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Abstract

Previous studies suggested that advanced glycation end products (AGEs) and insulin-like growth
factor-1 (IGF-I) are involved in the mechanism of diabetes-induced sarcopenia. In this study, we
examined effects of treatments with AGEs and/or IGF-I for 24 h on myogenic differentiation and
apoptosis in mouse myoblastic C2C12 cells. Real-time PCR and Western blot were performed to
investigate mRNA and protein expressions, and apoptosis was examined by using a DNA
fragment detection ELISA kit. AGE3 significantly decreased mRNA and protein expressions of
MyoD and Myogenin, whereas IGF-I significantly increased them and attenuated the effects of
AGE3. AGE: significantly decreased endogenous IGF-I mRNA expression and suppressed IGF-
I-induced Akt activation. High glucose (22 mM) significantly increased mRNA expression of
Rage, areceptor for AGEs, while IGF-I significantly decreased it. DNA fragment ELISA showed
that AGE2 and AGE3 significantly increased apoptosis of C2C12 cells, whereas IGF-I
significantly suppressed the AGE2- and AGE3-induced apoptosis. In contrast, high glucose
enhanced AGE3-induced apoptosis. IGF-I significantly attenuated the effects of high glucose plus
AGE3 on the mRNA and protein expressions of MyoD and Myogenin as well as the apoptosis.
These findings indicate that AGEs inhibit myogenic differentiation and increase apoptosis in
C2C12 cells, and that high glucose increases RAGE and enhances the AGE3-induced apoptosis,
suggesting that AGEs and high glucose might contribute to the reduction of muscle mass and
function. Moreover, IGF-1 attenuated the detrimental effects of AGEs and high glucose in

myoblastic cells; thus, IGF-I-Akt signal could be a therapeutic target of DM-induced sarcopenia.

Keywords: myoblast, advanced glycation end products, insulin-like growth factor-I, diabetes
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Introduction

Sarcopenia is a progressive disease with decreases in skeletal muscle mass and function,
resulting in deterioration of activities of daily living and quality of life as well as increases in fall
risk and mortality in elderly people [1]. Because the population is worldwide aging, the prevention
and treatment of sarcopenia have become an important issue. Accumulating evidence has shown
that patients with diabetes mellitus (DM) have an increased risk of sarcopenia [2,3]. Because
skeletal muscle is an important tissue involved in insulin action and glucose metabolism [4], it is
considered that disturbance of glucose metabolism leads to loss of skeletal muscle and vice versa.
Therefore, sarcopenia has recently been recognized as one of the diabetic complications. However,
the underlying mechanism of DM-related sarcopenia still remains unclear.

Advanced glycation end products (AGEs) are generated by sequential non-enzymatic
chemical glycoxidation of protein amino group [5]. AGEs formation is increased when patients
have DM. Several studies have shown that serum AGEs levels are higher in patients with DM
than those in healthy subjects [6]. AGEs are known to accumulate in various tissues including
eyes, kidney, brain, artery, bone, and muscle [7,8]. Moreover, AGEs have physiological activities
and directly impact cell functions through the receptor for AGEs (RAGE) [9]. Therefore, it is
suggested that AGEs accumulation in local tissues and increased circulating AGEs may be
involved in the mechanism of various diabetic complications [10,11]. Several studies showed that
serum AGEs levels are associated with decreased grip power and gait speed in elderly women
[12,13]. We recently reported that serum levels of pentosidine, one of the AGEs, are inversely
associated with muscle mass index in postmenopausal women with type 2 DM [14]. Moreover, a

couple of experimental studies demonstrated that AGEs inhibit myogenic differentiation [15,16].
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These finding suggest that AGEs are involved in the pathogenesis of DM-related sarcopenia.

Growth hormone-insulin-like growth factor-I (IGF-I) axis is known to decline with
aging; thus, it is thought that the axis is associated with poor physical function or disability in
elderly people. Circulating IGF-I, mainly produced in the liver, acts in an endocrine manner and
is well-known to exert anabolic effects on muscle mass [17-19]. Because serum IGF-I levels
decrease in poorly controlled DM [20,21], low serum IGF-I might be involved in DM-related
sarcopenia. We previously showed that serum IGF-I levels were positively and independently
associated with muscle mass index in postmenopausal women with type 2 DM [14]. Several
studies have shown that IGF-I prevents apoptosis of myoblastic C2C12 cells via activation of Akt
[22,23]. Furthermore, Chiu et al. recently reported that AGEs induce skeletal muscle atropy and
dysfunction through inhibiting Akt signaling pathway in diabetic mice [16]. Moreover, IGF-I
stimulated Akt phosphorylation against AGEs and induced myogenic differentiation in C2C12
cells. Taken together, these findings suggest that IGF-I might be a therapeutic target for prevention
and treatment of DM-induced sarcopenia.

Previous studies have shown that apoptosis is essential for skeletal muscle development
and homeostasis, and that its misregulation has been observed in several myopathies including
sarcopenia [24,25]. However, to our knowledge, there are no studies investigating whether AGEs
induce apoptosis of myoblasts so far. Moreover, previous studies indicated that high glucose (HG)
enhanced the effects of AGEs by increasing RAGE expression in various cells [26-28]; however,
it is unknown whether HG affects RAGE expression in myoblasts and whether HG mediates
effects of AGEs in the cells. In this study, to determine the potential mechanism by which DM is

exacerbating declines in muscle mass and function, we examined whether HG and AGEs increase
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apoptosis and inhibit differentiation of C2C12 cells and whether IGF-I treatment inhibits the co-

incubation of HG and AGEs-induced detrimental effects.

Materials and methods
Materials

Anti-B-actin antibody and mouse IGF-1 were obtained from Sigma-Aldrich (St. Louis,
MO, USA). Anti-MyoD and anti-Myogenin antibodies were from Santa Cruz Bioctechnology
(Santa Cruz, CA, USA). Anti-total Akt (tAkt), and anti-phospho-Akt (pAkt) antibodies were from
Cell Signaling Technology (Beverly, MA, USA). All other chemicals used were of analytical

grade.

Cell Culture

Mouse myoblastic C2C12 cells were purchased from the RIKEN Cell Bank (Tsukuba,
Japan). The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen,
San Diego, CA, USA) with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin
(Invitrogen). The medium was changed twice a week. After the cells reached 80% confluency, the
cells were cultured in DMEM with 2% horse serum for 2 days to differentiate into myotube. Then,
they were incubated with BSA-free DMEM with vehicle (Cont), 200 pg/mL bovine serum
albumin (BSA), 200 pg/mL AGE2 (AGE2), 200 pg/mL AGE3 (AGE3), 100 ng/mL IGF-I (IGF-

I), and/or 22 mM glucose (high glucose; HG).

Preparation of AGEs
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AGE2, AGE3, and nonglycated BSA were prepared as previously described [15]. AGE2
and AGE3 were prepared by incubating 50 mg/mL BSA (Sigma-Aldrich) with 0.1 M DL-
glyceraldehyde (Nacalai Tesque, Kyoto, Japan) and 0.1 M glycolaldehyde (Sigma-Aldrich),
respectively, under sterile conditions in 0.2 M phosphate buffer (pH 7.4) containing 5 mM
diethylene-triamine-pentaacetic acid at 37 °C or 7 days. Nonglycated BSA was incubated under
the same conditions except for the absence of DL-glyceraldehyde or glycolaldehyde as a negative
control. Then, low molecular weight reactants and aldehydes were removed using a PD-10

column chromatography and dialysis against phosphate-buffered saline (PBS).

Quantification of gene expression using real-time PCR

For real-time PCR examination, the cells were plated in 6-well plates and cultured as
described above. Total RNA was extracted from the cultured C2C12 cells using TRIzol reagent
(Invitrogen, San Diego, CA, USA) according to the manufacturer’s recommended protocol. We
used 2 pg total RNA, which was measured by NanoDrop ND-1000 Spectrophotometer (Thermo
Scientific, Wilmington, DE, USA), for the synthesis of single-stranded cDNA (cDNA synthesis
kit; Invitrogen). Then, we used SYBR green chemistry to examine the mRNA expressions of
MyoD, Myogenin, Igf-I and Rage. A housekeeping gene, Gapdh, was used to normalize the
differences in the efficiencies of reverse transcription. The primer sequences are listed in Table 1.
Real-time PCR was performed with 1 pL. of cDNA in a 25 pL reaction volume using the Thermal
Cycler Dice Real Time System II (Takara Bio, Shiga, Japan). The double-stranded DNA-specific
dye SYBR Green [ was incorporated into the PCR buffer provided in the SYBR Green Real-time

PCR Master Mix (Toyobo Co. Ltd., Tokyo, Japan) to enable quantitative detection of the PCR
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product. The PCR conditions were 95 °C for 15 min, followed by 40 cycles of denaturation at

94 °C for 15 s, and annealing and extension at 60 °C for 1 min.

Western blot analysis

For western blot analysis, the cells were plated in 6-well plates and cultured as described
above. After the cells were treated with each agent, they were rinsed with ice-cold PBS and
scraped on ice into lysis buffer (Bio-Rad, Hercules, CA, USA) containing 65.8 mM Tris-HCI (pH
6.8), 26.3% (w/v) glycerol, 2.1% sodium dodecyl sulphate (SDS), and 0.01% bromophenol blue,
to which 2-mercaptoethanol was added to achieve a final concentration of 5%. The cell lysates
were sonicated for 20 s. The cell lysates were electrophoresed on 10% SDS-polyacrylamide gels
and transferred onto a nitrocellulose membrane (Bio-Rad). The blots were blocked with Tris-
buffered saline (TBS) containing 1% Tween 20 (Bio-Rad) and 3% BSA for 1 hat 4 °C. Then, the
blots were incubated overnight at 4 °C with gentle shaking with anti-f-actin antibody, anti-MyoD
antibody, anti-Myogenin antibody, anti-tAkt antibody, or anti-pAkt antibody as primary
antibodies. These blots were extensively washed with TBS containing 1% Tween 20 and were
further incubated with a 1:5000 dilution of horseradish peroxidase-coupled IgG of specified
animal species (rabbit or mouse) (Sigma-Aldrich) matched to the primary antibodies in TBS for
30 min at 4 °C. The blots were then washed, and the signal was visualised using an enhanced
chemiluminescence technique. National Institutes of Health (NIH) image software (ImagelJ) was

used to quantify the signal intensity.

Measurement of apoptotic cell death
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C2C12 cells were seeded on 96-well plates at a density of 3,000 cells/well and were
incubated overnight in DMEM with 10% FBS and antibiotics. On the next day, the cells were
treated with either vehicle, BSA, AGE2, AGE3, HG, and/or IGF-I for 24 h. Then, the cells were
lysed, and the supernatant was analyzed in an ELISA for DNA fragments (Cell Death Detection

ELISA Plus, Roche Molecular Biochemicals, Indianapolis, IN, USA).

Statistics

All experiments were repeated at least three times. Data are expressed as mean =
standard error of mean (SEM). Statistical analysis for differences among groups was performed
by using one-way analysis of variance (ANOVA) followed by Fisher’s protected least significant
difference test. For all statistical tests, a p value of less than 0.05 was taken to indicate a significant

difference.

Results
Effects of AGEs and IGF-I on mRNA expressions of MyoD, Myogenin, and IGF-I in C2C12 cells
We examined the effects of AGEs (200 pg/mL) and IGF-I (100 ng/mL) on the mRNA
expressions of MyoD and Myogenin, both of which were important molecules regulating muscle
differentiation, in C2C12 cells by real-time PCR. Treatment with AGE3 for 24 h significantly
inhibited the mRNA expressions of MyoD and Myogenin compared to BSA (p < 0.01 and p <
0.05, respectively) (Fig. 1A and 1B). IGF-I significantly increased the mRNA expressions of
MyoD and Myogenin compared to Cont (both p <0.001). Moreover, Co-treatment of IGF-I with

AGE2 (AGE2+IGF-I) or AGE3 (AGE3+IGF-I) significantly increased the mRNA expressions of

10



182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

MyoD and Myogenin compared to treatment with AGE2 or AGE3 (at least p < 0.01). We then
examined the effects of AGEs and IGF-I on the protein expressions of MyoD and Myogenin by
Western blot. Treatment with AGE2 or AGE3 for 24 h significantly decreased MyoD and
Myogenin protein expressions compared to BSA (at least p < 0.05) (Fig. 2A-C), whereas IGF-I
significantly increased MyoD and Myogenin protein expressions compared to Cont (both p <
0.001). Co-treatment of IGF-1 with AGE2 (AGE2+IGF-I) or AGE3 (AGE3+IGF-]) significantly
increased MyoD and Myogenin protein expressions compared to treatment with AGE2 or AGE3

(at least p < 0.05).

Effects of AGEs and IGF-I on mRNA expression of endogenous IGF-1 in C2C12 cells

Real-time PCR showed that AGE2 (200 pg/mL) and AGE3 (200 pg/mL) significantly
decreased the mRNA expression of Igf~/ compared to BSA (both p <0.001). IGF-I (100 ng/mL)
significantly decreased the mRNA expression of /gf-/ compared to Cont (p < 0.05), whereas co-
treatment of IGF-I with AGE2 (AGE2+IGF-I) or AGE3 (AGE3+IGF-I]) significantly increased

the mRNA expression of Igf~-I compared to AGE2 or AGE3 (both p <0.001) (Fig. 1C).

Effects of AGEs and IGF-I on Akt activation in C2C12 ells

To examine the effects of AGEs (200 pg/mL) and IGF-I (100 ng/mL) on Akt activation,
C2C12 cells were treated with AGEs and/or IGF-I for 24 h, and protein was collected. Western
blot showed that IGF-I significantly stimulated pAkt, tAkt, and ratio of pAkt/tAkt compared to
Cont (all p < 0.001) (Fig. 2D-F). Moreover, AGE2 and AGE3 significantly suppressed tAkt

expression compared to BSA (p <0.01 and p <0.001, respectively) (Fig. 2E). IGF-I (BSA+IGF-

11
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D) significantly increased pAkt compared to AGE2 or AGE3 (p <0.01 and p <0.001, respectively)

(Fig. 2D).

Effects of HG, AGE3, and IGF-I on the mRNA expression of RAGE in C2C12 cells

We then examined the effects of HG (22 mM), AGE3 (200 pg/mL), and IGF-I (100
ng/mL) on the mRNA expression of Rage in C2C12 cells by real-time PCR. HG significantly
increased the mRNA expression of Rage (p < 0.001), while AGE3 tended to decrease it although
the difference was not significant (Fig. 3A). In contrast, IGF-I significantly decreased the mRNA

expression of Rage (p <0.001) (Fig. 3B).

Effects of HG, AGE3, and IGF-I on mRNA expressions of MyoD and Myogenin in C2C12 cells
We examined the contribution of HG (22 mM) to the effects of AGE3 (200 pg/mL) on
MyoD and Myogenin expressions of C2C12 cells. HG alone did not affect the mRNA expression
of MyoD or Myogenin (Fig. 4A and 4B). AGE3 significantly decreased the mRNA expressions of
MyoD and Myogenin regardless of the presence of HG (all p < 0.001). Co-incubation of IGF-I
(100 ng/mL) with HG and AGE3 (HG+AGE3+IGF-I) significantly increased the mRNA

expressions of MyoD and Myogenin compared to HG+AGE3 (both p <0.001).

Effects of HG, AGEs, and IGF-I on apoptosis of C2C12 cells
The effects of HG (22 mM), AGEs (200 pg/mL), and IGF-I (100 ng/mL) on apoptosis
of C2C12 cells were examined by using a DNA fragment detection ELISA kit. Treatment with

AGE2 and AGE3 for 24 h significantly increased the apoptosis of C2C12 cells compared to BSA

12
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(p <0.05 and p <0.01, respectively) (Fig. 5A). Although HG alone did not affect the apoptosis,
co-treatment of HG with AGE3 (HG+AGE23) significantly increased it compared to Cont, HG,
and AGE3 (all p <0.001) (Fig. 5B). Co-incubation of IGF-I with AGE2 or AGE3 (AGE2+IGF-I
or AGE3+IGF-I) significantly attenuated the apoptotic effects of AGE2 and AGE3 (p <0.05 and
p < 0.01, respectively) (Fig. SA). Moreover, co-incubation of IGF-1 with HG and AGE3
(HG+AGE3+IGF-I) significantly attenuated the apoptotic affects of HG and AGE3 (HG+AGE3)

(p <0.05) (Fig. 5B).

Discussion

The present in vitro study showed that AGEs inhibited myogenic differentiation and
induced apoptosis in C2C12 cells, and HG increased RAGE mRNA expression and apoptotic
effects of AGE3. Moreover, IGF-1 suppressed the mRNA expression of RAGE, and attenuated
the effects of AGEs on the mRNA and protein expressions of MyoD and Myogenin as well as
apoptosis in the presence or absence of HG. These findings suggest that AGEs and hyperglycemia
might contribute to the reduction of muscle mass and function, and that IGF-I attenuated the
detrimental effects of AGEs and hyperglycemia in myoblastic cells.

We previously showed that AGE2 and AGE3 decreased the differentiation of myoblasts
in C2C12 cells [15]. Chiu et al. reported that muscle fiber atrophy and accumulation of AGEs in
skeletal muscles were markedly increased in patients with DM compared to control subjects, and
that AGEs induced muscle atrophy and myogenesis impairment in mouse and human myoblasts
via a RAGE-mediated Akt signaling pathway [16]. In this study, AGE2 and AGE3 inhibited the

mRNA and protein expression of MyoD and Myogenin as well as Akt protein expression in
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C2C12 cells. These findings are consistent with the previous ones [15,16]. Furthermore, the
present study firstly showed that AGE2 and AGE3 induced apoptosis of C2C12 cells, and that
HG accelerated the detrimental effects of AGEs via increasing RAGE expression. Taken together,
these findings suggest that hyperglycemia and high AGEs levels might be involved in the
mechanism of DM-related sarcopenia, and that long-term blood glucose control could prevent the
risk of sarcopenia in patients with DM.

RAGE expression is essential for AGEs-related diabetic vascular diseases [29]. Previous
studies have shown that RAGE is expressed in muscle [30] and plays important roles in skeletal
muscle physiology and pathophysiology [31]. Chiu et al. showed that AGEs, which were prepared
by incubating BSA with D-glucose as AGE1, increased RAGE expression in myocytes [16];
however, AGE2 nor AGE3 affect it in this study. There are dozens of AGEs in vivo, the effects
may be different among them. For example, Lim ef al. showed that RAGE is expressed in
pancreatic P cells, and that AGE2 and AGE3 increased apoptosis of the cells, compared to AGE1
[32]. Moreover, the effects of AGE3 on myogenic differentiation and apoptosis of C2C12 cells
seemed to be stronger than those of AGE2 in this study. Therefore, further studies are necessary
to clarify which AGEs are important for development of sarcopenia in vivo. In contrast, HG
increased RAGE mRNA expression in this study. To our knowledge, this is the first study to show
that glucose regulates RAGE expression in myoblastic cells. Thus, these findings suggest that
AGEs and hyperglycemia may be involved in muscle mass reduction in aging population, and
that AGEs may easily affect muscle especially in patients with DM. However, further in vivo
studies are necessary to confirm the present findings.

As we expected, IGF-I significantly increased the mRNA and protein expression of
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MyoD and Myogenin in C2C12 cells in this study. Moreover, AGE2 and AGE3 significantly
inhibited the mRNA expression of endogenous IGF-I and IGF-I-induced phosphorylation of Akt.
These findings suggest that AGEs directly decreased myogenesis and indirectly via decreasing
IGF-I expression and its signal pathway in microenvironment. Moreover, because IGF-I
decreased RAGE mRNA expression, lower IGF-I level may increase RAGE expression. These

findings suggest that there might be a vicious cycle between increased AGEs and decreased IGF-

Conclusion

In conclusion, AGEs inhibited the expression of MyoD and Myogenin as well as
induced apoptosis in C2C12 cells. HG increased RAGE mRNA expression and enhanced the
AGEs-induced apoptosis of the cells. These findings suggest that hyperglycemia and AGEs may
be involved in the pathophysiology of DM-induced sarcopenia. Moreover, IGF-I decreased
RAGE mRNA expression and reversed the detrimental effects of AGEs and HG in myoblastic

cells; thus, IGF-I-Akt signal could be a therapeutic target of DM-induced sarcopenia.
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Figure legends

Fig. 1

Effects of AGEs and IGF-I on the mRNA expressions of MyoD, Myogenin, and Igf-I in
C2C12 cells

The effects of AGEs (200 pg/mL), IGF-I (100 ng/mL), and AGEs plus IGF-I for 24 h on the
mRNA expressions of MyoD, Myogenin, and Igf-I were examined by real-time PCR. (A and B)
AGES3 significantly inhibited the mRNA expressions of MyoD and Myogenin compared to BSA.
IGF-I significantly increased the mRNA expressions of MyoD and Myogenin compared to Cont.
Co-treatment of IGF-I with AGE2 or AGE3 (AGE2+IGF-I or AGE3+IGF-I) significantly
increased the mRNA expressions of MyoD and Myogenin compared to treatment with AGE2 or
AGE3. (C) IGF-I, AGE2, and AGES3 significantly decreased the mRNA expression of Igf-I,
whereas the mRNA expression of /gf-/ was significantly higher in co-treatment of IGF-I with
AGE2 or AGE3 (AGE2+IGF-I or AGE3+IGF-I) compared to AGE2 or AGE3. The results are
expressed as mean £ SEM (n=5). The housekeeping gene, Gapdh was used to normalize the

differences in the efficiencies of reverse transcription. *p < 0.05, **p <0.01, ***p < 0.001.

Fig. 2

Effects of AGEs and IGF-I on MyoD and Myogenin expressions as well as Akt activation in
C2C12 cells

(A-C) The effects of AGEs (200 pg/mL), IGF-I (100 ng/mL), and AGEs plus IGF-I for 24 h on
the protein expressions of MyoD and Myogenin were examined by Western blot. AGE2 or AGE3

significantly decreased MyoD and Myogenin protein, whereas IGF-I and co-treatment of IGF-I
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with AGE2 or AGE3 (AGE2+IGF-I or AGE3+IGF-I) increased MyoD and Myogenin protein
compared to treatment with AGE2 or AGE3. (A, D-F) The effects of AGEs, IGF-I, and AGEs plus
IGF-I for 24 h on Akt activation were examined. IGF-I significantly stimulated pAkt and tAkt
expressions and pAkt/tAkt ratio compared to Cont. AGE2 and AGES3 significantly suppressed
tAkt expression compared to BSA. IGF-I (BSA+IGF-I) significantly increased pAkt compared to
AGE2 or AGE3. The results are representative of at least three different experiments. The results

are expressed as mean = SEM (n=3). *p < 0.05, **p < 0.01, *=**p <0.001.

Fig. 3

Effects of HG, AGE3, and IGF-I on the mRNA expression of Rage in C2C12 cells

The effects of HG (22 mM), AGE3 (200 pg/mL), and IGF-I (100 ng/mL) for 24 h on the mRNA
expressions of Rage were examined by real-time PCR. (A) HG significantly increased the mRNA
expression of Rage, while AGE3 slightly but not significantly decrease it. (B) IGF-I significantly
decreased the mRNA expression of Rage. The results are expressed as mean = SEM (n=6). The
housekeeping gene, Gapdh was used to normalize the differences in the efficiencies of reverse

transcription. *##*p <0.001.

Fig. 4

Effects of HG, AGE3, and IGF-I on the mRNA expressions of MyoD and Myogenin in C2C12
cells

The effects of HG (22 mM), AGE3 (200 pg/mL) and HG+AGES3 for 24 h on MyoD and Myogenin

mRNA expressions were examined. Also, whether IGF-1 (100 ng/mL) attenuates the effects of
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HG+AGE3 was examined. AGE3 and HG+AGES3 significantly decreased the mRNA expressions
of MyoD and Myogenin. IGF-I significantly increased the mRNA expressions of MyoD and
Myogenin compared to HG+AGE3. The results are expressed as mean + SEM (n= 13). The
housekeeping gene, Gapdh was used to normalize the differences in the efficiencies of reverse

transcription. *p < 0.05, **p < 0.01, ***p <0.001.

Fig. 5

Effects of HG, AGEs, and IGF-I on apoptosis of C2C12 cells

(A) The effects of AGEs (200 pg/mL) and IGF-I (100 ng/mL) for 24h on apoptosis of C2C12
cells were examined by using a DNA fragment detection ELISA kit. AGE2 and AGE3
significantly increased the apoptosis of C2C12 cells. Apoptotic effects of AGE2+IGF-I and
AGE3+IGF-I were significantly lower than those of AGE2 and AGE3. (B) The effects of HG (22
mM), AGE3, and HG+AGES3 for 24 h on apoptosis of C2C12 cells were examined. Also, whether
IGF-I attenuates the apoptotic effects of HG+AGE3 was examined. HG did not affect the
apoptosis. AGE3 and HG+AGE3 significantly increased the apoptosis compared to Cont, HG,
and AGE3. IGF-I significantly attenuated the apoptotic effects of HG+AGE3. The results are

representative of at least three different experiments. *p < 0.05, #*p <0.01, ***p <0.001.
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Table 1

Accession no.

Gene name primers

Gapdh GTGTACATGGTTCCAGTATGAGTCC GU214026.1
AGTGAGTTGTCATATTTCTCGTGGT

MyoD GACGGCTCTCTCTGCTCCTT M84918.1
AGTAGAGAAGTGTGCGTGCT

Myogenin GCTGCCTAAAGTGGAGATCCT D90156.1
GCGCTGTGGGAGTTGCAT

Igf-1 GCTGGTGGATGCTCTTCAGTT NM 001314010.1
TCCGAATGCTGGAGCCATA

Rage GATTGGAGAGCCACTTGTGCT L33412.1

CCTTCCAAGCTTCAGTTCTTCCT




