) 12 l 1

This shows that € = 50(10) @ t, and g = eg(_14). In this setting we demonstrate two
propositions.

Proposition 3.19 (EIII-1). (g, (7)) = (¢s(—14),50"(10) © t) satisfies the supposi-
tion (S) in Proposition 2.7. Here we construct a Cartan decomposition g =€®p of
g = eg(_1a) from (€6.2) and (eiii.l), and put T = i(Zy — Z3), where {Z;}§_, stands
for the dual basis of {a,}5_, in (e6.1).

Proof. Set 5, (1 < ¢ < 6) as follows:

b1 = —aq — 209 — 203 — 3y — 205 — g,
B2 = a1 + azs,

B3 = ag,

Ba = au,

Bs = as,

Be == .

Then we see that II; := {3,}%_, is a fundamental root system of A, its Dynkin
diagram is

B202
j
(etii-1) m: ol 2 13 2 1
Br Bs Bs PBs B
and [y(—iT") = fe(Zy — Z3) = 61 > 0 for all 1 < ¢ < 6. Moreover, we conclude

981 = 9—a1—202—2a3—304—2a5—a5 C {X € gc | 9<X) = X} = EC

by (eiii.1) and a,(Z) = 04p. Therefore the (s1) and (s2) in Proposition 2.7 hold
for this IT; = {B,}5_,. O
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Proposition 3.20 (EIII-2). (g, ¢y(T")) = (e6(-14),50(8,2) @ t) satisfies the supposi-
tion (S) in Proposition 2.7. Here we construct a Cartan decomposition g = €@ p
of g = eg_14) from (e6.2) and (eiil.1), and put T = i(—Zs + Zs), where {Z;}5_,
stands for the dual basis of {a,}S_, in (e6.1).

Proof. Setting
51 = a1+a2+a3+2a4+2a5+a6,

Ba = au,

B3 := —ay — 209 — 203 — 3y — 205 — g,
B = g,

b5 = ag + ay + as,

Be == ag,

we deduce that Ily := {3,}%_, is a fundamental root system of A and S,(—iT) =
ﬂg(—Zg + Z5) = (54,1 > 0 for all 1 < 12 < 6.

Ba I 2
(elii-2) My ol 2 13 2 1
B B Br Bs B
In addition, g5, = Ga;+astas+20s+2as+as C Ec due to (eiii.1). Therefore the (s1) and
(s2) in Prop081t10n 2.7 hold for IT, = {3,}5_,. O

3.2.8. EV, EVI & EVII. Denote by gc the exceptional complex simple Lie algebra
of the type E7, and assume that the Dynkin diagram of A = A(gc, he) is

(0] 2
1 [
(e7.1) Ma: 2 3 4 3 2 1
a1 (0% Qly (67 Qg a7
(cf. Bourbaki [7, p.280]). Taking Chevalley’s canonical basis {H}; }j_, U{E.|a €
A} of gc, we construct a compact real form g, C g¢ from

(87 2) br = SpanR{H;g}Z:h
' gu = ihr ® @, o sPang{E, — E_o} @ spang{i(Ey + E_,)}.

Let {Z,}7_, (C bgr) be the dual basis of IIn = {a,}]_,. From now on, we are going
to consider the following four simple irreducible pseudo-Hermitian (non-Hermitian)
symmetric Lie algebras:

(EV) (e7(7), e6(2 ) ® t)

(EVLL) (er(s), eorz) @ 0,

(EVI-2) (e7(-5), e6(—14) D 1),

(EVII) (e7(-25), e6( 14) D).

e Case (EV). Define an involutive inner automorphism € of g¢ by

(ev.1) 0 :=expmadiZs.
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Then it follows from (e7.2) that 6(g,) C g,, which enables us to obtain the decom-
position g, = €@ ip of g, with respect to 6 and construct a non-compact real form
g of gc from g := £ &P p. Setting

Y1 = —20q — 20 — 3ag — 4oy — 3as — 204 — a7,

Y2 = Qq,

Vp =y for 3<p <7,

we have a fundamental root system {v,}7_, of A(tc,bc), and see that its Dynkin
diagram is
1 1 1 1 1 1 1

O O O O O O O
(ev-2) Yo B Y Y

where ¢ = {X € g¢|0(X) = X}. This implies € = su(8) and g = e7(r). Now, let
T .= ZZ7
Then one has T € ihg C £ C g and ay(—iT) = ay(Z7) =67 > 0 forall 1 < ¢ < 7.

Moreover, (ev.1) yields g,, = spanc{E,,} C tc. Consequently the (s1) and (s2) in
Proposition 2.7 hold for I = {a,}!_,. For this reason we establish

Proposition 3.21 (EV). (g,¢y(T)) = (er(7), es2) ® t) satisfies the supposition (S)
in Proposition 2.7. Here we construct a Cartan decomposition g = €@p of g = ey(7)
from (€7.2) and (ev.1), and put T = iZ;, where {Z;}i_, stands for the dual basis

of {ae}l_, in (e7.1).
e Cases (EVI-1) & (EVI-2). Define an involutive inner automorphism 6 of gc by
(evi.l) 0 :=expmadi(Zy + Z7).
Let g, = €& ip be the decomposition of g, with respect to 6, where we remark that
0(g.) C gy comes from (e7.2) and (evi.1). Let us set g := £ @ p and
7= Qo
V2 1= Qo+ Qg+ Qs+ Qg +
Vg i= o for 3 < g <6,
V7 1= a1 + 200 + 203 + 30y + 205 + ag.

Then it turns out that {v}/_, is a fundamental root system of A(fc,bhc) and its
Dynkin diagram is

Y20l

evi.2 T

(evi.2) JLol2 2 2 1
3 5

Y6 o V7-
So it follows that € = s0(12) ® su(2) and g = e7(_5). We are in a position to verify

Proposition 3.22 (EVI). The supposition (S) in Proposition 2.7 holds for the
following two pseudo-Hermitian symmetric Lie algebras (g, c¢g(T)) :

(1) (27(_5), ¢o2) Dt) and T = iZ5.

(2) (27(_5), e6(—14) P t) and T = i(Zs — Z7).
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Here {Z,}I_, is the dual basis of {ax}i_, in (e7.1) and we construct a Cartan
decomposition g = €@ p of g = er(—5) from (e7.2) and (evi.l).

Proof. (1). Let T :=iZ7, and let

b1 = —aq — 20 — 203 — 3y — 205 — g,
B2 == ag,

B3 = a1 + as + ag + ay,

B = as,

Bs == au,

Bs := as,

67 =g+ oy + as + ag + of.

Then II; := {3,}]_, is a fundamental root system of A whose Dynkin diagram is

B2o2
m: 2 3 L B2 1
B Bs Bu Bs B Dr

Moreover, a,(Zp) = 04 and (evi.1l) imply that G,(—iT") = Be(Z7) = 7 > 0 for all
1 < /¢ <7and gs, = Gastautastastar C Ec, so that the (s1) and (s2) in Proposition
2.7 hold for this Iy = {S,};_,. In addition, ¢;(T) = e42) ® t follows from (evi-1),
(evi.2) and T = iZ;.

(2). One can conclude (2) by arguments similar to those above, and by setting
T .= Z(ZG - Z7) and

(evi-1)

fr = —p — a3 — Qy,
P 1= —a1 — a3 — oy,
B3 1= as,
Ba 1= au,
Bs = a1 + ag + az + g + as + ag + ag,
B == —ag — ar,
br = ag,
where we remark that Iy := {3,}]_, is a fundamental root system of A and its

Dynkin diagram is

/BQIQ
M 2 3 4 3 2 .1

A

(evi-2) I e
By Bs Bi Bs Be Pr

O

e Case (EVII). First, let us realize the exceptional real simple Lie algebra e7(_os).
Define an involutive inner automorphism 6 of g¢ by

(evii.1) 0 :=expmadiZ;.
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Since (€7.2) we have 6(g,,) C g,. So, one can consider the decomposition g, = ¢@ip
of g, with respect to 6, and set a non-compact real form g C gc as g := £ D p.
It follows from (evii.1) and (e7.1) that {az}_; is a fundamental root system of
A(tc, be) whose Dynkin diagram is

(6%) 2
!
(evii.2) Sl 2 13 2 1

a1 a3 Oy O Q.
Therefore we show that £ = ¢ @ t and g = e7(_25). Now, let us prove
Proposition 3.23 (EVII). (g, ¢g(T)) = (e7(—25), e6(—14) D) satisfies the supposition
(S) in Proposition 2.7. Here we construct a Cartan decomposition g = € S p of
g = er(_25) from (e7.2) and (evil.l), and put T = i(Zs — Z7), where {Z,}]_, stands
for the dual basis of {ay}i_, in (e7.1).

Proof. Setting

B = —ag — a3 — ay,

B = —ap — a3 — ay,

B3 := as,

By = au,

Bs =01+ ag+ a3+ ag+ as + ag + az,
B 1= —ag — ar,

Br = ag,

we deduce that II' := {f,}/_, is a fundamental root system of A whose Dynkin
diagram is

B2o2
(evii) w23 L B2
B Bs B B Bo Br.
Then it turns out that Sy(—iT) = Bi(Zs — Z7) = 67 > 0 for all 1 < £ < 7, and
that gg, = gas C {X € gc|0(X) = X} = €c due to (evii.l) and a,(Zp) = dap-
Accordingly the (s1) and (s2) in Proposition 2.7 hold for Il = {3,}7_,. O

Remark 3.24. Seven Propositions 3.17 through 3.23 tell us that the supposition
(S) in Proposition 2.7 holds for every simple irreducible pseudo-Hermitian, non-
Hermitian symmetric Lie algebra of the exceptional type.

(ET-1) (eg. 50(6,4) & 1),

EII-Q) (66(2),50*(10) S5 t),

(,14),50*(10) @1,

(¢6(-14),50(8,2) & 1),
(
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Remark 2.8-(2), Remark 3.2 and the propositions in Subsection 3.2 lead to

Theorem 3.25. The supposition (S) in Proposition 2.7 holds for every effective
semisimple Hermitian symmetric space of the compact type and each effective sim-

ple irreducible pseudo-Hermitian (non-Hermitian) symmetric space G/L given in
Table C.

Table C

G/ L, where we assume the center Z(G) to be trivial for the G/ L below.

(1) SU*(2n)/(SL(n,C)-T), n > 2.
cf. Proposition 3.3 (AIl)

(3) SU(p,q)/S(U(p Ulg—10),1<p, 1<b<qg—1.
Up—a,q—0),1<a<p—-1,1<b<qg—1.

(2) SU(p, q)/5(U(a)
(4) SU(p.0)/S(U o
cf. Proposition 3.8 (AIII)

U<p_a797))71§a§p—1»1§q
X
X

X
b)
b)

(5) SO¢(2k,2n — 2k +1)/(SO¢(2k —2,2n — 2k +1) - SO(2)),n > 3,2 < k < n.
(6) SO(2k,2n — 2k 4+ 1)/(SOy(2k,2n — 2k — 1) - SO(2)), 1 <k <n-—2.
cf. Proposition 3.9 (BI)

(7) Sp(p,a)/U(p,9), p,g 2 1.
cf. Proposition 3.11 (CII)

(9) SOo(p, 2n —p)/(SOo(p,2n —p —2)-SO(2)),n >4, p>1,2n—p > 4.
cf. Proposition 3.13 (DI-1)

(10) SOo(2m,2n —2m)/U(m,n—m),n >4, m>1,n—m > 2.
cf. Proposition 3.15 (DI-2)

(11) SO*(2n)/U(k,n—k), 1 <k <n-—
(12) SO*(2n)/(SO*(2n — 2) - SO*(2)), n > 3.
cf. Proposition 3.16 (DIII)

(13) Eo(2)/(SO0(6,4) - SO(2)).
cf. Proposition 3.17 (EII-1)

(14) Eg2)/(SO*(10) - SO*(2)).
cf. Proposition 3.18 (EII-2)

(15) Boi-10/(SO7(10) - SO(2))
cf. Proposition 3.19 (EIII-1)

(16) Eg-14)/(SO0(8,2) - SO(2)).
cf. Proposition 3.20 (EIII-2)

(17) Er)/(Ese) - T)-
cf. Proposition 3.21 (EV)

(18) E 5/ (Ee(z) - 1)
(19) Er(—5)/(Ee(-10) - T)-
cf. Proposition 3.22 (EVI)

(20) Er(—25)/(E6(-14) - T)-
cf. Proposition 3.23 (EVII)
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Remark 3.26. The pseudo-Hermitian symmetric spaces G/L in Table C, together
with

(i) SL(2n, R)/( L(n,C)-T), n >

(i) SOy(2n —2,3)/(SOy(2n — 2, ) SO(Z)), n > 3,
(iii) SOy(3, 2n —3)/(SOy(1,2n —3) - SO(2)), n > 4,
(iv) SOp(2n —3,3)/(SO0(2n — 3,1) - SO(2)), n > 4,
(v) S’p(n,R)/U(k‘,n k;),lgk:gn—l,

exhaust all the simple irreducible pseudo-Hermitian, non-Hermitian symmetric
spaces in Tableau II of Berger [1, pp.157-161]. Unfortunately, we do not know
whether the above pseudo-Hermitian symmetric spaces (i) through (v) satisfy the
supposition (S) or not.

3.3. An appendix. It is known that for any effective irreducible Hermitian sym-
metric space G, /L, of the compact type, the complex vector space O(T'°(G,/L.))
is linear isomorphic to gc, where gc is the complexification of g, (e.g. Corollary
4.1-(ii) in [6, p.145]). So, Theorem 3.25, and two Propositions 2.7 and 2.5-(iv) lead
to

Corollary 3.27. For each effective simple irreducible pseudo-Hermitian symmetric
space G/ L in Table C, the complex vector space O(TY*(G/L)) is linear isomorphic
to the complexification gc of g.

Acknowledgment. The author is very grateful to the referee for valuable comments
on an earlier version of this paper.
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