

Title

Aerobic Oxidative C-H Azolation of Indoles and One-Pot Synthesis of Azolyl Thioindoles by Flavin-Iodine-Coupled Organocatalysis

Author(s) Kazumasa Tanimoto, Hayaki Okai, Marina Oka, Ryoma Ohkado, Hiroki Iida

Journal Organic letters 23(6):2084-2088

Published 2021 Mar 19

URL https://pubs.acs.org/doi/10.1021/acs.orglett.1c00241

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

Aerobic Oxidative C-H Azolation of Indoles and One-Pot Synthesis of Azolyl Thioindoles by Flavin–Iodine-Coupled Organocatalysis

Kazumasa Tanimoto, Hayaki Okai, Marina Oka, Ryoma Ohkado, and Hiroki Iida*

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.

Supporting Information Placeholder

ABSTRACT: The aerobic oxidative cross-coupling of indoles with azoles driven by flavin-iodine-coupled organocatalysis has been developed for the green synthesis of 2-(azol-1-yl)indoles. The coupled organocatalytic system enabled the one-pot three-component synthesis of 2-azolyl-3-thioindoles from indoles, azoles, and thiols in an atom-economical manner by utilizing molecular oxygen as the only sacrificial reagent.

The indole ring system is the most ubiquitous heterocycle in nature and is also the most potent pharmacophore that is found in a range of natural products.¹ Thus, considerable efforts have been made toward the development of methodologies for the efficient preparation and functionalization of indole derivatives.² Among the indole derivatives, 2-(azol-1-yl)indoles are found in biologically and pharmaceutically active compounds such as celogentin C³ and potent anti-cancer agents I, ⁴ II, ⁵ and III⁶ (Figure 1). The direct C-N bond formation of nonactivated simple indoles and azoles is an atom-economical approach to access 2-(azol-1-yl)indoles; however, the oxidative cross-coupling of indoles and azoles to form 2-(azol-1-yl)indoles has been rarely reported. Although a number of the metal-catalyzed oxidative coupling of indoles and azoles has been developed, the C-C bond formation have been performed rather than the C-N bond formation.^{2a,c-e}

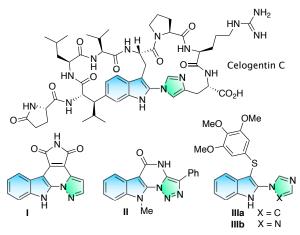
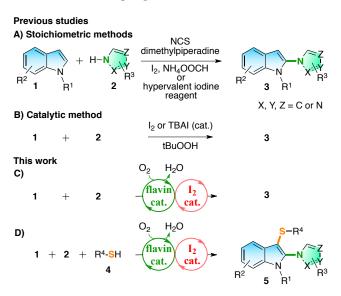
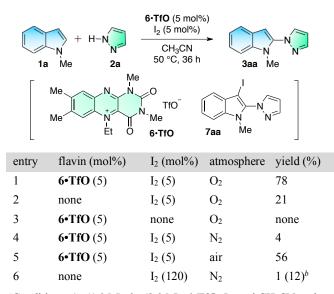



Figure 1. Structures of biologically active 2-(azol-1-yl)indoles.

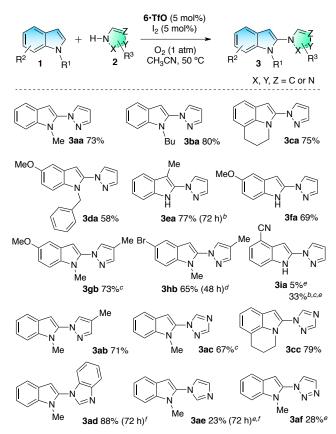
The stoichiometric cross-coupling reactions were performed using an excess amount of oxidant and base such as NCS/1,4dimethylpiperazine^{7,8} and I₂/NH₄OOCH (Scheme 1A).⁹ Hypervalent iodine reagents efficiently promoted the oxidative C-N coupling reaction.¹⁰ There is only one approach on the efficient catalytic azolation; in this reaction, the iodine-catalyzed system required a stoichiometric amount of *tert*-butylhydroperoxide (TBHP) as a terminal oxidant (Scheme 1B).¹¹ Nicewicz and coworkers demonstrated the photocatalytic aerobic C-H azolation of diverse aryl and heteroaryl compounds, including indoles. However, indoles hardly reacted, resulting in poor yields (up to 12%).¹²


Scheme 1. (A and B) Previous and (C and D) present methods for the cross-coupling of 1 with 2.

Green aerobic systems have drawn considerable attention because molecular oxygen (O_2) utilized in these systems is an ideal oxidant with many advantages such as sustainable abundance, safety, cost-effectiveness, atom-economy, and minimal pollution.^{2e, 13} Flavin catalysts, which are prepared by mimicking the function of flavin-dependent monooxygenase,¹⁴ have attracted significant interest because of its biomimetic organocatalytic ability to activate O2.^{15,16} Inspired by the aerobic system of the flavoenzymes, we recently developed a novel strategy for green, oxidative transformations by combining the flavin catalyst and iodine catalyst.^{17,18} The flavin-iodine-coupled organocatalytic system successfully promoted the aerobic oxidative sulfenylation of indole analogues¹⁹ and imidazo[1,2-a]pyridine ring formation²⁰ under metal-free conditions. In these reactions, the flavin catalyst activated O₂ through electron transfer from the coupled iodine catalyst, thereby allowing a green oxidative coupling reaction with O_2 (1 atm or air). O_2 was the only sacrificial reagent, and no other oxidizing or reducing agents were required for these reactions. Based on this coupled organocatalysis, in this study, we developed the first efficient method for the aerobic cross-coupling of indoles 1 and azoles 2 through the catalytic C-H activation of 1 (Scheme 1C). Moreover, the C-H azolation reaction was coupled with the previously developed sulfenylation reaction, allowing the one-pot three-component synthesis of 2-(azol-1-yl)-3-thioindoles 5 from 1, 2, and thiols 4 (Scheme 1D).

First, we examined the cross-coupling reaction of 1-methylindole (1a) with pyrazole (2a) in the presence of a range of flavin catalysts and iodine sources in diverse solvents under an O_2 atmosphere (Tables S1 and S2). The desired compound, 2-azolylindole **3aa**, was selectively obtained in 78% yield when

Table 1. Synthesis of 3aa via cross-coupling of 1a with 2a^a

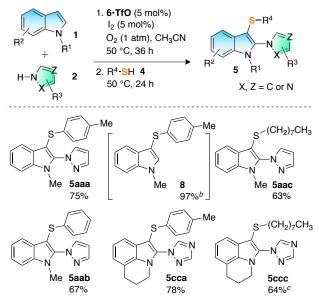


^{*a*}Conditions: **1a** (1.0 M), **2a** (2.0 M), **6•TfO**, I₂, and CH₃CN under O₂, N₂, or air (1 atm, balloon) at 50 °C. Yield was determined by ¹H NMR or GC measurements with 1,1,2,2-tetrachloroethane or triethylene glycol dimethyl ether as an internal standard. ^{*b*}3-Iodo adduct **7aa** was formed.

riboflavin-derived alloxazinium salt **6**·**TfO**²¹ (5 mol %) and I₂ (5 mol %) were used as the catalysts under an O₂ (1 atm, balloon) atmosphere in CH₃CN at 50 °C (entry 1, Table 1). In the absence of **6**·**TfO**, the yield of **3aa** decreased to 21%, suggesting that the flavin-catalyzed O₂ activation played an important role in the progress of this reaction (entry 2). I₂ and O₂ were necessary for the catalytic transformation to **3aa** (entries 3 and 4). When air (1 atm, balloon) was used as the oxidant, the yield was reasonably lower (56%) than that under O₂ (entry 5). When a stoichiometric amount of I₂ was used in the absence of **6**·**TfO** and O₂, the desired product **3aa** was hardly obtained; instead, the corresponding 3-iodo adduct **7aa** was formed in 12% yield (entry 6).

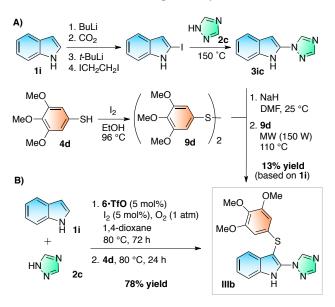
With the optimized reaction conditions in hand, we examined the substrate scope and limitations of this cross-coupling reaction (Scheme 2). A series of indoles bearing alkyl substituents at the N1 position (**1a-d**) successfully reacted with **2a** to give the corresponding products **3aa–3da** in 58–80% yields.

Scheme 2. Substrate Scope of Flavin–Iodine-Catalyzed Aerobic Oxidative Cross-Coupling of 1 with 2.^{*a*}


^aConditions: **1** (1 M), **2** (2 M), **6•TfO** (5 mol%), and I₂ (5 mol%) in CH₃CN under O₂ (1 atm, balloon) atmosphere at 50 °C for 36 h. ^b1,4-Dioxane was used as the solvent. ^{c4} equiv. of **2** was used. ^d25 mol% of I₂ was used. ^eDetermined by ¹H NMR measurement. ^f**1** (4 M), **2** (1 M), **6•TfO** (5 mol%), and I₂ (5 mol%) in 1,4-dioxane under O₂ (1 atm) atmosphere at 80 °C for 72 h.

To our delight, the coupling reactions of indoles that were not substituted at the N1 positions (1e and 1f) with 2a also proceeded smoothly to produce 3ea and 3fa. The presence of substituents at the C3 (1e), C5 (1d, f), and C7 (1c) positions of the indole ring did not prevent the azolation reaction. Electron-rich indole 1g and electron-deficient indole 1h gave the desired products (3gb and 3hb) in 73% and 65% yields, respectively, although a relatively higher amount of 2 or I_2 was required. Indole bearing cyano group 1i gave the corresponding product 3ia in poor yields, suggested that the electron-deficient indoles were relatively less active for the present azolation. The use of substituted pyrazole **2b**, 1,2,4-triazole (**2c**), and benzimidazole (2d) as the azole reagent for this cross-coupling reaction afforded 3ab, 3ac, 3cc, and 3ad, respectively. However, the reactivity of 2d was relatively low, because of which 4 equiv of 1a and a higher temperature (80 °C) were needed for the coupling reaction to reach completion. In contrast to 2a, 2c, and 2d, whose pK_a values are 2.5, ^{22a} 2.2, ^{22a} and 5.3, ^{22b} respectively, relatively basic and acidic azoles such as imidazole (2e, $pK_a =$ $(7.0)^{22a}$ and (1,2,3-triazole) (2f, $pK_a = 1.2)^{22a}$ were not effective for the coupling with **1a**, as apparent from the poor yields of the corresponding products 3ae and 3af.

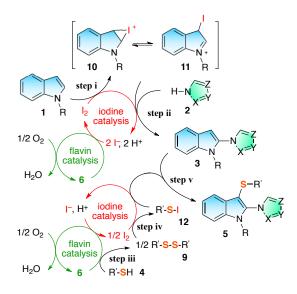
Based on the results of the aerobic C-N bond formation, we explored the one-pot three-component synthesis of 2-(azol-1yl)-3-thioindoles 5. The aerobic one-pot, multistep, and multicomponent reaction will be an atom- and step-economical strategy to meet the acute demands of green and sustainable chemistry. Development of O2-mediated multistep reactions is one of the most rewarding challenges in synthetic organic chemistry. However, this often suffers from the low selectivity of the aerobic process. Previously, we demonstrated a green and efficient method for the direct aerobic oxidative sulfenvlation of 1 with 4, in which the aerobic oxidation of 4 and the following aerobic oxidative sulfenylation of 1 were selectively promoted under mild conditions via flavin-iodine coupled catalysis.^{19a} Consequently, we expected that the present aerobic oxidative azolation of 1 with 2 would proceed in the same time as the previous aerobic sulfenvlation with 4, thus the target biofunctionalized indole 5 would be produced via the three-component coupling reaction of 1, 2, and 4 (Scheme 1D).²³ We first attempted the reaction of 1a, 2a, and 4a in the presence of 6•TfO and I₂; only 3-sulfenylated indole 8 was obtained in 97% yield, without the generation of bifunctionalized indole 5aaa (Scheme 3). This suggested that the 2-azolation reaction was relatively slower than the 3-sulfenylation reaction, and there was no azolation after sulfenylation. Therefore, we carried out the one-pot bifunctionalization reaction in a sequential manner-the azolation of 1 with 2 was performed first, following which sulfenylation was performed by adding 4 into the reaction mixture. Consequently, a series of compound 5 was obtained in 63-78% yield via the three-component reaction of 1, 2, and 4. To the best of our knowledge, this is the first example of the direct one-pot synthesis of 5 from simple compounds 1, 2, and 4. This would provide a novel green way to readily access diverse compound 5. which are of biological and pharmacological importance. For example, the potent anti-cancer agent IIIb has been prepared by the inefficient multistep reaction through the chemoselective iodination and azolation of 1i with 2c, followed by the microwave-assisted sulfenylation with 9d, which was prepared by the


stoichiometric oxidation of **4d**, thus generating copious amounts of wastes (Scheme 4A).^{6,24} In sharp contrast,

Scheme 3. One-Pot Three-Component Synthesis of 5.^a

^aConditions: A mixture of **1** (1 M), **2** (2 M), **6**•**TfO** (5 mol%), and I₂ (5 mol %) in CH₃CN was stirred under O₂ (1 atm, balloon) atmosphere at 50 °C for 36 h, following which **4** (1.2 M) was added, and the mixture was stirred at 50 °C for 24 h. ^bCondition: A mixture of **1** (1 M), **2** (2 M), **4** (1.2 M), **6**•**TfO** (5 mol%), and I₂ (5 mol%) in CH₃CN was stirred under O₂ (1 atm, balloon) atmosphere at 50 °C for 36 h. The yield was determined by ¹H NMR measurement. ^cStirred for 48 h before the addition of **4**.

Scheme 4. (A) Conventional Multi-Step Synthesis and (B) Present One-Pot Three-Component Synthesis of IIIb.



the present flavin-iodine-catalyzed three-component reaction of **1i**, **2c**, and **4d** afforded the desired compound **IIIb** in 78% yield through a one-pot reaction, generating only water as the sole waste (Scheme 4B). This clearly established the merit of the present green method.

Based on the experimental results and relevant literature, a plausible mechanism of the present dual catalytic system is proposed in Scheme 5. Initially, the reaction of nucleophilic 1 with I_2 affords corresponding iodonium 10 and 3-iodo iminium 11, which are electrophilically activated (step i).9,11a Then, the nucleophilic attack of 2 at the C2 positions of 10 and 11 and the following elimination of H⁺ and I⁻ afford the 2-azolated product **3** (step ii). The generated H^+ and I^- are efficiently converted to I_2 and water by the flavin **6**-catalyzed-aerobic oxidation.¹⁷ Furthermore, in the presence of 4, flavin catalysis promotes the aerobic oxidation of 4 to 9 (step iii), which readily reacts with I₂ to give sulfenyl iodide 12 (step iv).¹⁹ Reactive intermediate 12 undergoes nucleophilic attack by 3, producing the 3-sulfenylated product 5 along with H^+ and I^- (step v), which are converted to I₂ and water by the aerobic flavin catalysis. Therefore, the bifunctionalization of 1 with 2 and 4 gives 5 through the aerobic oxidative C-N, S-S, and C-S bond formations, and the entire reaction proceeds in a highly atom-economical manner by the consumption of only O₂.

In conclusion, we performed the first efficient aerobic synthesis of **3** from simple compounds **1** and **2** via a metal-free, flavin– iodine-catalyzed reaction. Moreover, combination of the flavin–iodine-catalyzed aerobic oxidative azolation with sulfenylation readily afforded bifunctionalized compound **5** from the corresponding simple components **1**, **2**, and **4** via the one pot multi-step reaction that involved oxidative C-N, S-S, and C-S bond formations. Owing to the coupled flavin–iodine catalysis, the present reaction required only O_2 , which does not pose any risk of pollution, and generated environmentally benign water

Scheme 5. Plausible Mechanism for the Catalytic Synthesis of 3 and 5.

as the sole waste, thus establishing this reaction to be an atomeconomical strategy. The present findings will provide novel paradigm for green transformations and one-pot multi-step synthesis using O_2 .

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures and characterization data for known and new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

* E-mail: iida@riko.shimane-u.ac.jp

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported in part by JSPS/MEXT KAKENHI (Grant-in-Aid for Scientific Research (C), 19K05617) and the Electric Technology Research Foundation of Chugoku.

REFERENCES

(1) (a) Sundberg, R., *Indoles*. Academic Press: London, 1996; (b) Sharma, V.; Kumar, P.; Pathak, D. *J. Heterocycl. Chem.* **2010**, *47*, 491-502; (c) Sravanthi, T. V.; Manju, S. L. *Eur. J. Pharm. Sci.* **2016**, *91*, 1-10.

(2) (a) Cacchi, S.; Fabrizi, G. *Chem. Rev.* **2005**, *105*, 2873-2920; (b) Humphrey, G. R.; Kuethe, J. T. *Chem. Rev.* **2006**, *106*, 2875-2911; (c) Bandini, M.; Eichholzer, A. *Angew. Chem., Int. Ed.* **2009**, *48*, 9608-9644; (d) Shiri, M. *Chem. Rev.* **2012**, *112*, 3508-3549; (e) Liu, S.; Zhao, F.; Chen, X.; Deng, G.-J.; Huang, H. *Adv. Synth. Catal.* **2020**, *362*, 3795-3823.

(3) (a) Kobayashi, J. i.; Suzuki, H.; Shimbo, K.; Takeya, K.; Morita, H. *J. Org. Chem.* **2001**, *66*, 6626-6633; (b) Ma, B.; Banerjee, B.; Litvinov, D. N.; He, L.; Castle, S. L. *J. Am. Chem. Soc.* **2010**, *132*, 1159-1171.

(4) (a) Deslandes, S.; Chassaing, S.; Delfourne, E. *Tetrahedron Lett.* **2010**, *51*, 5640-5642; (b) Deslandes, S.; Lamoral-Theys, D.; Frongia, C.; Chassaing, S.; Bruyère, C.; Lozach, O.; Meijer, L.; Ducommun, B.; Kiss, R.; Delfourne, E. *Eur. J. Med. Chem.* **2012**, *54*, 626-636.

(5) Lauria, A.; Patella, C.; Dattolo, G.; Almerico, A. M. J. Med. Chem. **2008**, *51*, 2037-2046.

(6) La Regina, G.; Bai, R.; Rensen, W. M.; Di Cesare, E.; Coluccia, A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Da Pozzo, E.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M. L.; Santoni, A.; Li, J.; Miranda Cona, M.; Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. *J. Med. Chem.* **2013**, *56*, 123-149.

(7) He, L.; Yang, L.; Castle, S. L. Org. Lett. 2006, 8, 1165-1168.

(8) This NCS-mediated method was successfully applied to the total synthesis of Celogentin C, see: Ma, B.; Litvinov, D. N.; He, L.; Banerjee, B.; Castle, S. L. *Angew. Chem. Int. Ed.* **2009**, *48*, 6104-6107 and ref 3b.

(9) Wu, W.-B.; Huang, J.-M. Org. Lett. 2012, 14, 5832-5835.

(10) (a) Morimoto, K.; Ohnishi, Y.; Nakamura, A.; Sakamoto, K.; Dohi, T.; Kita, Y. *Asian – J. Org. Chem.* **2014**, *3*, 382-386.; (b) Morimoto, K.; Ogawa, R.; Koseki, D.; Takahashi, Y.; Dohi, T.; Kita, Y. *Chem. Pharm. Bull.* **2015**, *63*, 819-824.

(11) (a) Beukeaw, D.; Udomsasporn, K.; Yotphan, S. J. Org. Chem. **2015**, *80*, 3447-3454; (b) Aruri, H.; Singh, U.; Kumar, M.; Sharma, S.; Aithagani, S. K.; Gupta, V. K.; Mignani, S.; Vishwakarma, R. A.; Singh, P. P. J. Org. Chem. **2017**, *82*, 1000-1012.

(12) Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 11288-11299.

(13) (a) Hill, C. L. *Nature* **1999**, *401*, 436-437; (b) Simándi, L. I., *Advances in Catalytic Activation of Dioxygen by Metal Complexes.* Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; (c) *Green Oxidation in Organic Synthesis.* John Wiley & Sons2019.

(14) (a) Murahashi, S.-I.; Oda, T.; Masui, Y. J. Am. Chem. Soc. **1989**, 111, 5002-5003; (b) Murahashi, S. I. Angew. Chem., Int. Ed. **1995**, 34, 2443-2465.

(15) (a) Imada, Y.; Iida, H.; Ono, S.; Murahashi, S. I. J. Am. Chem. Soc.
2003, 125, 2868-2869; (b) Imada, Y.; Iida, H.; Murahashi, S.-I.; Naota, T. Angew. Chem., Int. Ed. 2005, 44, 1704-1706; (c) Chen, S.; Foss, F. W., Jr Org. Lett. 2012, 14, 5150-5153; (d) Imada, Y.; Kitagawa, T.; Wang, H.-K.; Komiya, N.; Naota, T. Tetrahedron Lett. 2013, 54, 621-624; (e) Kotoučová, H.; Strnadová, I.; Kovandová, M.; Chudoba, J.; Dvořáková, H.; Cibulka, R. Org. Biomol. Chem. 2014, 12, 2137-2142; (f) Murahashi, S.-I.; Zhang, D.; Iida, H.; Miyawaki, T.; Uenaka, M.; Murano, K.; Meguro, K. Chem. Commun. 2014, 50, 10295-10298; (g) Iida, H.; Imada, Y.; Murahashi, S.-I. Org. Biomol. Chem. 2015, 13, 7599-7613; (h) Cibulka, R. Eur. J. Org. Chem. 2015, 2015, 915-932.

(16) Recently, flavins have also been attracted increasing attention as a photocatalyst using O₂: (a) Fukuzumi, S.; Kuroda, S.; Tanaka, T. J. Am. Chem. Soc. 1985, 107, 3020-3027; (b) Cibulka, R.; Vasold, R.; König, B. Chem. - Eur. J. 2004, 10, 6223-6231; (c) Muhldorf, B.; Wolf, R. Angew. Chem., Int. Ed. 2016, 55, 427-430; (d) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040-1045; (e) Ramirez, N. P.; König, B.; Gonzalez-Gomez, J. C. Org. Lett. 2019, 21, 1368-1373; (f) Zelenka, J.; Cibulka, R.; Roithova, J. Angew. Chem. Int. Ed. Engl. 2019, 58, 15412-15420; (g) König, B.; Kümmel, S.; Svobodová, E.; Cibulka, R. Physical Sciences Reviews 2018, 3; (h) Graml, A.; Nevesely, T.; Kutta, R. J.; Cibulka, R.; König, B. Nat. Commun. 2020, 11, 11; (i) Oka, M.; Katsube, D.; Tsuji, T.; Iida, H. Org. Lett. 2020, 22, 9244-9248.

(17) Ishikawa, T.; Kimura, M.; Kumoi, T.; Iida, H. *ACS Catal.* **2017**, *7*, 4986-4989.

(18) For selected reviews of the iodine catalyzed system, see: (a) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. *Chem. – Eur. J.* 2012, *18*, 5460-5489; (b) Liu, D.; Lei, A. *Chem. - Asian J.* 2015, *10*, 806-823; (c) Flores, A.; Cots, E.; Berges, J.; Muniz, K. *Adv. Synth. Catal.* 2019, *361*, 2-25; (d) Zhang, H. H.; Wang, H. H.; Jiang, Y.; Cao, F.; Gao, W. W.; Zhu, L. Q.; Yang, Y. H.; Wang, X. D.; Wang, Y. Q.; Chen, J. H.; Feng, Y. Y.; Deng, X. M.; Lu, Y. M.; Hu, X. L.; Li, X. X.; Zhang, J.; Shi, T.; Wang, Z. *Chem. – Eur. J.* 2020, *26*, 17289-17317.

(19) (a) Ohkado, R.; Ishikawa, T.; Iida, H. *Green Chem.* **2018**, *20*, 984-988; (b) Iida, H.; Demizu, R.; Ohkado, R. *J. Org. Chem.* **2018**, *83*, 12291-12296; (c) Tanimoto, K.; Ohkado, R.; Iida, H. *J. Org. Chem.* **2019**, *84*, 14980-14986.

(20) Okai, H.; Tanimoto, K.; Ohkado, R.; Iida, H. Org. Lett. 2020, 22, 8002-8006.

(21) Sakai, T.; Kumoi, T.; Ishikawa, T.; Nitta, T.; Iida, H. Org. Biomol. Chem. 2018, 16, 3999-4007.

(22) (a) Schofield, K.; Grimmett, M. R.; Keene, B. R. T., *Heteroaromatic Nitrogen Compounds: The Azoles.* Cambridge University Press: Cambridge, 1976; (b) Kortüm, G.; Vogel, W.; Andrussow, K. *Pure Appl. Chem.* **1960**, *1*, 187-536.

(23) Due to the modest and selective oxidization during flavin catalysis, the aerobic oxidative sulfenylation is compatible with the multistep synthesis. Indeed, it could be applied to the three-step synthesis of 3-thioimidazo[1,2-a]pyridines, including the imidazopyridine ring formation and sulfenylation; see ref. 20.

(24) De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M. C.; Barbera, M. C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. *J. Med. Chem.* **2004**, *47*, 6120-6123.