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Existence of exceptional points for discrete

groups of isometries of the hyperbolic space

Toshihiro Nakanishi, Akira Ushijima

April 9, 2019

Abstract

It is shown by Fera that there exists uncountably many exceptional
points for cocompact Fuchsian groups. We generalise this result for cofi-
nite discrete groups of isometries of the hyperbolic space with finite sided
Dirichlet domain.

1 Introduction

Let G be a Fuchsian groups of finite covolume, or a cofinite Fuchsian groups
acting on the hyperbolic plane H2. If G is of type (g,m), the number of the
sides of the Dirichlet domains D(a) with center a ∈ H2 is at most 12g− 4m− 6.
A point a is called regular if the number of the sides of D(a) is the maximal
number 12g−4m−6 and called exceptional otherwise. It is known that a generic
point is regular [Bea83, Theorem 9.4.5]. Joseph Fera studied in [Fer14] that the
existence of exceptional points for cocompact Fuchsian groups. He showed that
the set of exceptional points is an uncountable set. We generalise this result
to cofinite Fuchsian groups. Our main theorem, Theorem 5.1, states that the
set of exceptional points is uncountable, same as Fera’s result for cocompact
Fuchsian groups. But in order to prove the theorem, we needed several different
arguments. A reason for that is there are cases which are not observed for
cocompact Fuchsian groups. For example, if G is cofinite but not cocmpact,
then, as Umemoto’s result shows (see Example 4.7), there is a case where the
Dirichlet domains D(an) for a converging sequence an to a have a common side-
pairing element f and the sides sn and f(sn) of D(an) paired by f eventually
leave any compact set including a. It is also possible that the set of points
having the same collection of side-pairing elements is unbounded, contrary to
the case of cocompact Fuchsian groups.

2 Preliminaries

2.1 Dirichlet domains for discrete groups

We prepare notation and basic facts mainly following [Rat06].
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Let Hn be an n-dimensional hyperbolic space with distance function d. Its
sphere at infinity is denoted by ∂∞Hn. For a subset A ⊂ Hn, we denote its
closure, complement and boundary of A in Hn by A, A∁ and ∂A respectively.
We also denote by Int(A) the interior of A with respect to its relative topology.
The open ball in Hn with radius r > 0 and center a ∈ Hn is denoted by
Br(a) := { x ∈ Hn | d(x, a) < r }.

Let G be a discrete group of isometries of Hn. G acts on Hn ∪ ∂∞Hn. For
a point x of Hn ∪ ∂∞Hn, G(x) = {g(x) : g ∈ G} is the G-orbit of x. G acts
discontinuously on Hn; If x ∈ Hn, then G(x) has no accumulation points in Hn.
Then the quotient space Hn/G becomes a hyperbolic orbifold with complete
hyperbolic metric induced from d. The canonical projection from Hn to Hn/G
is denoted by π. For such a group G, we define a Dirichlet domain D(a) with
respect to a point a as follows: for an isometry f on Hn, we denote by Fix(f)
a set of points in Hn ∪ ∂∞Hn fixed by f :

Fix(f) := { x ∈ Hn ∪ ∂∞Hn | f(x) = x } .

The union of such sets for all non-trivial elements in a Fuchsian group G is
denoted by FG:

FG :=
∪

g∈G−{id}

Fix(g),

where id represents the identity mapping, which is also the trivial element of
G. We denote by Hf (x) the set of points in Hn which are closer to x than f(x),
and its boundary by Lf (x):

Hf (x) := { y ∈ Hn | d(x, y) < d(f(x), y) } ,

Lf (x) := ∂Hf (x)
(
= { y ∈ Hn | d(x, y) = d(f(x), y) }

)
.

For any point a ∈ Hn −FG, let D(a) be the Dirichlet domain for G with center
a:

D(a) :=
∩

g∈G−{id}

Hg(a).

It is known that Dirichlet domains are locally finite convex fundamental domains
for G. See, for example, [Rat06, Theorem 6.6.13].

2.2 Dirichlet domains for Fuchsian groups

We consider the upper half plane model for H2. So let

H2 = {z = x+ iy : y > 0} equipped with ds2 =
dx2 + dy2

y2
.

Let d(z, w) denote the hyperbolic distance between two points z and w of H2.
Then

sinh
d(z, w)

2
=

|z − w|
2
√
Im[z]Im[w]

. (1)
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[Bea83, Theorem 7.2.1]. Let G be a discrete subgroup of orientation preserving
isometries of H2. G is called a Fuchsian group. G is called cofinite, if the area
of H2/G is finite. If G is cofinite, G is said to be of type (g,m) if (H2 − FG)/G
is a closed surface of genus g with m points deleted.

G be a Fuchsian group. We represent each element of G by a matrix in
SL(2,R). The group G acts also on ∂∞H2 = R ∪ {∞}. If G contains parabolic
elements, then for each parabolic fixed point p, let Hp(r) be the horocycle of
length e−r centered at p and let Dp(r) be the horodisk, the disk bounded by
Hp(r). They are defined as follows. By replacing G with a suitable conjugate
of it, we suppose that p = ∞ and

S =

(
1 1
0 1

)
(2)

is primitive in the sense that S generates the stabilizer

Gp = {f ∈ G|f(p) = p}

of p. Then

Hp(r) = {z| Im[z] = er}, Dp(r) = {z| Im[z] > er}.

If p = h(∞) is a parabolic fixed point equivalent to ∞, where

h =

(
a b
c d

)
∈ G

is such that ad − bc = 1 and c ̸= 0. Then Dp(r) is the Euclidean disk with
diameter |c|−2e−r tangent to the real line at p = a/c and Hp(r) is the circle
bounding Dp(r). Since |c| ≥ 1 due to he Shimizu-Leutbecher inequality [Bea83,
Theorem 5.2], if r ≥ 0, then Dp(r) is precisely invariant under Gp = {f ∈ G :
f(p) = p}, where g = hSh−1: gm(Dp(r)) = Dp(r) for all integers m and

Dp(r) ∩ f(Dp(r)) = ∅ for f ∈ G−Gp.

We have in general

Lemma 2.1. Let G be a Fuchsian group. For each parabolic fixed point p of G,
f(Dp(r)) = Df(p)(r) for any f ∈ G and r ∈ R, and if r ≥ 0 and if distinct p
and q are G-equivalent, then Dp(r) and Dq(r) are disjoint.

We consider a Dirichlet domain D(a) with center a. Let D̄(a) and D̃(a)
denote the closure of D(a) in H2 and H2 = H2 ∪ ∂∞H2, respectively. A side of
D(a) is a positive length geodesic segment of the form D̄(a) ∩ f(D̄(a)) for some
f ∈ G − {id}. A vertex of D(a) is a single point of the form D̄(a) ∩ f(D̄(a)) ∩
h(D̄(a)) for some f , h ∈ G−{id}. For each side s of D(a), there exists a unique
isometry f ∈ G such that f(s) is another side of D(a). Such an isometry is
called a side-pairing transformation of D(a). We denote by S(a) the set of all
side-paring transformations of D(a). It is shown that S(a) generates G. See, for
example, [Rat06, Theorem 6.8.3]. For side-pairing transformations, we have the
following proposition.
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Proposition 2.2 (See [Bea83, Section 9]). Let G be a Fuchsian group and
suppose that f ∈ G.

(1) Let s be a side of D(a). The side s is given by D̄(a) ∩ f(D̄(a)) if and only
if s ⊂ Lf (a).

(2) The element f is in S(a) if and only if D(a) has a side given by s = D̄(a)∩
f−1(D̄(a)).

(3) If f ∈ S(a), then f−1 ∈ S(a).

Definition 2.3 (See [Bea83, Section 9.3]). Let E denote D̃(a) ∩ ∂∞H2. A free
side of D(a) is a maximal interval in E. If a point v of E is the endpoint of
two sides of D(a), v is called a proper vertex, If v be the endpoint of a side and
free side of D(a), v is called an improper vertex. If G is cofinite, then there are
no improper vertices for any Dirichlet domain. Let v be a boundary point of
D̃(a). The cycle C of v is the intersection of G(v) with D̃(a). The number |C|
of points in C is called the length of C. Let v be a vertex of D̃(a) and C the
cycle of v. If |C| ≥ 3, v is called an accidental vertex.

For a proof of the following theorem, see [Bea83, Theorem 9.4.5].

Theorem 2.4. Let G be a Fuchsian group and let D(a) be the Dirichlet domain
with center a. Then for almost all a ∈ H2,

(1) If v is a vertex of D(a) fixed by an elliptic element of G, then its cycle has
length 1;

(2) If v is an accidental vertex of D(a) ∩H2, then its cycle has length 3;

(3) If v is an improper vertex of D(a) and not a limit point of G , then then
its cycle has length 2;

(4) If v is a proper vertex of D(a), then then its cycle has length 1 and is a
parabolic fixed point;

(5) If v is a parabolic fixed point in D̃(a), then its cycle has length 2 and is a
proper vertex.

Let N(G) be its Nielsen domain for G. This domain is the smallest non-
empty G-invariant open convex subset of H2 [Bea83, §8.5]). If G is of cofinite,
then N(G) = H2. If G is finitely generated, there are only finite G-equivalence
classes of parabolic fixed points. Hence, if r0 is sufficiently large, then Dp(r) ∩
Dq(r) = ∅ if p ̸= q and r ≥ r0. For r ≥ r0, we define

Kr(G) := N(G)−
∪

Dp(r),

where p runs over all parabolic fixed points of G. Then the set π(Kr(G)) is a
compact subset of the hyperbolic manifold H2

/
G and hence has a finite diame-

ter, say MG(r).
For each a ∈ Hn − FG, we define a bounded set in Hn, called the truncated

Dirichlet domain, as
D∗

r(a) := D(a) ∩Kr(G).
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By definition, D∗
r(a) satisfies π(Kr(G)) = π(D∗

r(a)). We remark that the center
a of D(a) is not assumed to be contained in D∗(a), for a could be in a horodisk
Dp. We also remark that D∗

r(a) = D(a) when G is cocompact. There are two
types of points in ∂D∗(a); whether it comes from the boundary of D(a) or not.
The set of points of the former type is denoted by ∂DD

∗
r(a):

∂DD
∗
r(a) := ∂D∗

r(a) ∩ ∂D(a).

Remark 2.5. Let s be a side of ∂DD
∗
r(a). Let s̃ be the extension of s to a side

of ∂D(a) and f be the side-pairing element of G which sends s̃ to another side.
Since Kr(G) is invariant under f , f(s) is also a side of ∂DD

∗
r(a).

Lemma 2.6. Let G be a cofinite Fuchsian group and let D(a) be the Dirichlet
domain with center a. Then each proper vertex of D(a) is a parabolic fixed point.

Proof. Let p be a proper vertex and be an end point of a side s of D(a). Let ζ
be a point on s. As ζ approaches p, d(ζ, a) tends to ∞. Let π : H2 → H2/G
be the natural projection. Since D(a) is a Dirichlet domain for G, d(ζ, a) is
the shortest of the lengths of arcs from π(a) to π(ζ). Hence π(ζ) tends to a
puncture of H2/G.

We assume again that S in (2) belongs G as a primitive element. Let p =
∞. By conjugating G with a translation T (z) = z + h with a suitable real
number h, we assume also that the center of a Dirichlet polygon is a = ti with
t > 0. Let t = er. In this case LS(a) = { 1/2 + iy | y > 0 } and LS−1(a) =
{ −1/2 + iy | y > 0 }. Let

A =

(
a b
c d

)
be an element of G with c ̸= 0. By the Shimizu-Leutbecher inequality |c| ≥ 1.
Since A(Dp(r)) is a horodisk with Euclidean diameter c−2e−r ≤ e−r = t−1

and A(a) is on its boundary, we have Im[A(a)] ≤ t−1. Now we assume that
t = et > 1 and choose a point z = x+ iy with y = eρ > 1 and −1/2 < x < 1/2.
Then d(z, a) < d(z, Sm(a)) for all non-zero integers m. If the distance r + ρ
between z and the horizontal line

{
x+ it−1

∣∣ −∞ < x < ∞
}
is greater than

d(a, z), then
d(a, z) < d(A(a), z) for all A ∈ G− ⟨S⟩ (3)

and hence z ∈ D(a). By (1), the inequality d(a, z) < r + ρ is equivalent to

|a− z|
2e(r+ρ)/2

<
er+ρ − 1

2e(r+ρ)/2
or

√
x2 + (y − t)2 < ty − 1.

Thus, since |x| < 1/2, if √(
1

2

)2

+ (t− y)2 < ty − 1,
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and thus, if z satisfies

y >

√
t2 − 3

4√
t2 − 1

,

then (3) holds. The right-hand side of this inequality is decreasing for t > 1.
So, if a = ti ∈ Dp(1/2), and z = x+ iy with |x| < 1/2 satisfies

y >

√
e− 3

4√
e− 1

,

then z ∈ D(a). Let

C0 =

√
e− 3

4√
e− 1

= 1.07028 · · · < e1/2.

We conclude that if a = eri satisfies er > e1/2, then

Dp(1/2) ∩
{
z = x+ iy

∣∣∣∣ |x| < 1

2

}
⊂

{
z = x+ iy

∣∣∣∣ |x| < 1

2
, y > C0

}
⊂ D(a).

Lemma 2.7. Let G be a Fuchsan group and a ∈ H2. If a ∈ D(a)∩Dp(1/2) for
a parabolic fixed point p of G. Then D(a)∩Dp(1/2) consists of two sides paired
by S. Moreover, if r ≥ 1/2 and a ∈ Dp(r), then the distance form a to D∗

r(a) is
the distance from a to Hp(r).

3 Hausdorff convergence of the boundary of trun-
cated Dirichlet domains

We fix a large positive number r0 > 1/2 and consider truncated Dirichlet
domains in Kr0(G). We shall omit the subscript r0 throughout this section.
Though the following fact may be well-known, we will provide its proof in this
section:

Theorem 3.1 (See [Fer14, Proposition 2.6]). Let G be a cofinite Fuchsian group.
If a sequence of points {an}n∈N in H2 − FG has the limit a ∈ H2 − FG with
respect to the distance d, then a sequence of sets {∂DD∗(an)}n∈N converges to a
set ∂DD

∗(a) in the sense of Hausdorff topology.

To prove this fact, we first prove the following lemma, which will be the key
ingredient to prove not only Theorem 3.1 but also Lemma 4.5. We fix a positive
number r0 > 1/2 and consider truncated Dirichlet domains in Kr0(G)

Lemma 3.2. Let G be a cofinite Fuchsian group. Let {an}n∈N be a sequence
of points in H2 − FG with limit a ∈ H2 − FG with respect to the distance d. Let
{bn}n∈N be a sequence of points in H2 with bn ∈ ∂DD

∗(an) for any n ∈ N. Let
B be the set of accumulation points of {bn}n∈N. Then the following holds:
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(i) The set B is non-empty and contained in ∂DD
∗(a).

(ii) For any b ∈ B, there are an element f ∈ G and a subsequence
{
bnj

}
j∈N

converging to b such that both f ∈ S(anj ) and bnj ∈ ∂DD
∗(anj ) ∩ Lf (anj )

hold for any j ∈ N.

Proof. We first see the non-emptyness of B, which is mentioned in (i). Finding
a compact subset in H2 containing the sequence {bn}n∈N is enough to prove it,
for H2 is a metric space. Since an converges to a, by dropping a finite number
of terms, we may assume that d(a, an) < 1/2. Let r be the hyperbolic distance
between a and D∗(a). If r > 0, then a is in the horodisk Dp = Dp(r0) for a
parabolic fixed point p. By Lemma 2.7, r is the distance from a to Hp = ∂Dp.
Likewise, if the distance rn between an and D∗(an) is positive, then rn is the
distance from an to Hp. Therefore we have rn < r + 1/2. This inequality also
holds when r = 0. Let M = MG + r + 1. Since

bn ∈ D∗(an) ⊂ BMG+r+1/2(an) ⊂ BMG+r+1(a) (4)

for any n ∈ N, The desired compact set can be taken as BM (a).
Before proving the remaining part of (i), we prove (ii). For b ∈ B, there is

a subsequence
{
bnj

}
j∈N such that limj→∞ bnj = b. Since bnj ∈ ∂DD

∗(anj ), we

can find a side-pairing element fj ∈ S(anj ) which sends bnj to a point f(bnj ) in
∂DD

∗(anj ). See Remark 2.5. So, we have d(bnj , f(bnj )) ≤ MG. From (4)

d(a, fj(a)) ≤ d(a, bnj ) + d(bnj , fj(bnj )) + d(fj(a), fj(bnj )) ≤ 2M +MG.

Since G is discrete, by replacing {nj} with a suitable subsequence, we can find
an element f ∈ G such that, f = fj and bnj ∈ ∂DD

∗(anj ) ∩ Lf (anj ) for all j.
We finally prove the remining part of (i): B ⊂ ∂DD

∗(a). For a chosen b ∈ B,
let f ∈ S(ani

) and a subsequence {bni
}i∈N of {b}n∈N satisfying (ii). We first

have b ∈ Lf (a) by the following calculation:

d(a, b) = lim
i→∞

d(ani , bni)

= lim
i→∞

d(f(ani), bni)

= d(f(a), b).

We next see that b ∈ ∂D(a), i.e., f ∈ S(a). As we have seen in (ii), we have
bni ∈ ∂DD

∗(ani)∩Lf (ani) for any i ∈ N. So we have d(ani , bni) ≤ d(g(ani), bni)
for any g ∈ G. Take the limits of the both sides and we have d(a, b) ≤ d(g(a), b)
for any g ∈ G, i.e., b ∈ D(a). So we have b ∈ D̄(a) ∩ Lf (a) ⊂ ∂D(a).

Finally we prove that b ∈ ∂DD
∗(a). Since π(bni

) ∈ π(K(G)) and since
π(K(G)) is compact, we have π(b) ∈ π(K(G)). Since K(G)∩ ∂D(a) = ∂DD

∗(a),
we have b ∈ ∂DD

∗(a).

Proof of Theorem 3.1. By the definition of Hausdorff topology, all we need to
prove is that, for any chosen ε > 0, there exists some N ∈ N such that the
following hold for any n ≥ N :
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(1) Bε(b) ∩ ∂DD
∗(a) ̸= ∅ for any b ∈ ∂DD

∗(an), and

(2) Bε(b) ∩ ∂DD
∗(an) ̸= ∅ for any b ∈ ∂DD

∗(a).

Both of them will be proved by contradiction. We remark that the previous
lemma is used only in the proof of (1), but not in the proof of (2).

In order to prove (1), we assume that there exists some ε > 0 such that, for
any N ∈ N, there exist n ≥ N and bn ∈ ∂DD

∗(an) satisfying Bε(bn)∩∂DD∗(a) =
∅, and find a contradiction. Lemma 3.2(i) provides an accumulation point b of
{bn}n∈N with b ∈ ∂DD

∗(a). This is a contradiction for a large n such that
d(b, bn) < ε.

In order to prove (2), we assume that there exists some ε > 0 such that, for
any N ∈ N, there exist n ≥ N and bn ∈ ∂DD

∗(a) satisfying

Bε(bn) ∩ ∂DD
∗(an) = ∅. (5)

Since ∂DD
∗(a) is compact, by passing to a subsequence, we can assume that

the sequence bn converges to a point b in ∂DD
∗(a). We can assume also that

d(b, bn) < ϵ/2 holds for all n. Since

d(ζ, b) ≥ d(ζ, bn)− d(bn, b) > ϵ/2,

for all ζ ∈ ∂DD
∗(an), ∂DD

∗(an) ⊂ Bε/2(b)
∁
. Since ∂DD

∗(a) is a polygon with
finitely many sides, there is an interior point b′ of a side of ∂DD

∗(a) with
d(b, b′) < ϵ/4. We replace b by b′ and ε by a smaller number < ε/4 so that
Bε(b) is in the interior of K(G) and disjoint from ∂DD

∗(an) for all n. This
condition implies also that Bε(b) is disjoint from ∂D(an). By passing to a sub-
sequence, if necessary, we assume that either

(1) Bε(b) ⊂ D(an) for all n, or

(2) Bε(b) ⊂ D(an)
∁
for all n.

If Case (1) occurs, for all p ∈ Bε(b) and f ∈ G − {id}, we have d(p, an) <
d(p, f(an)) and then, by taking the limit, d(p, a) ≤ d(p, f(a)). Hence, Bε(b) ⊂
D(an). This contradicts that b ∈ ∂DD

∗(a). If Case (2) occurs, for all p ∈ Bε(b),
there is an fn ∈ G− {id} such that d(p, an) > d(p, fn(an)). Then

d(p, fn(a)) ≤ d(p, fn(an)) + d(fn(an), fn(a))

≤ d(p, an) + d(an, a) < d(p, a) + 2d(a, an),

hence d(p, fn(a)) is bounded. So, there is an f ∈ G − {id} such that f = fn
for infinitely many n. By taking the limit in d(p, an) > d(p, f(an)), we have

d(p, a) ≥ d(p, f(a)). Thus Bε(b) ⊂ D(a)
∁
. This contradicts also that b ∈

∂DD
∗(a).
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4 Openness of the set of regular points

In this section, we establixh Propositions 3.1 and 3.3 of Fera’s paper [Fer14] for
cofinite Fuchsian groups. Let G be a cofinite Fuchsian group of type (g,m). The
number of side-pairing elements of the Dirichlet domain centered at p satisfies

4g + 2m− 2 ≤ |S(p)| ≤ 12g + 4m− 6.

See [Bea83, Theorem 10.5.1]. Let SG denote the maximum number 12g+4m−6.

Definition 4.1. For a cofinite Fuchsian group G, a point p ∈ H2 − FG is said
to be regular if |S(p)| = SG, and exceptional otherwise.

The sets of regular points and exceptional points are denoted as follows:

Reg(G) :=
{
p ∈ H2

∣∣ p is regular
}
, Exp(G) :=

{
p ∈ H2

∣∣ p is exceptional
}
.

These sets together with FG disjointly decompose H2. We also define the set of
points having the same side paring transformations of given D(a) by PS(a):

PS(a) :=
{
p ∈ H2

∣∣ S(p) = S(a)
}
.

It is easily observed that PS(a) = PS(b) if b ∈ PS(a).

Remark 4.2. Let G be a cofinite Fuchsian group of type (g,m) and a ∈ H2. By
the proof of Theorem 10.5.1 of [Bea83], the Dirichlet domain D(a) has SG =
12g+4m−6 sides if and only if all cycles of parabolic and elliptic fixed points on
the vertices of D(a) have length 1 and all accidental cycles have length 3. Then,
by Theorem 2.4, Exp(G) has measure 0, which implies that a generic point of
H2 is a regular point. The idea of regular points is generalized to the case for
Kleinian groups, that is, discrete groups of orientation-preserving isometries of
H3 in [JM86]. Though they tried to show that the set of regular points is full
measure in H3, the proof has not been completed. See [DU09, §1] for more
detail.

The main result in this section is the following theorem, which will be used
to prove Theorem 5.1:

Theorem 4.3 (See [Fer14, Proposition 3.3]). For a cofinite Fuchsian group G
and a point a ∈ Reg(G), the set PS(a) is open in H2.

An immediate corollary, which will not be used to prove Theorem 5.1, is the
openness of Reg(G), since it is the union of such PS(p).

Corollary 4.4 (See also [Nää85, Corollary 2.1] and [Fer14, Theorem 3.4]). For
a cofinite Fuchsian group G, the set Reg(G) is open in Hn.

Our proof of Theorem 4.3 is based on a series of lemmata, which are prepared
from now on.

Lemma 4.5 (See [Fer14, Proof of Proposition 3.1]). For a cofinite Fuchsian G
and any sequence of points {an}n∈N in H2 − FG with limit a ∈ H2 − FG has a
subsequence {ani}i∈N such that S(a) ⊂

∩
i∈N S(ani).

9



The ingredients of the proof are Lemma 3.2(ii) and Theorem 3.1(2).

Proof. Since G is cofinite, D(a) has finitely many sides and by Lemma 2.6, every
ideal vertex is a parabolic fixed point. Therefore, we can choose a large r such
that each ideal vertex p of D(a) has the following properties:

(1) ∂D(a) meets Dp(r) in two sides both ending at p;

(2) Hp(r) = ∂Dp cuts the above two sides in their interior points.

Let ∂DD
∗(a) = D(a)∩Kr(G). Let f ∈ S(a) be a side-pairing element. There is

a side s ⊂ ∂D(a) such that s = D̄(a) ∩ f(D(a)) ⊂ Lf (a). For this s, choose any
b ∈ Int(s)∩∂DD∗(a). For this b, Theorem 3.1(2) provides a point bn ∈ ∂DD

∗(an)
for each n ∈ N such that limn→∞ bn = b in Hn. Apply Lemma 3.2(ii) to b, and
we can find a subsequence {bni}i∈N and h ∈

∩
i∈N S(ani) such that bni ∈ Lh(ani).

In order to see that the subsequence {ani}i∈N is the desired one, it is enough
to show that h = f , and it is done as follows: Since bni ∈ Lh(ani), by the
continuity of the bisector, we have b ∈ Lh(a). Since b ∈ s, we also have b ∈ Lf (a).
So we have b ∈ Lf (a)∩Lh(a). Since b is taken from Int(s), it cannot be a vertex
of D(a). So, by the uniqueness of the side paring transformation, we have
Lf (a) = Lh(a), which implies f = h. Since |S(a)| is finite, by repeating this
argument we obtain a desired subsequence {ani}.

Lemma 4.6 (See [Fer14, Proposition 3.1]). For a cofinite Fuchsian group G
and a point a ∈ H2 − FG, there is an open neighbourhood U ⊂ H2 − FG of a
such that S(a) ⊂ S(u) for any u ∈ U .

Proof. We prove this lemma by contradiction. So we assume that there are
some a ∈ H2 − FG and f ∈ S(a) such that, for any open neighborhood U of
a, there is some u ∈ U with f ̸∈ S(u). Since FG is a discrete set of points,
there is a positive number n0 such that B1/n0

(a)∩FG = ∅. Then we can find a
point an ∈ B1/n(a) for all n > n0 such that f ̸∈

∩
n>n0

S(an), which contradicts

Lemma 4.5. So there is an open neighborhood Uf ⊂ H2 − FG of a such that
f ∈ S(u) for all u ∈ Uf . Since S(a) is a finite set, U =

∩
f∈S(a) Uf is a desired

neighborhood of a.

Proof of Theorem 4.3. Let U be an open neighborhood of a obtained in Lemma
4.6. We show that U ⊂ PS(a). For any u ∈ U , the inclusion S(a) ⊂ S(u) comes
from the definition of U . Thus |S(p)| ≤ |S(u)|. Since a ∈ Reg(G), SG = |S(p)|
is the maximal number of sides. Now we conclude S(u) = S(a).

Example 4.7. [Ume, Theorem 24]. Let △ be the ideal triangle bounded by
m1 = {z : |z| = 1}, m2 = {z : Re[z] = 1} and m3 = {z : Re[z] = −1}. Let Ri

be the reflection in mi for i = 1, 2, 3. We define

T1 = R1R3 =

(
2 −1
1 0

)
, T2 = R2R1 =

(
0 −1
1 0

)
, T3 = T1T2 =

(
−1 −4
0 −1

)
.
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Let G be the group generated by T1 and T2. If a is an interior point of △,
then the Dirichlet domain D(a) for G is the geodesic hexagon bounded by the
bisection lines

LT±1
1

(a), LT±1
2

(a), LT±1
3

(a)

and S(a) = {T±1
1 , T±1

2 , T±1
3 }. D(a) includes △ as a proper subdomain. How-

ever, D(i) equals the quadrilateral △∪m1 ∪R1(△) and S(i) = {T±1
1 , T±

2 }. So
T3 belongs to S(a) for any a ∈ △ but not to S(i). The two sides of D(a) which
are paired by T3 leave any compact subset of H2 as a approaches i from the
inside of △. Theorem 24 of [Ume] shows that PS(a) = △ for all a ∈ △, and
hence PS(a) is unbounded. We remark that PS(a) is bounded for all a ∈ H2 if
G is a cocompact Fuchsian group. See [Fer14, Thereom 4.2].

5 Existence of exceptional points

Let G be a cofinite Fuchsian group. Theorem 2.4 says that Reg(G) is full-
measure inH2, or equivalently that Exp(G) has measure zero. We should remark
here that this fact does not tell us whether the set Exp(G) is empty or not. For
cocompact Fuchsian groups G, Fera showed in [Fer14, Theorem 4.3] that Exp(G)
is non-empty and moreover is an uncountable set. We provide a generalization
of this result to cofinie Fuchsian groups.

Theorem 5.1 (See [Fer14, Theorem 4.3]). For a cofinite Fuchsian G, the set
Exp(G) contains uncountably many points.

As is mentioned in Remark 4.2, the non-emptyness of Reg(G) is not sure for
discrete groups of isometries in Hn for n ≥ 3.

From now on, we choose the unit disc model D = {z ∈ C : |z| < 1} of
H2. Let S = ∂D be the unit circle. A point ξ ∈ S is a transitive limit point
(or Myrberg point) of G if the projection to unit tangent bundle of the surface
D/G of the unit tangent field along a geodesic ray from any point z ∈ D to ξ
is dense. (Hence the projections to the surface D/G of all geodesic rays ending
at ξ is dense.) Let EG denote the set of all transitive limit points of G. If G is
cofinite (or if, more generally, G is of divergence type), the measure of EG is 2π
[Shimada60].

Proof of Theorem 5.1. By replacing G by a suitable conjugate of it, we assume
that 0 is a regular point for G. Let EG denote the set of transitive limit points
of G. Then EG is an uncountable set. Let ξ be an arbitrary point of EG and
L(ξ) = {tξ : 0 ≤ t < 1}.

We shall show there exists an exceptional point in L(ξ). We suppose to the
contrary that L(ξ) ⊂ Reg(G). Since 0 is a regular point, L(ξ) ∩ PS(0) is an
open subset of L(ξ). We assume that L(ξ) ⊂ PS(0). Let π : D → D/G be the
natural projection. Since ξ is a transitive limit point, π(L(ξ)) visits the open set
π(PS(0)) infinitely many times. So, there exist a sequence ζn = tnξ with tn → 1
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as n → ∞ and a sequence of distinct elements hn ∈ G such that ζn ∈ hn(PS(0)).
Since

ζn ∈ PS(0) ∩ hn(PS(0)),

and hn(D(0)) is the Dirichlet domain with center hn(0), we have

S(0) = S(hn(0)) = {hnfh
−1
n : f ∈ S(0)}.

Let S(0) = {f1, f2, ..., fN}, N = SG. Then

S(hn(0)) = {hnf1h
−1
n , hnf2h

−1
n , ..., hnfNh−1

n }.

By passing to a subsequence, we can find a permutation σ of {1, 2, ..., N} such
that hnfih

−1
n = fσ(i) for 1, 2, ..., N . Then

hnfih
−1
n = hn+1fih

−1
n+1.

Since S(0) generates G, this means that h−1
n+1hn commutes with all elements

of G. Since G is non-elementary, h−1
n+1hn = id, and hence hn = hn+1. This is

a contradiction. We conclude that there is a point a ∈ L(ξ) − PS(0). By our
assumption, L(ξ) ⊂ Reg(G). Then, by Theorem 5.1, L(ξ) can be covered more
than one disjoint open sets of the form PS(b). However, this contradicts the
connectivity of L(ξ). Therefore there is an exceptional point on L(ξ) for each
ξ ∈ EG.
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