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ABSTRACT. We develop a discrete potential theory for the equation Au = qu
on an infinite network similar to the classical potential theory on Riemannian
surfaces. The ¢-Green function for the Schrédinger operator —A + ¢ plays the
role of the Green function for the Laplace operator. We study some properties
of ¢-Green potential whose kernel is the ¢-Green function. As an application, we
give a classification of infinite networks by the classes of g-harmonic functions.
We also focus on the role of the g-elliptic measure of the ideal boundary of the
network.

1. INTRODUCTION

Many fruitful results in the theory of potentials related to Laplace operator had
published in Constantinescu and Cornea [2]. Related to discrete Laplacian, some
results were obtained by Soardi [12], Yamasaki [13], [15], and Kurata and Yamasaki
[5], [6], etc. There are some papers related to Schrodinger operator Au — qu, for
instance Ozawa [10], Maeda [8] and Sario, Nakai, Wang, and Chung [11]. The
discrete equation Aju := Au — qu = 0 has been studied by Yamasaki [17], Kurata
and Yamasaki [7], Anandam [1], and Fischer and Keller [3]. Their research methods
are different. Anandam used the theory of axiomatic potentials. Our research
method depends on the theory of Dirichlet space and reasoning in [2]. Fischer and
Keller used semigroups of a self-adjoint realization of the Schrodinger operator. The
aim of this paper is to study the discrete equation Aju = 0 on an infinite network
along the same line in [17]. We always assume that ¢ is a non-zero non-negative
function and ¢ # 0. We show the fundamental results relating the spaces E and
E, and the norm F(-)*/2 in Section 3, and properties of g-superharmonic functions
in Section 4. We define the ¢-Green function of A/ in Section 5. Most of these
results were obtained in [17]. We give their proofs for completeness. The discrete
analogues of Royden’s decomposition of a function in E and Riesz’s decomposition
of a non-negative g-superharmonic function play the fundamental roles in our study.

2010 Mathematics Subject Classification. Primary 31C20; Secondary 31C25.
Key words and phrases. discrete potential theory, classification of infinite networks,
Schrodinger operator, g-Green potential, discrete ¢g-Laplacian.
1
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In Sections 69, we study potential-theoretic properties of ¢-Green potentials; for
example, domination principle, equilibrium principle, etc. As the discrete analogy
of g-elliptic measure in [11, Page 286|, we introduce the g-elliptic measure w of the
ideal boundary of the network and study it in Section 10 more detail than in [17].
In case N is parabolic, we give some supplementary results in Section 11. We shall
give a classification of infinite networks by using the classes of g-harmonic functions
in Section 12. Analogous to the classification theory in Sario, Nakai, Wang, and
Chung [11], we give some results of g-quasiharmonic classification of the networks
by using g-elliptic measure w in Section 13 which is similar to Yamasaki [16].

2. FUNDAMENTAL NOTION

Let G = (X,Y, K) be an infinite graph which is connected and locally finite
without self-loops (cf. [13]). Here we denote X by the countable set of nodes, Y
by the countable set of arcs, and K by the node-arc incidence matrix. Namely, K
is a function on X x Y and K(z,y) = —1 if = is the initial node of y, K(x,y) = 1 if
x is the terminal node of y, and K(z,y) = 0 otherwise. Now we introduce several
fundamental notation used in this paper. Let L(X) be the set of all real functions
on X, Ly(X) the subset of L(X) with finite support, and L*(X) the set of all
non-negative functions on X. We define L(Y'), Lo(Y), and L*(Y) similarly. Let
r € LT(Y) be a resistance, which is a strictly positive function, and let ¢ € L*(X)
and ¢ Z 0. In this paper, we call the triple N = (G, r, ¢) an infinite network. For
zeX,let Y(z)={yeY; K(x,y) # 0}, which is the set of arcs incidence to x.
We say that a sequence of finite networks {N,, = (G, Tn, @) }n is an ezhaustion of
N if the sequence {G,, = (X,,,Y,, K,)}, of connected graphs satisfies X,, C X,,41,
YV, CYo, X=U ", X, Y =2, Y, and Y(x) C Y4 for all z € X,,. Here
denote by K, the restriction of K onto X,, xY,, and by r,, and ¢, the restrictions of
r and ¢ onto Y, and X, respectively. Hereafter we write NV,, = (X,,,Y,) for short.
For u € L(X), let

du(y) = —r(y)™* Z K(xz,y)u(x) (discrete derivative),

D(u) = r(y)[du(y)]® (Dirichlet sum),
E(u) = D(u) + Y _q(z)u(z)* (q-energy),
Au(z) = Z K(z,y)[du(y)] (discrete Laplacian),

Agu(r) = Au(z) — q(x)u(zr) (discrete g-Laplacian).

We say that v € L(X) is ¢g-harmonic on a subset A of X if Aju(x) =0 on A. For
a € X, denote by ¢, € L(X) the characteristic function of {a}, i.e., g,(a) = 1 and
eq(z) = 0 for x # a. Also for a set A C X denote by €4 € L(X) the characteristic
function of A.
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3. THE SPACES E AND E,

Let us put
D ={ue L(X); D(u) < oo},
E={ueLl(X); E(u) < oo},
H={ueL(X); Aju=0} (the set of g-harmonic functions),
HE-HNE, HD-=HND.

For simplicity, we set for u,v € L(X)

(u,v) = ) al@)ulz)o(z),

[ull* = (u, u),
D(u,v) = r(y)[du(y)][dv(y)],

E(u,v) = D(u,v) + (u,v).
Then D(u) = D(u,u) and E(u) = D(u) + ||ul|* = E(u,u).

Lemma 3.1. For a € X there exists a constant M, > 0 such that |u(a)| <
M E(u)'? foru € E.

Proof. Let a € X. Let b € X be such that ¢q(b) > 0. For u € E we have
q(b)u(b)? < E(u), or |u(b)| < q(b)~2E(u)'/2. Let P be a path between a and b.
Then

[u(@)] < Ju®)| + Y r(y)lduly)

yeY (P)
1/2 1/2

<fu®)|+{ D @ > r(y)duly)?
yeY (P) y€Y (P)
1/2

<qO)VPEW'E | Y )| B

yeY (P)
where Y'(P) is the set of arcs belonging to P. O

It is easily seen that E is a Hilbert space with respect to the inner product
E(-,-). Note that if u,,u € E and E(u, —u) — 0 as n — oo, then {u,},
converges pointwise to u. Denote by Eg the closure of Lo(X) with respect to the
norm [E(-)]*/2. Recall that Dy is the closure of Ly(X) with respect to the norm
[D(-) + u(x0)?]'/?, where g is a fixed node of X (see [15, Theorem 1.1]). We say
that A\ is hyperbolic (parabolic resp.) if the network (G, r) is hyperbolic (parabolic
resp.), i.e., D # Dy (D = D resp.) (cf. [14]).

Theorem 3.2. Eo =Dy NE.
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Proof. From Ey C Dy and Eq C E, it follows that Ey C Dy N E. To prove the
converse relation, let u € DyNE. There exists a sequence { f,, },, in Lo(X) such that
D(u— f,) = 0 as n — oo, {fn}n converges pointwise to u, and | f,(z)| < |u(x)| on
X. It suffices to show that ||ju — f,|| — 0 as n — oco. Note that Ly(X ; q) = {u €
L(X); |Jul]| < oo} is a Hilbert space with respect to the inner product (-,-). Since
I fall? < |lu||? and {f.}, converges pointwise to u, we see that {f,}, converges
weakly to u. We have || f,,[|> — |Ju]|?, so that ||u — f,||* = 0 as n — oo. O

Lemma 3.3. E(u, f) = — > ¢[Au(z)|f(z) foru € E and f € Ly(X).
Proof. Using [13, Lemma 3] we have

E(u, f) = D(u, f) + Y a(x)u(@) f(z)

== [Au@)]f(@)+ ) ql@)ul@)f(z)
= =Y [Agu(e)]f(x). .

rzeX

Lemma 3.4. HE is the orthogonal complement of Eq in E.

Proof. Let h € HE. Then E(h, f) = 0 for every f € Lyo(X) by Lemma 3.3, so that
E(h,v) =0 for every v € Ey. Conversely, suppose that h € E satisfies E(h,v) =0
for all v € Ey. Since E(h,e,) = —A,h(x) by Lemma 3.3 for every € X, we see
that h € HE. O

By a standard argument, we obtain

Theorem 3.5 (Royden’s Decomposition). Every u € E is decomposed uniquely in
the form uw=wv+ h with v € Eg and h € HE.

Corollary 3.6. HE = {0} if and only if E = Ey.
We have by Theorem 3.2 and Corollary 3.6
Theorem 3.7. If N is parabolic, then E = Ey and HE = {0}.

Theorem 3.8. Assume that )y q(x) < oo. Then N is parabolic if and only if
HE = {0}.

Proof. Assume that HE = {0}, or E = E,. Since E(1) = Y _q(z) < oo, we
have 1 € E = Ey C Dy. Therefore N is parabolic by [14, Theorem 3.2]. The
converse follows from Theorem 3.7. U

We say that T is a normal contraction of the real line if TO = 0 and |T's; —T'so| <
|s1 — sg| for every real numbers si,s,. We define Tu € L(X) for u € L(X) by
(Tu)(z) = Tu(z) for z € X.

Lemma 3.9. Let T be a normal contraction of the real line. Then E(Tu) < E(u).
If u € Ey, then Tu € Ey.
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Proof. For u € L(X), we have D(Tuw) < D(u) by [13, Lemma 2| and ||Tu|| < |jull,
so that

E(Tu) = D(Tu) + ||Tul]* < D(u) + ||lul]* = E(u).
Let u € Ey. Then Tu € E by the above. We see by [15, Theorem 4.2] that
Tu € Dgy. Therefore, Tu € Eg by Theorem 3.2. O

Corollary 3.10. If u € E (Eq resp.) and c is a positive constant, then
max(u,0), min(u, ¢), |u| € E (Eq resp.). In this case,

E(max(u,0)) < E(u), FE(min(u,c)) < E(u), E(ju|) < E(u).
Proposition 3.11. If u,v € Ey, then min(u,v) € Eq.
Proof. Since u+v, lu—v| € Eg, we see that min(u,v) = (u+v—|u—0v|)/2 € E;. O

4. g-SUPERHARMONIC FUNCTIONS

For a € X, denote by U(a) the set of neighboring nodes of a and a itself, i.e.,
U(a) ={r € X; K(a,y)K(z,y) # 0 for some y € Y'}. For a subset A of X, denote
by U(A) the union of U(zx) for x € A. We say that u € L(X) is g-superharmonic
on a subset A of X if Aju(z) < 0 on A. In order to express Aju(z) in a more
familiar form, let us put

ta,2) =Y |K(@,)K(zy)lr(y)™ ifz#z, taz)=0,

yey

ta) =) |K(z,y)r(y) "

yey
Then t(z,2) = t(z,z) for all ,z € X and t(z) = >,y t(z, 2). Now we have

Agu(z) = —[t(x) + g(@)Ju() + >tz 2)u(2).
zeX
Lemma 4.1. (1) A non-negative harmonic function is q-superharmonic. FEs-

pecially, a positive constant is q-superharmonic.

(2) If uw and v are g-superharmonic on A, then both u + v and min(u,v) are
q-superharmonic on A.

(3) If u is g-harmonic on X, then —max(u,0) is g-superharmonic on X.

(4) If ¢ > 0 is a constant and u is q-superharmonic (q-harmonic resp.) on X,
then cu is q-superharmonic (q-harmonic resp.) on X.

Proof. (1) Let h be non-negative and harmonic. Then A,h(x) = Ah(z) —
q(x)h(z) = —q(z)h(xz) <0 on X.

(2) If w and v are g-superharmonic, then A,(u +v)(z) = Agu(x) + Ao(z) < 0.
Let f = min(u,v) and a € A. We may assume that f(a) = u(a). Since f(z) < u(x),
we have

Ayfla) = t(z,a)f(2) = [t(a) + ()] f(a)
zeX

< 3tz a)u(z) — [t(a) + g(a@)]ula) = Agu(a) < 0.

zeX
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(3) Let f = max(u,0). Then f € L*(X). If f(a) = 0, then A,f(a) =
Y extla 2)f(z) 2 0. Let f(a) > 0, ie., f(a) = u(a). Since f(x) > u(zr) and

u is g-harmonic, we have
Ayf(a) = Agf(a) = Agua) = Y t(z,a)[f(2) —u(2)] 2 0,
zeX
which means A,(—f) <0.
(4) Our assertion follows from A, (cu) = cAju. O

For u € L(X) and a € X, we define ¢-Poisson modification P,u € L(X) as

1
m ZGZXt(Z7 a)u(z), Puu(x)=u(x) forx +#a.

Lemma 4.2. If u is g-superharmonic on X, then P,u is q-superharmonic on X
and q-harmonic at a and P,u < u on X.

Pu(a) =

Proof. Since u is g-superharmonic at x, we have P,u(z) < u(z). In fact, in case z #
a our assertion is obvious. In case x = a, Aju(a) < 0 implies ) t(z,a)u(z) <
[q(a) + t(a)]u(a), so that P,u(a) < u(a). The proof is given in the following three
cases: (1) z € U(a), (2) x = a, and (3) z € U(a) \ {a}.
(1). For z ¢ U(a), it is obvious that A,Pu(x) = Aju(z) < 0.
(2). In case = a, we have
A Pu(a) = —[t(a) + q(a)] Pau(a) + > (2, a)Pyu(z)

=— Z t(z,a)u(z) + Z t(z,a)u(z) = 0.
(3). In case x € U(a) \ {a}, we have
A Pou(z) = —[t(z) + q(z)] Pou(z) + Z t(z, z) Pu(z)

< —[t(@) + g(@)u(x) + 3 tle,2Ju(z) = Aule) <0. O

Lemma 4.3 (Local Minimum Principle). Let v € L(X) and a € X. Assume that
u is g-superharmonic at a and u(z) > 0 for all z € U(a) \ {a}. Then u(a) > 0.
Moreover, u(a) = 0 occurs only when u(z) =0 for all z € U(a) \ {a}.

Proof. Since Aju(a) < 0 and u(z) > 0 for z € U(a) \ {a}, we have
[q(a) + t(a)u(a) > Y t(a,2)u(z) > 0,
z€U(a)
so that u(a) > 0. If u(a) = 0, then u(z) = 0 for z € U(a) \ {a} by the above
U

inequality.

Corollary 4.4. Let u be q-superharmonic on X. If u(z) > 0 on X and u(a) =0
for some a € X, then u(z) =0 on X.
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We have the following minimum principle:

Theorem 4.5 (Minimum Principle). Let A be a finite subset of X and let uw € L(X)
be q-superharmonic on A. If u(x) >0 on X \ A, then u(z) >0 on X.

Proof. Suppose that ¢ := min{u(z); x € A} <0 and put B = {z € X; u(x) = c}.
Lemma 4.1 implies that u — ¢ is g-superharmonic on A. Since u —c¢ > 0 on X and
u—c = 0 on B, the local minimum principle implies U(z) C B for all x € B, so that
U(B) C B. Since X is connected, we have B = X, which is a contradiction. [

Corollary 4.6. Let A be a finite subset of X. If u is qg-superharmonic on A and
v is g-harmonic on A and if u(x) > v(x) on X \ A, then u(x) > v(zx) on X.

Proposition 4.7 (Harnack’s Inequality). Let a,b € X. There exists a positive
constant o depending only on a and b such that o= u(b) < u(a) < au(b) for all
non-negative q-superharmonic function u on X.

Proof. Let xy € X and z1 € U(xg) \ {xo}. Since u(zx) > 0 and Aju(zy) < 0, we
have
t(ar, zo)u(a) < )t wo)ulx) < [tH(xo) + glo)]u(o),
reX

N tro) +alm)
u(zy) < Hzr, 70) (o)-

If 2o € U(xy) \ {21}, then

t(wy) + Q(x1>u .
t(x2, 1) (z1).

Repeat this argument to obtain the result. 0

u(xe) <

The following result was proved in Anandam [1, Theorem 2.4.9] in case N is a
finite network.

Lemma 4.8. Let P be a Perron family. Namely P is a non-empty family of q-
superharmonic functions on X such that

(1) {u(z); u € P} is bounded from below for each x € X,

(2) min(u,v) € P whenever u,v € P,

(3) Pou€e P foranyu € P and a € X.
Then u*(z) = inf{u(x); v € P} is g-harmonic on X.
Proof. By (1), u* € L(X). Let a € X. Since U(a) is a finite set, in view of (2), we
can choose u,, € P such that u,(z) converges decreasingly to u*(z) for all z € U(a).
Put v, = P,u,. Then v, € P and u* < v, < u,. Hence v,(z) — u*(z) for all
z € U(a). Since v, is ¢g-harmonic at a, so is u*. O

Denote by SH the set of all g-superharmonic functions on X and let
H"=HNL"(X), HB={ueH;sup{|u(@)|; z € X} < cc}.
Theorem 4.9. H* = {0} implies HB = {0}.
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Proof. Let u € HB and consider P = {v € SH; v > u' := max(u,0)}. Since
u is bounded, there exists ¢ > 0 such that |u| < ¢. Note that ¢ € P # 0.
Lemma 4.8 implies min(vy,v9) € P for vy,vy € P. If v € P and a € X, then
Pv—ut =v—u">0on X\ {a} and P,v — u" is g-superharmonic at a by
Lemmas 4.1 and 4.2. By the local minimum principle, P,v(a) — u™(a) > 0, which
implies P,v € P. Lemma 4.8 shows that A™(x) := inf{v(z); v € P} is g-harmonic
on X and ht > u™ > 0, so that h* € HT = {0}, hence u™ = 0. Similarly,
u~ := max(—u,0) =0, so that u = 0. O

This result was shown in [9] for a non-linear case.

5. THE ¢-GREEN FUNCTION

Lemma 3.1 shows that u — wu(a) is a continuous linear mapping on E for each
a € X. By F. Riesz’s theorem, there exists a reproducing kernel ¢, of E, i.e.,
v, € E and E(p,,u) = u(a) for every u € E. Let ¢, = g, + 0, be Royden’s
decomposition, i.e., g, € Eg and 6, € HE. We call g, the ¢-Green function of
N with pole at a. By the uniqueness of the reproducing kernel and its Royden’s
decomposition, the ¢-Green function g, exists uniquely. Note that in case E = E,,
Ja = pa is the ¢-Green function of NV with pole at a.

Theorem 5.1. E(g,,u) = u(a) for all u € Ey and Ayg.(z) = —e4(x) on X.
Proof. Let u € Eg. Then E(6,,u) = 0 by Lemma 3.4, so that
E(ga,u) = E(ga + b, u) = E(pa, u) = u(a).
Since €, € Lo(X) for every x € X, we see by Lemma 3.3 that
ex(a) = E(ga,€2) = —Dgga(). m

We do not use the notation g, used in [17]. In what follows, every statement
related to the pair (g4, Eg) remains true even in case Ey = E. Since the reasoning
related to (gq, Eo) in case E # Eq holds in the case E = Ej, we do not discern
these cases.

Corollary 5.2. g,(a) = E(g,) > 0.

Lemma 5.3. The function u* = g,/g.(a) is the unique optimal solution to the
extremum problem: Minimize E(u) subject to u € Eg and u(a) = 1.

Proof. Clearly, u* is a feasible solution to our extremum problem. For any u € Ej
with u(a) = 1, we have
o _ £(9) 1
E(u ) = 5 = s
9a(a)*  ga(a)
so that E(u) > 1/E(g.) = E(u*). To show the uniqueness of the optimal solution,
let u; and uy be optimal solutions to our extremum problem. Then
a:=E(u) = E(ug) < E((u1 + uz)/2)
< E((uy + u2)/2) + E((ur — u2)/2) = (E(u1) + E(u2))/2 = o,
so that E(u; — ug) = 0. Hence u; = us. O

L = E(ga,u) < Bga)*B(u)'/?,
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Theorem 5.4. (1) ga(b
(2) 0 < ga(®) < gala) on

Proof. (1) ga(b) = E(gb; ga) = E(9as 9) = gs(a).

(2) Let v* = go/ga(a). Since E(max(u*,0)) < E(u*) and E(min(u*, 1)) < E(u*)
by Corollary 3.10, we have v* = max(u*,0) = min(u*, 1) by Lemma 5.3, and hence
0 <wu*<1. Wesee u* > 0 by Corollary 4.4. O

( ) for every a,b € X.

><|I

Let {N,, = (X,,Y,)}, be an exhaustion of A/. There exists a unique ¢-Green

function g((ln) of NV,, with pole at a € X,,. This function is defined as the reproducing
kernel of the linear mapping u € E(X,,) — u(a), i.e., E(u, g((l")) = u(a) for u €
E(X,), where E(X,,) = {u € L(X);u=0o0n X\ X,} is a Hilbert space with

respect to the inner product E(-,-). Needless to say, g((l") is the unique function

of linear equation Aqg(g " = —g, on X,, with the boundary condition gé") = 0 on

X\ X,,. We have

Theorem 5.5. (1) g\ (b) = ¢\ (a) for every a,b € X,,.
(2) 0 < g (x) < gt”(a) for a,x € X,
(3) ) < g ) < g on X and {g((ln)} converges pointwise to g, for a € X,.
(4) E(gén) —ga) >0 asn — oo forae X.

Proof. (1) and (2) are shown by arguments similar to those of Theorem 5.4. Put
Uy = gC(LnH) gc(Ln) and v, = g, — g((ln). Then both u, and v, are g-harmonic on
X, and are non-negative on X \ X,,. We see by Theorem 4.5 that u,, and v,, are
non-negative on X. This shows the first half of (3).

For m > n and for a € X,,, we have

E(g™, gi™) = gi™(a) = E(gi™) < ga(a),
E(gi™ — ¢ = E(g'™) = 2E(g™, g™ + E(¢™) = E(¢™) — E(g{™).

a

It follows that {g((zn)}n is a Cauchy sequence in the Hilbert space Eq. There exists
f € Eg such that E (g((ln) — f) — 0 as n — oco. Since {gé")}n converges pointwise to
f, we have A, f(z) = —e,(x) on X. Thus f = g,. This shows (4) and the last half
of (3). O

Example 5.6. Let G be the linear graph, X = {x,;n > 0}, Y = {y,; n > 1},
K(xp,yns1) = 1, K(pi1,Yns1) = —1 forn > 0, and K(z,y) = 0 for any other pair
(x,y). Let r, = r(y,) and assume that R, := ZJ 175 < 00. Let ¢(x) = g,y (z) and
N ={G,r, q}. The ¢-Green function of N with pole at x,, (m > 0) is given by

L+pu) B .
gxm<xn):% 1f0§n§m>
1

where R, =3 > . r;and p, = Ry — R,.

Jj=n+1
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Proof. We prove only the case m > 1; the case m = 0 can be shown by a similar
argument. Let u, = g, (z,) and w, = r,*(u, —uy—1). Then Ayg,, () = —&,,, (@)
on X implies
wy—up =0, wp1—w,=0 forn#m, Wy —w,=-—1L
We see that w,, = ug for 1 <n <m and w,, = ug — 1 for n > m + 1, so that
Up = Uy + ppp for 0 <n < m,
Up = (uo = 1)(pn = pim) + tm  for n >m.

Since N is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that u, — 0
as n — 00, so that (ug — 1) Ry, + ty, = 0. Therefore ug = R, /(1 + Ryp). O

Example 5.7. Let G be the homogeneous tree of order 3. We assume that r =1
on Y and ¢ = 1 on X. Denote by p(a,b) the geodesic metric between two nodes a
and b, i.e., the number of arcs of the path between a and b. Let C(a; n) = {z €
X ; p(a,z) = n}. Then the ¢-Green function of N with pole at a is given by

" 1
a forx e Cla;n), a=1—-—.

9a()

T 41-3a V2
Proof. Fix a node a € X. By the symmetry, g,(z) depends only on p(a,z). Define
Up, = go(z) for p(x,a) = n. The equation A,g,(r) = —e4(x) on X can be written
as follows:

3uy —4ug = —1, 2upig —4up, +u,_1 =0 forn >1.

The characteristic equation 2t — 4t +1 = 0 gives t = 1 4 1/v/2. Since N is
hyperbolic, we have that u,, — 0 as n — oo, so that u, = Aa™ witha =1 — 1/\/§
for n > 0. The condition 3u; — 4uy = —1 shows A = 1/(4 — 3a). O

6. A FUNDAMENTAL EXISTENCE THEOREM

The following theorem plays a fundamental role for the study of ¢-Green poten-
tials in the succeeding sections.

Theorem 6.1. Let f € Ey be non-negative and A a nonempty proper subset of X.
Then there exists u* € Eqg such that

(1) Ayu*(xz) <0 on X,

(2) Agu*(x) =0 on X\ A,

(3) u*(x) > f(x) on A,

(4) u*(z) = f(z) if v € A and Au*(x) < 0.
Proof. Let us consider the following extremum problem:

a=1inf{E(u) — 2E(u, f); u € F},

where F = {u € Eo; Ayju < 0,Ayu(r) =0o0n X \ A}. Note that o < oo, since
g: € F for x € A. We see that « is finite by the inequality

E(u) = 2E(u, f) = E(u— f) = E(f) = —=E(/).
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Let {u,}, be a minimizing sequence. Then
a < E((uy + um)/2) = 2E((uy + um)/2, f)
< E((un + um)/2) = 2E((un + ) /2, f) + E((un — um)/2)
= [E(un) = 2E(un, [)]/2 + [E(um) = 2E(um, [)]/2 = a
as n,m — oo, so that E(u, — u,,) — 0 as n,m — oo. Since Ej is a Hilbert space,
we see that there exists u* € Eq such that E(u, —u*) — 0 as n — oco. Since {uy, }n,

converges pointwise to u*, we see that u* € F, which shows (1) and (2). We prove
(3). Noting that

|E(un7f) - E(U*7f>| = |E<un _U*af)| < E(“n _U*>1/2E(f)1/2 —0

as n — oo, we have a = E(u*) — 2E(u*, f). For v € F and t > 0, we have
u* +tv € F, so that

a < E(u" +tv) —2E(u* + tu, f)
— B(u) — 2B(u", f) + 24[E(’,v) — B(v, )] + ££E(v)
=a+ 2t[E(u*,v) — E(v, f)] + *E(v).
Therefore E(u*,v) — E(v, f) > 0. By taking v = g, for z € A in this inequality,
we obtain u*(x) > f(z) on A.
To prove (4), assume Aju*(a) < 0 for a € A. For any t > 0 with Aju*(a)+t <0,

we see that u* —tg, € Eg and Aj(u* — tg,)(x) = Agu*(z) + te,(z) < 0, so that
u* —tg, € F. We have

a < B(u —tg) — 2B(u” — tga, f) = a = 2[E(u”, ga) = E(gar f)] + t*E(ga),
so that E(u*, g,) — E(f,g.) < 0. Thus u*(a) < f(a). Hence u*(a) = f(a) by
(3). O
7. ¢-GREEN POTENTIALS

We define the ¢-Green potential Gu of p € L*T(X) and the mutual q-Green
potential energy G(u,v) of p,v € LT(X) by
Gu() = 3 g-(@i(=), Glu) = Y [Gu(@w(a).
zeX zeX
We call G(u, 1) the g-Green potential energy of u. Let us put
M={peL*(X); Gue LX)}, E={peL"(X);G(u,u) < oo}
We see easily

Lemma 7.1. A Gu(z) = —p(z) on X for every p € M.

By Harnack’s inequality, we note that Gu(a) < oo for some a € X implies
Gu(x) < oo for any = € X, so that &€ C M. We shall prove a discrete analogy of
the Riesz decomposition theorem.
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Theorem 7.2 (Riesz’s Decomposition). Fvery non-negative q-superharmonic func-
tion u can be decomposed uniquely in the form uw = Gu + h, where p € M and h
is non-negative and g-harmonic on X. In this decomposition, p = —Ayu and h is
the greatest g-harmonic minorant of u.

Proof. Let {N,, = (X,.,Y,)}, be an exhaustion of A" and let ¢\ be the ¢-Green
function of NV, with pole at a. Put u = —Aju,

un() = 37 P @), o ==
ZEXn

Then Aju, = —p on X, and u, = 0 on X \ X, so that h,, is g-harmonic on X,
and h, > 0 on X \ X,,. Thus h, > 0 on X by the minimum principle. Since

g™ < & on X by Theorem 5.5, we have u,, < Upsq and hy, > h,pp on X, Let b
be the pointwise limit of {h,},. Then h € H. Since {u,}, converges pointwise to
Gu, we have u = G+ h. The uniqueness of the decomposition is clear by Lemma
7.1. To prove the last assertion, let A’ € H and 0 < b’/ <w on X. Since h, — h' is
g-harmonic on X,, and h, —h =u—h >0 on X \ X, we see by the minimum
principle that h, > A’ on X, and hence h > h’' on X. O

By this theorem, we obtain the following.

Theorem 7.3. A non-negative q-superharmonic function u is a q-Green potential
if and only if the greatest g-harmonic minorant of u is equal to zero.

Corollary 7.4. Let u be non-negative and q-superharmonic. If there exists p € M
such that u(z) < Gu(z) on X, then u is a q-Green potential.

8. ¢-POTENTIALS WITH FINITE ENERGY
We begin with the study of ¢-potentials with finite energy.
Lemma 8.1. If p € £, then Gu € Eq and E(Gu) = G(u, ).

Proof. First let p,v € Lo(X). Since g, € Ey, we have Gu, Gv € E;. We obtain
E(Gu,Gv) =Y E(g:, Gv)u(z) = Y _[Gu(2)lu(z) = Glp,v).
zeX zeX
Let p € €. Let {N,, = (X,,,Y,)}n be an exhaustion of N and put p, = pex,
and u,, = Gu,. Then u, € Eg. For m > n we have
E(uy, — up) = E(uy) — 2E(up, ) + E(un) < E(uy) — E(u,).
Since E(u,) = G(n, ptn) < G(u, 1) < 0o, we have that {u,}, is a Cauchy sequence
in Eqg. Thus there exists v € Eq such that F(u, —v) — 0 as n — co. We have
G(p, p) < lminf G(pin, pn) = lim E(u,) < G(u, p).
n—oo n—oo

Therefore, E(v) = G(u, ). Since {u,}, converges pointwise to Gu, we conclude
that Gu = v € Ey. O
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Lemma 8.2. Let p € €. Then E(Gu,u) = Y v u(x)u(z) for every u € EgN
LT(X).

Proof. Since E(g,,u) = u(x) for u € Eq, our assertion is clear in case p € Lo(X)
by Lemma 3.3 and Lemma 7.1. Let u, be the same as in the proof of the above
lemma. Then E(Gjin,u) = o u(x)pn(x). Since E(Gu — Gp,) — 0 as n — oo,
we have E(Guy,,u) — E(Gu,u) as n — oo. Since u € LT(X), we see that

E(Gu,u) = lim E(Guy,u) = lim Zu(m),un(x)

= nh_)fgo Z uw(z)p(r) = Zu(m)u(m) D

Lemma 8.3. If u € Ey is g-superharmonic on X, then u € L*(X).

Proof. Let a € X and gc(ln) be the ¢-Green function of A,,. We may assume that
a € X, for large n. Since F(g, — gé”)) — 0 asn — oo and u € Ey, we have
E(u, g — g,) = 0 as n — 0o. By Lemma 3.2,

E(u, g{") = = [Agu(2)]g" () = 0,

z€X
so that u(a) = E(u, g,) = lim,, E(u,gé")) > 0. O
Theorem 8.4. {Gp; pe &} ={uec Ey; Ayu(r) <0}.
Proof. Lemmas 7.1 and 8.1 shows that A,Gu < 0 and G € Eq for p € €. To show
the converse, let u € Eq satisfy Aju(z) < 0 on X. Lemma 8.3 shows u € LT (X).
By Riesz’s decomposition, there exist p € M and h € H* such that u = Gu + h.

Consider an exhaustion {N,, = (X,,, Y,) }, of N and put u, = uex, and u,, = Gpu,.
Since Gu < u, we have

E(un) = G(ptn, pn) < G pin) < Z w(z)pn ()

zeX
= FE(Gpin,u) < E(uy)Y?E(u)*/?
by Lemma 8.2, so that G(py, it,) < E(u) < co. Therefore
G, p) < hmlnf G(tn, fin) < E(u),

hence p € £ and Gu € Eg by Lemma 8.1. It follows from Royden’s decomposition
that u = Gp. U

Let HET = HEN L*(X).

Theorem 8.5. If u € E is non-negative and q-superharmonic, then u is decom-
posed uniquely in the form u = Gu + h with € € and h € HE",

Proof. Royden’s decomposition shows u = v 4+ h with v € Ey and h € HE. Using
A = Aju < 0, we have v = Gp for some o € £ by Theorem 8.4. Riesz’s
decomposition shows u = Gu' + b’ for some ¢/ € M and b’ € HT. Note that

= —-Ayu=—Av=p,sothat h =h">0. OJ
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Lemma 8.6. Let pe M andv € €. If Gu < Gv on X, then € &.
Proof. We have

Gu ) = [Gu(a)u(z) <D [Gu(a)u(z) = [Gu(z)lv(2)

< [Gr(2)v(z) = G(v,v) < . 0

Denote by Spu the support of p € L(X), i.e., Sp={x € X; pu(z) # 0}.

Proposition 8.7. Let p,v € £. If Gu < Gv on Su, then the same inequality holds
on X.

Proof. Let u = min(Gu, Gv). Since Gu and Gv are g-superharmonic, so is u by
Lemma 4.1. Proposition 3.11 implies u € Eg, so that there exists A\ € £ such that
u = G by Theorem 8.4. Note that u(z) = Gu(z) on Su by our assumption.
Lemma 8.2 shows

B(Gp, G —u) = 3 (Gulx) — u(a))p(x) = 0.

zeX
Therefore
E(Gu—u)=E(Gu,Gu—u) — E(G\,Gu — u)
= =Y (Gu() — u(@)A(z) <0,
reX
and hence F(Gpu —u) = 0. Thus u = Gu and Gu < Gv on X. OJ

9. POTENTIAL THEORETIC PROPERTIES OF ¢-GREEN POTENTIALS

Now we show some fundamental properties of g-Green potential which are well-
known as the domination principle, the equilibrium principle and the balayage
principle.

Proposition 9.1. Let py,pus € M. Then there exists v € M such that Gv =
min(Guy, Gy ).

Proof. Let u = min(Gpuy, Gusz). Then u is non-negative and g-superharmonic by
Lemma 4.1. Our assertion follows from Corollary 7.4. U

By Proposition 9.1 and Lemma 8.6, we have

Corollary 9.2. Let p € M and v € £. Then there exists A\ € &£ such that
GA = min(Gpu, Gr).

Proposition 9.3 (Domination Principle). Let v € € and p € M. If Gu(z) <
Gv(zx) on Su, then the same inequality holds on X .

Proof. Let {N,, = (X,,,Y,)}, be an exhaustion of A and let p, = pex,. Then
Spn C Spand p, € €. We have Gu,(x) < Gr(z) on Su,. By Proposition 8.7, the
same inequality holds on X. Since Gu,(x) — Gu(x) as n — oo, we conclude that
Gu(z) < Gr(z) on X. O
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Theorem 9.4. Let u be non-negative and q-superharmonic on X and p € M. If
Gu(z) < wu(z) on Su, then the same inequality holds on X.

Proof. Let {N,, = (X,,,Y,)}, be an exhaustion of N and let p, = pex,. Then
Spn, € Spoand p, € €. Let u, = min(Gu,,u). Since u, < Gpu,, we see by
Corollary 7.4 that there exists A\, € £ such that G\, = u,. For x € Su,, we
have G\, (z) = min(Guy,(z),u(z)) = Gun(x), so that Gu,(z) < GA\,(z) < u(x)
on X by Proposition 8.7. Since Gu,(x) — Gu(x) as n — oo, we conclude that
Gu(z) <wu(z) on X. O

Proposition 9.5 (Equilibrium Principle). For a nonempty finite subset A of X,
there exists £4 € L1(X) such that S§4 C A, G€a(x) =1 on A, and G€a(x) < 1
on X.

Proof. Take f = €4 € Ey and let u* be the function obtained in Theorem 6.1.
Theorem 8.4 shows u* = G¢4 for some §4 € £. Note that Aju* = —£4 by Lemma
7.1. We see that G{4(x) > 1 on A and S§4 C A. Since G€a(x) = 1 on S&u,
Theorem 9.4 shows that G{4(z) <1 on X. O

Proposition 9.6 (Balayage Principle 1). Let p € £ and A a nonempty proper
subset of X. Then there exists uy € LT(X) such that Sus C A, Gua(z) = Gu(x)
on A, and Gua(z) < Gu(z) on X.

Proof. Since Gu € Eg by Lemma 8.1, we take f = Gu in Theorem 6.1 and obtain
u*. Theorem 8.4 shows u* = Guy for some py € £. We see that Suy C A,
Gua(x) > Gu(z) on A, and Gua(z) = Gu(x) on Suy. Proposition 9.3 shows that

Gpa(z) < Gu(z) on X. O

Proposition 9.7 (Balayage Principle 2). Let p € M and A a finite subset of
X, If (X)) == > ,cx u(x) < oo, then there exists ua € M such that Spa C A,
Gua(x) = Gu(z) on A, and Gua(z) < Gu(x) on X.

Proof. Let {N,, = (X,,,Y,,)},, be an exhaustion of N and let pu, = pex,. Then
Wy € &, so that by Proposition 9.6 there exists u € LT(X) such that Su C A,
Gui(z) = Guu(z) on A, and Gl (z) < Guu(z) on X. Let {4 € LT(X) be the
function in Proposition 9.5, i.e., S€4 C A, G&4(z) = 1 on A, and G&4(z) < 1 on
X. We have

pn(A) =" pn(x) =) [Géa(a)y(x) = G(Ea, i)

= S (G @))eat) < 3 [Gra(@))éa(x)
< S [Gu@)eatx) = S [Ge()]ulx) < p(X) < oc.

Taking a subsequence if necessary, we may assume that {u*},, converges pointwise
to p*. Since Gpu (Gu, resp.) converges pointwise to Gu* (Gu resp.), we see that
Su* C A, Gu*(z) = Gu(z) on A, and Gu*(z) < Gu(z) on X. We may take
pa = p*. O
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10. THE ¢-ELLIPTIC MEASURE OF THE IDEAL BOUNDARY OF N

We introduce the discrete version of g-elliptic measure in [11, Page 286]. Let
{N,, = (X, Y,) }n be an exhaustion of N and let w, be the unique solution of the
following boundary problem.

Au=0 onX, and u=1 onX\X,.

Remark 10.1. The existence and uniqueness follows from the fact that our prob-
lem is reduced to a system of linear equations in a form: Au = b, where A is
m X m-matrix and u,b € R™ with m the number of nodes in X,,. Our assertion
follows from det A # 0.

Another way to prove our assertion is to consider the extremum problem: 3, =
inf{E(u);u € L(X),u=1on X\ X,}. We can show by a standard technique
that there exists u* € L(X) such that v* =1 on X \ X,, and 5, = E(u*). By
the variational technique used in the proof of Proposition 12.3 below, we see that
u* is the desired solution. In this case, the uniqueness follows from the minimum
principle.

By the minimum principle, 0 < w, 411 < w, < 1 on X. The limit function w of
{wn }n exists. It is easily seen that w does not depend on the choice of an exhaustion
of N and that w is g-harmonic on X and 0 < w < 1 on X. We call w the g¢-elliptic
measure of the ideal boundary of N, shortly, g-elliptic measure.

Proposition 10.2. Assume that u vanishes at the ideal boundary, i.e., for any
e > 0, there exists a finite subset X' of X such that |u(z)| <e on X \ X'. If u is
q-harmonic on X, then u = 0.

Proof. For any ¢ > 0, there exists a finite subset X’ of X such that |u(z)| < ¢
on X \ X’. Since both ¢ £+ u are g-superharmonic and non-negative on X \ X',
the minimum principle shows that ¢ =« > 0 on X, i.e., |u(z)] < e on X. By the
arbitrariness of €, we have u = 0. O

Proposition 10.3. If ¢ :=inf{g(x); z € X} > 0, then HE = {0}.
Proof. Let u € HE. We have
e ule) < [ull? < B(u) < oo,
zeX

so that u vanishes at the ideal boundary. Thus u = 0 by Proposition 10.2. U

Lemma 10.4. Let {N,, = (X, Y;) }n be an ezhaustion of N and gi" be the q-Green
function of N, with pole at a € X,,. Then w,(x) =1-3] q(z)g,gn) (x).

Proof. Let u(r) =1—-%_ q(z)gﬁ”)(x). Then w is g-harmonic on X,,. In fact, for
r € X, we have

Agu(z) = Agl(x) = Y q(2)Agg™ (x) = —q(x) = D q(2)[—e:(z)] = 0.

ZEXn ZEXn

Since ggn)(x) =0forz e X\ X, and z € X,,, we have u = 1 on X \ X,,. Hence
U = Wy O
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Letting n — oo in this lemma, we obtain

Theorem 10.5. Let w be the g-elliptic measure of the ideal boundary. Then w(x) =
1= ex a(2)g:(x).
Corollary 10.6. Gq(z) = >,y q(2)g.(z) <1 on X.

Another proof of this fact was given without using the g-elliptic measure (cf. [17,
Theorem 4.5)).

Lemma 10.7. Let ¢ be a positive constant. If u is q-superharmonic and u(z) > —c
on X, then u(x) > —cw(x) on X. If u is g-harmonic and |u(z)| < ¢ on X, then
lu(z)| < cw(z) on X.

Proof. Let {w,}, be the determining sequence of w. If u is g-superharmonic such
that u(x) > —c on X, then u + cw, is g-superharmonic on X,, and is non-negative
on X \ X,,. The minimum principle implies u+ cw,, > 0 on X. Therefore u+cw > 0
on X. If uw is g-harmonic such that |u(z)| < ¢ on X, then u > —c and —u > —c.
We have u > —cw and —u > —cw, so that |u(z)| < cw(z) on X. O

Corollary 4.4, Theorem 10.5, and Lemma 10.7 imply

Theorem 10.8. The following three properties are equivalent:
(1) w=0.
(2) HB = {0}.
(3) Gq(x) =1 for some x € X.

Example 10.9. Let G be the same as in Example 5.6 and take r(y,) = 27" for
n > 1 and ¢(z,) = 2" for n > 0. Then N is hyperbolic and HB = {0}.
Proof. Let w € H and u,, = u(z,). The equation Aju(z) = 0 implies

Up—1 — Un Up+1 — Un
= 2uy, — 4 =ty forn > 1,
2—n 2—n 1

or
up = 2ug,  2Upyy — OdUy + Uy =0 forn > 1.

The general solution is u,, = Aa™ + Bp"™ for n > 0 with a = (5 — V17)/4, 5 =

(5+ +/17)/4. Note that u,, = Aa™ does not satisfy u; = 2ug unless A = 0, which

implies HB = {0}. By the condition u; = 2ug, we have B = (7 — 3a) A, so that

up, = A" + (7= 3a)Ap™  for n > 0.

Now let v, = gy, (25). Then the equation A,g,, = —¢,, implies
v = 2U9 — 5 2041 — OV, + 0,1 =0 forn > 1.

Since N is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that v, — 0
as n — 00, so that v, = Aa”. By the initial condition, we have A = 1/(4 — 2a),

and hence

Odn

Guo () = 1— 50 for n > 0.
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We have
> = 2ntlgn 1
o) = D aln)enln) = D 350 = Gy = 20)
This also follows from Theorem 10.8. O

Proposition 10.10. If N is hyperbolic and q € L$(X), then w # 0.

Proof. Suppose that w = 0. Then Gq(z) = 1 on X. Since Sq is a finite set, Kayano
and Yamasaki [4, Theorem 3.3] show that there exists a sequence {x,,}, such that
g:(z,) — 0 as n — oo for all z € S¢, so that

1= lim Gg(z,) = lim Y g.(xa)q(z) =0,
z€8q
which is a contradiction. O

Proposition 10.11. Assume that ¢ € L3 (X) and w # 0. Then there exists a
constant ¢ with 0 < ¢ < 1 such that w(z) >1—c on X.

Proof. Let ¢ = max{Gq(z); = € Sq}. We have Gg(z) < 1 on X by Theorem 10.8.
Since Sq is a finite set, it follows that ¢ < 1. Namely G¢(z) < ¢ on Sq. We have
Gq(x) < con X by Theorem 9.4. Theorem 10.5 shows that w(z) = 1-Gg(z) > 1—c
on X. U

Corollary 10.12. Assume that q € Lg (X) andw # 0. Then there exists a constant
c with 0 < ¢ < 1 such that (1 — ¢)G1(z) < Gw(x) < G1(z) on X.

11. THE CASE WHERE N 1S PARABOLIC

In this section, we consider the case where N is parabolic, i.e., E = E;. We have
Proposition 11.1. Assume that N is parabolic. Then Gg(z) =1 on X.

Proof. By [14, Theorem 3.2], we have 1 € Dy, so that there exists a sequence
{fu}n in Lo(X) such that 0 < f,(z) < 1on X, D(1 - f,) — 0 as n — oo, and
{fn}n converges pointwise to 1. Let a € X. Since A,g,(r) = —eq(x), we have
4(z)ga(7) = Aga(x) + €a(x) and

S Fu@a(2)0a(2)] = 3 Ful2)[Aga(2) + 2a(2)] = =Dfu ga) + fula).

zeX zeX

Since D(f,) = D(1 — f,,), we have
lim | D(fn, g)| < lim D(f,)"/*D(ga)"/* = 0.
n—oo n—oo

Since Gq(a) < 1 by Theorem 10.5, we have by Lebesgue’s dominated convergence
theorem

Gaa) = 3" a(2)ga(z) = lim 3" fu(2)la(2)gul2)]

S zeX
= lim [~D(fy, k) + fu(a)] = 1

By Theorem 10.5 and the minimum principle, we see that G¢g =1 on X. 0
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By Theorems 10.8 and Proposition 11.1, we have
Theorem 11.2. Assume that N is parabolic. Then HB = {0}.
We show the effect of the condition Gg = 1 by examples.

Example 11.3. Let G be the linear graph as in Example 5.6, ¢ = €, + €4, + €45,
and r(y) = 1 on Y. Then N is parabolic (cf. [15, Example 3.1]) and g,, is given
by

5 2 1
gI0($0) = ga gxo(xl) = = g;po(l'n) = g for n 2 2.

The class H consists of h € L(X) deﬁied by
h(xzog) =t >0, h(x)=2t, h(z,) = (8n—11)t forn > 2.
Proof. Let h € H" and h,, = h(z,). Then
hi—2ho =0, ho+ho—3hy =0,
hs +hy —3ho =0, hyye1 —2h, +h,_1 =0 forn >3,
which implies
h(zg) =t >0, h(xy)=2t, h(z,) = 8n—11)t forn > 2.
This means HB = {0}. Let u,, = ¢,,(z,). The equation A,g,, = —¢&,, implies
Uy — 2ug = —1, us +ug— 3uy =0,
uz +up —3us =0,  Upy; — 2u, +u,—1 =0 forn > 3.
Proposition 11.1 implies G¢(zo) = 1, which means
Ug + U +ug = 1.
These equations lead to uy = 5/8, uy = 2/8, u, = 1/8 for n > 2. O

Example 11.4. Let G be the linear graph and let ¢(z) =1 on X and r(y) = 1 on
Y. Then N is parabolic (c¢f. [15, Example 3.1]) and
" 3—VH
gwo(xn) = 2610( fornZO, a = 2\/_
Proof. Let h € H" and h,, = h(x,). The equation A,h(x) = 0 implies h; = 2hg
and h,.1 — 3h, + h,_1 = 0 for n > 1. The general solution is u, = Aa™ + Bf"
for n > 0, where a = (3 —+/5)/2 and 8 = (3 4+ v/5)/2 are solutions of the
characteristic equation t* — 3t + 1 = 0. The initial condition shows B = (3 — a)A
and H = {Aa™ + (3 — a)Ap"™; n > 0}. This means HB = {0}. Let u,, = g,,(x,).
The equation A,g,, = —&4, implies

up —2ug = —1, Upyy —3u, +upy =0 forn>1.

Since Giq(x) = 1, we obtain u,, = Aa™. By the condition u; = 2ug — 1, we have
A=1/(2- a). O
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12. CLASSIFICATION OF INFINITE NETWORKS
Recall HEY = HE N L*(X) and let
HP =H"—-H"={h=h; — hy; hy,ho € H},
HEP = HE" - HE™.

For a class C' of L(X), denote by O¢ the collection of those infinite networks N
for which C' consists only of 0. Since HP C H, we have Oy C Opgp.

Proposition 12.1. HB C HP.

Proof. Let w € HB. Then there exists a constant such that |u(x)| < ¢ on X. By
Lemma 10.7, |u(z)| < cw(x) on X. Let u; = (cw +u)/2 and uy = (cw — u)/2. By
Lemma 4.1, u; and uy are non-negative and ¢g-harmonic and u; — uy = u. O

Corollary 12.2. OHP C OHB-
Clearly HEB C HB, so that Oygg C Oggp.
Proposition 12.3. HE = HEP = {u; — uy; uj,us € HE"}.

Proof. Since HEP C HE is clear, we prove the converse inclusion. Let v € HE
and vt = max(u,0), v~ = max(—u,0). For our purpose, we may assume that
both ™ and u~ are non-zero. Let {N, = (X,,,Y,)}, be an exhaustion of N/ and
consider the following extremum problems:

a, =inf{E(v);ve E,v=u"on X\ X,}.

Note that a,, < E(u") < E(u) by Corollary 3.10. By the same reasoning as in
the proof of Theorem 6.1, we see that there exists a unique solution v; such that
a, = E(v). Let f € L(X) satisfy f =0 on X \ X,,. Since v} +tf(€ E) is equal
to ut on X \ X, for any real number ¢, we have

E@) < B +tf) = E(w") + 2tE(v:, f) + P E(f).

Letting ¢t 0 and ¢t N\, 0, we obtain E (v}, f) = 0. For any x € X \ X,,, Lemma 3.3
shows

0= E(vy,22) = —Agu,(2),

namely v is g-harmonic on X,,. Note that —u™ is g-superharmonic on X by Lemma
4.1. Since v — ut is g-superharmonic on X,, and vanishes on X \ X,,, we have
vi—ut > 0on X by the minimum principle. From v}, ; > u* on X and v}, = u* on
X\ X, wesee that v}, —v; > 0on X\X,. Since v}, —v} is g-harmonic on X, we
obtain by the minimum principle v}, ,; > v on X. Lemma 3.1 implies that, for each
r € X, there exists M, > 0 such that u*(z) < v}(z) < M, E(v:)Y? < M,E(u)"/2.
Therefore, the sequence {v}}, converges pointwise to v* € L*(X). Then v* is
g-harmonic on X and v* > u*. Note that

E(w") <liminf E(v}) < E(u) < oo,
n—oo
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so that v* € HET. Theorem 8.5 shows that v* — u* = Gu; + hy with u; € &
and h; € HE"'. Similarly we find w* € HE", uy € £, and hy € HE" such that
w* —u~ = Gug + ho. Let p =v* —w* € HE. Then

0=A2(¢—u)=A;G(1 — p2) = —p1 + pa.
Let u; = v* + hy and us = w* + hy. Then vy, us € HE™ and
u=p — (hy — hg) = u; — us.
This completes the proof. U
Next theorem gives a sufficient condition for H* # {0}.
Theorem 12.4. If N is hyperbolic and Y, q(x) < oo, then H # {0}.

Proof. If H* = {0}, then HE™ = {0}, so that HEP = {0}. Hence HE = {0} by
Proposition 12.3. This contradicts Theorem 3.8. 0

Proposition 12.5. For every u € HE, there exists a sequence {h,}, in HEB
such that E(u — h,) — 0 as n — oo.

Proof. Let w € HE and v > 0 and let w,(z) = min(u(z),n). Then u, € E is non-
negative and g-superharmonic. Theorem 8.5 shows that u,, = Gu,+h, with u, € €
and h, € HET. We have 0 < h,, < u,, < n and h,, € HEB. Lemma 3.3 shows
E(u—hy,,Gu,) = 0, which leads to E(u—u,) = E(Gu,)+ E(u—h,) > E(u—h,).
Note that D(u — u,) — 0 as n — oo by [14, Lemma 3.1]. Since ||u,|| < |lu|| and
{uy, }n converges pointwise to u, we see that {(u,,v)}, converges to (u,v) for every
v € E. Furthermore, we have ||u,||* — ||u||* as n — oo, and that ||u —u,||* — 0 as
n — oo. Thus E(u — u,) — 0 as n — oo, which shows E(u — h,,) — 0 as n — oo.

Now we consider the case where v € HE is of any sign. By Proposition 12.3,
there exist v/, u” € HE" such that u = v’ — u”. By the above observation, we can
find sequences {h! } and {h!} in HEB such that E(uv'—h,) — 0 and E(u"—h!) — 0
as n — oo. Let h, = hl,—h!'. Then h, € HEB and E(u—h,) - 0asn — oco. O

Corollary 12.6. Ogg = Oggp.

Thus we have the following classification of infinite networks by the classes of
g-harmonic functions:

Theorem 12.7. OH C OHP C OHB C OHEB = OHE
Note that HD = HE if ¢ € L{ (X).

13. ¢-QUASIHARMONIC CLASSIFICATION

We say that a function v € L(X) is g-quasiharmonic on X if Aju = cw on
X, where w is the g-elliptic measure and c is a constant. Denote by Q the set
of g-quasiharmonic functions on X normalized by A,u = —w. In this section, we
always assume that w # 0. We consider the following classes of g-quasiharmonic
functions:

QB = {u € Q; sup{|u(z)|; z € X} < o0},
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QE=QNE, Q"=QnL*X).
In addition to M and &, we introduce
My ={pe M;sup{Gu(x); z € X} < oo}.

Theorem 13.1. Assume w # 0. The classes O¢ for C = Q1,QB, QE are char-
acterized as follows:

(1) N € Og+ if and only if w ¢ M;

(2) N € Ogp if and only if w ¢ M,;

(3) N € Ogg if and only if w ¢ £.

Proof. Let w = Gw. If w € M, then Aju = —w on X and v > 0, and hence
ue Q. If we M,, then u € QB. If w € &, then u € QE by Theorem 8.4. Thus
the only-if parts in (1)—(3) are proved.

(1) Assume that N' ¢ Og+ and let u € Q. Since u is non-negative and ¢-
superharmonic, we see by Riesz’s decomposition that there exist p € M and h €
H* such that v = Gu+ h and p = —Ayu = w. Thus w € M.

(2) Assume that N' ¢ Ogp and v € QB. Then there exists a positive constant
¢ such that |u(z)| < ¢ on X. Lemma 10.7 shows that u + cw is non-negative and
g-superharmonic. Riesz’s decomposition shows that there exist 4 € M and h € H*
such that u 4+ cw = Gu+ h and p = —A (v + cw) = w. Thus Gw < u + cw < 2¢
on X and w € M,.

(3) Assume that N' ¢ Ogg and u € QE. Royden’s decomposition implies that
there exist v € Ey and h € HE such that v = v 4+ h. Since Apv = Aju = —w,
Theorem 8.4 shows that there exists p € £ such that v = Gu. We obtain w =
-AGu=peét. O

This theorem implies
Proposition 13.2. If w # 0, then Og+ C Ogp.
We have by Proposition 10.11 and Corollary 10.12

Lemma 13.3. Assume that g € L§(X) and w # 0. Then
(1) w e M if and only if 1 € M;
(2) we My if and only if 1 € My;
(3) we & if and only if 1 € £.
We show by an example that there exists N' ¢ Og+ such that N € Ogp.

Example 13.4. Let G be the ladder as in [16, Example 4.3]. Namely X =
{zn, 2,5 n > 0}, Yo = {yn, ¥ v n > 1} U{yg} and K(z,y) is defined by
K(:Ena yn—l—l) = K(I;w y;z—i—l) = K(xm yg) =—1,
K(Zn41, Ynt1) = K(:E;H—l?y;z—i-l) = K(‘T;wy;;) =1
for n > 0 and K(x,y) = 0 for any other pair. Let q(z) = €,,(z) and ap a constant
with 0 < ap < 1. We choose r(y) as follows:
, 27n71a/0

:1 = —
n  n 2n+1—op
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" Qo " —n—1
o 23— ag)’ = ( Jag +n
for n > 1, where 7, = r(yn), 7, = r(y},), and ], = r(y/). This network is in
Ogi \ Og+.
Proof. Let us consider the function u € L(X) defined by
U, =g +n, u,=2""tay forn>0,
where u,, = u(x,) and ), = u(x],). We show Aju = —1. We compute
du(y ) — _K('rN—hyn)u('rn_l) + K(xnvyn)u(xn) — Un_l - Un — _1
! r(Yn) " ’
K(x) _,yl)u(al, +K xl y Ju(x), u,_ —u,
K(xo, y))u(zo) + K (xf, y) )u(x] Uy — Uy
du(yl) = — (%o, Yo )u( 0)(%/) ( 0: Yo )u(o) _ Org 0 _ 9 _ qy,
! (yn) "

for n > 1. We have

Agu(wg) = K (w0, y1)du(yr) + K(xo, yy)du(yy) — u(wo)
= —du(y,) — du(yy) — up = —1,

Agu(zy) = K (g, vy)du(yy) + K (2, yo)du(yg)
= —du(yy) + du(ys) = —1,

Agu(z,) = K(zy, yn)dU(yn) + K(:vn, Ynt1)AU(Yn1) + K (20, Y )du(y,)
= du(yn) — du(yns1) — duly,) = —1,

Agu(xy,) = K(2, yp,)duly,) + K (2, vy 00)du(yy) + K(x,, y,)du(y,)
= du(y,) — du(yy41) + du(y,) = —1.

By Riesz’s decomposition, we have v = Gu + h with u € M and h € H*. Note
that 1 = —Aju = € M. Also note that N is hyperbolic because of > ! < oo
and [14, Theorem 4.1 and Lemma 4.3]. Proposition 10.10 shows w # 0.

To show N € Ogg \ Og+, it suffices to show that 1 € M \ M, by Theorem 13.3
and Lemma 13.3. We show that v := G'1 is unbounded. Suppose that v is bounded,
i.e., there exists a positive constant ¢ such that |v(z)| < ¢ on X. Let v, = v(x,),
v, = v(x)), w, = dv(y,), w, = dv(y,), and w! = dv(y). Then |w,| < 2¢ for all
n. For any € with 0 < € < 1, there exists ng such that 7 > 2¢/e for all n > nyg, so
that

Since 1 € M, Lemma 7.1 shows Ao = —1, which implies w,, — w,41 — w], = —1,
and that
—1—-—e<w, —wp41 < —1+¢
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for all n > ng. This contradicts the boundedness of {w,},. Thus v is unbounded.

L]
Proposition 13.5. If ¢ € Lj(X) and w # 0, then Ogp C Ogg.

Proof. Assume N ¢ Ogp. Theorem 13.1 shows w € €. There exists a constant ¢
with 0 < ¢ < 1 such that w(x) > 1 — ¢ on X by Proposition 10.11, so that

ZGw (1—c¢) ZGw > (1 —c)Gw(x)
zeX zeX
for each z € X. This means w € M,,. O

Example 13.6. Let G and ¢ be the same as in Example 5.6. Define r(y) by
r(yn) =n2—(n+1)2forn > 1. Then w € M, and w ¢ £. Equivalently
QB # {0} and QE = {0}.
Proof. Let R, and p, be defined as in Example 5.6. Then
1 1
Ry=1, R,=—=, ppn=1—"—=<1.
T m+12 P (n+1)?
We have by Theorem 10.5

=1- =1- = f > 0.
() =1 o) = 1= LA L >
We obtain
1 - 1 &
- - 1 < =
GW(.TO) (1+R0)2 ;Rn( +pn) = Q;Rn<ooa
Gw(zp) = ngm (n)w(z
(1+Ro Z Pn) p)nzzm+1 (1+ pn)
< (m+ 1R, + Z R <L+§:i
B " n=m-+1 "o m+1 n=1 7127
so that Gw is bounded and w € M,,.
We have G(w,w) = S1 + Ss, where
1 o m
Sy = Ro(1+ pom 1+ pn)?,
A (HRO)?,Z:O ( p);( pn)
1 o0 o0
S L+ pm)? R.(1+ py,
; (1+R0)3ZO( p)n;l (14 pn)

Therefore

Cm = i Rn(1+pn)2 i 1 22 o0 ldt:;
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thus

1 [o@)
G(w,w)2522§26m:oo. d

m=0
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