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Deconvolution of temperature dependence of conductivity, its reduced activation 

energy, and Hall-effect data for analysing impurity conduction in n-ZnSe 

The temperature dependence of the reduced activation energy w = ε/kBT of the conductivity σ 

has been utilized for determining the impurity conduction mechanism in doped semiconductors 

in many studies. Herein, the formula for deconvoluting w when plural conduction mechanisms 

appear is used to confirm the analysis of the data of the Hall-effect measurements on Al-doped 

n-ZnSe samples. The analysis is performed on the basis of an impurity-Hubbard-band model 

which includes ε2 conduction in the top Hubbard band as well as ε3 and Efros-Shklovskii (ES) 

variable range hopping (VRH) conductions in the bottom Hubbard band. As the result of the 

analysis, transitions among the three hopping conduction mechanisms of ε2, ε3, and ES VRH 

are clearly shown in the temperature dependence of w as well as in that of the Hall mobility, 

which are hardly noticed in the temperature dependence of σ. In addition, the power-law 

exponent of the prefactor of ES VRH conductivity is determined through the fit to the 

temperature dependence of w to show that it decreases from ~1.5 to ~0 with increasing net 

donor concentration. 

Keywords: Hopping conduction; Hall effect; ZnSe 

1. Introduction  

Impurity conduction in semiconductors is categorized intoε2 and ε3 conductions. In n-type 

semiconductors, ε3 conduction occurs through nearest-neighbor hopping (NNH) of electrons from 

neutral donors D0 to empty positive donors D+ while ε2 conduction occurs through NNH of electrons 

from neutral donors to neutral donors. In other words, ε2 conduction corresponds to the transition of 

two neutral donors into negative- and positive-charged ions (2D0 −> D− + D+). Since the overlap 

between the donor states becomes strong with the donor concentration, impurity bands appear as a 

consequence. The bands formed from the D− and the D0 states are called as the top and the bottom 

Hubbard band, respectively [1]. At sufficiently low temperatures, ε3 conduction is altered to variable-
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range hopping (VRH) conduction. VRH is further categorized into the Mott and the Efros-Shklovskii 

(ES) types. In general, hopping conductivity is described by the following expression: 

 ( ) ( )[ ]ps TTTT 000 exp −= σσ . (1) 

In the three-dimensional system, p = 1 for NNH in both of the top and bottom Hubbard band while p 

= 1/4 and 1/2 for Mott and ES type VRH, respectively. 

Although impurity conduction in group-IV elemental and III-V compound semiconductors 

has been vigorously studied, that in II-VI compound semiconductors is not so extensively studied. In 

particular, studies on ε2 conduction are restricted to several materials such as p-Ge [2], n-Ge [3, 4], 

n-Si [5, 6], p-Si [7], n-GaAs [8], and n-InP [9]. Thus, there are no studies on ε2 conduction in II-VI 

compound semiconductors to date. 

Furthermore, in general, the Hall effect for hopping conduction is not well understood yet. In 

the previous studies of the author, the complicated behaviour of the Hall coefficient RH(T) in group-

IV elemental semiconductors of p-Ge [10], n-Ge [11], and n-Si [12] as well as that in III-V 

compound semiconductors of n-GaAs [8] and n-InP [9] has been well described using a Hubbard-

band model. 

In the present study, the Hubbard-band model is now applied to analyze the complicated 

behaviors of the temperature dependence of the conductivity and the Hall coefficient of n-ZnSe to 

show the existence of the narrow temperature region in which ε2 conduction dominates. 

For determining the dominant conduction mechanism, Zabrodskii [13, 14] proposed to use a 

graph of the temperature dependence of the reduced activation energy of conduction: 
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The temperature dependence of w(T) can be obtained by graphical differentiation [15-18] of the 

curve of ln σ vs ln T or numerical methods. As a numerical method, Shafarman et al. [19] used a 

formula of 
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where T1 < T2 < T3. 

When a conduction mechanism with the form of equation (1) dominates, equation (2) leads to 

 ( )pTTpsw 0+−= . (4) 

If the second term in the right-hand side of equation (4) is much larger than the first, we have 

 TpTppw loglogloglog 0 −+≈ , (5) 

so that the exponent p is given by the slope of log w against log T. 

Two years after the proposal by Zabrodskii, Rentzsch et al. [20] have already used this 

method for analyzing the impurity conduction mechanism in unintentionally doped n-ZnSe to find 

that p is in the range between 0.68 and 1.0, which suggests competition between ε3 and ES VRH 

conductions. Timchenko and Nedeoglo [21] as well as Kasiyan et al. [22, 23] also used this method 

to investigate the impurity conduction mechanism in unintentionally doped and Al-doped n-ZnSe to 

show the existence of the temperature region in which ES-VRH conduction dominates. 

Note that, when the first term in the right-hand side of equation (4) cannot be ignored in 

comparison with the second, one should plot log (w + s) against log T, as pointed out by Lisunov et 

al. [24] and Rodríguez et al. [25] Otherwise the curve of log w against log T shows a convex 

curvature for a positive value of s while shows a concave one for a negative value of s. 
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In the present study, we use the formula for w when plural conduction mechanisms appear in 

order to investigate the impurity conduction mechanisms in n-ZnSe. In particular, we focus on the 

effects of the ε2 process in conductivity and the Hall effect in n-ZnSe.  

In the following, we describe our analysis model in Sec. 2 and then describe in Sec. 3 the 

results of simultaneous fits to the experimental data of the conductivity σ, its reduced activation 

energy w, the Hall mobility µH, and the Hall coefficient RH on the Al-doped n-ZnSe samples 

reported by Kasiyan et al. [23] The relations among the deduced parameters are discussed in Sec. 4. 

The summary is given in Sec. 5. 

2. Analysis model 

Analysis in the present study has been performed on the basis of the impurity-Hubbard band model 

developed in the previous study of the author [8]. In this model, the conductivityσ, the Hall 

coefficient RH, and the Hall mobility µH are deconvoluted into 

 σ = σ1 + σ2 + σ3 + σVRH, (6) 

 
HVRH

VRH
HHHH RRRRR

2

3

2
3

2

2
2

1

2
1 






+






+






+






=

σ
σ

σ
σ

σ
σ

σ
σ , (7) 

and 

 
HVRH

VRH
HHHH µ

σ
σ

µ
σ
σ

µ
σ
σ

µ
σ
σ

µ +++= 3
3

2
2

1
1 , (8) 

respectively. 



5 
 

For n-type semiconductors, σ1 denotes the free-electron conductivity in the conduction 

band;σ2 andσ3 denote the NNH conductivity in the top (D−) and the bottom (D0) impurity Hubbard 

band, respectively;σVRH denote the VRH conductivity in the bottom impurity Hubbard band. RHi and 

µHi (i = 1, 2, 3, and VRH) are the Hall coefficients and the Hall mobilities due to the respective 

conduction mechanisms. 

The respective conductivities are calculated as σ1 = en1µ1, σ2 = eNtµ2, σ3 = eNbµ3, and σVRH 

= eNbµVRH, where n1 is the free-electron concentration in the conduction band while DDDt NNNN /0−=  

and Nb = DDD NNN /0+  are the effective concentrations of electrons hopping in the top and the bottom 

Hubbard band, respectively, while µi’s are the respective drift mobilities. The concentrations of the 

positively, negatively, and neutally charged state of donors are respectively calculated as 1fNN DD =+ , 

1−
− = fNN DD , and 0

0 fNN DD = , where ND is the total donor concentration, using the charge-state 

distribution functions f1, f-1, and f0 which are defined in the previous study [8]. In the calculation of 

the charge-state distribution functions, we assume that the energy gap between the bottom and the 

top Hubbard band is calculated as U = Eb − Et = 0.945Eb according to Poklonskiet al. [26], where Eb 

and Et respectively denote the energy separations of the D0 and the D− states from the conduction-

band bottom. Note that we assume here the widths of both the top and the bottom Hubbard band to 

be much narrower than the energy gap U and assume the density of states to be expressed by the 

Dirac δ function for both the impurity bands. This assumption can be justified for the samples treated 

in the present study since the net donor concentrations NND = ND −  NA ( ≈n300K) in these samples are 

much lower than the critical net donor concentration NNDcr for the onset of the metal-insulator (MI) 

transition. Figure 1 shows the band diagram of the impurity Hubbard bands in n-ZnSe. Note that this 
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figure corresponds to the dilute-impurity limit of Fig. 5 of Ref. [27], in which Eb and Et are denoted 

as I and E, respectively, and the width 2∆ of the top Hubbard band is not zero but finite.  

The respective Hall coefficients are calculated as RH1 = ( )11 enAH− , RH2 = ( )tH eNA 2− , RH3 = 

( )bH eNA 3− , and RHVRH = ( )bHVRH eNA− , where AHi’s are the respective Hall factors. The respective 

Hall mobilities are calculated as iHiiHiHi AR µσµ == . 

For free electrons in the conduction band, the concentration n1, the drift mobility µ1, and the 

Hall factor AH1 are calculated within the relaxation-time approximation with taking into account 

scattering due to ionized impurities, neutral impurities, acoustic phonons, polar optical phonons, 

piezo-electrically active acoustic phonons. The relaxation times for these scattering mechanisms 

were calculated according to the study by Ruda [28]. 

The values of the effective mass m* and the static dielectric constant εs were taken from the 

study by Ohyama et al. [29] Using these values, the effective Bohr radius aB was calculated to be 32 

Å. The value of the acoustic deformation potential Eac was taken from the study by Emel'yanenko et 

al. [30] The valuesof the other material parameters for ZnSe were taken from the study by Ruda [28]. 

The material parameters are tabulated in Table 1. 

It has been shown both experimentally and theoretically that the static dielectric constant at 

low temperature increases with the impurity concentration to diverge at the critical net donor 

concentration NNDcr for the onset of the MI transition [31, 32]. Also for n-ZnSe, Kasiyan et al. [22, 

33] as well as Nedeoglo et al. [34] suggested the increase of the dielectric constant with the net donor 

concentration near the MI transition. According to Poklonski et al. [32], we assume the form of 

 ( )( ) 1000 12)( −
−+= NDcrDNDcrDsDeff NNNNN εε . (9) 
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Regarding the critical concentration for the MI transition in n-ZnSe, we adopt the value of NNDcr = 

1.3 × 1017 cm-3 according to Kasiyan et al. [23], and calculated εeff according to equation (9). 

As in the previous study [8], the hopping drift mobilities are assumed to be expressed as 

 ( ) ( )TkETkE Bi
s

Biii
i −= exp0µµ , (10) 

where i = 2, 3, and VRH for ε2, ε3, and ES-VRH conduction, respectively. µ0i’s are temperature-

independent constants. The activation energies E2 and E3 of drift mobilities for NNH in the top and 

the bottom Hubbard bands are treated as temperature-independent constants while EVRH is treated as 

a temperature-dependent activation energy which is expressed as EVRH = kB(TEST)1/2 with assuming 

ES VRH rather than Mott VRH as in the studies [21-23] on n-ZnSe. For the parameter s appearing in 

equation (4), we assume s2 = s3 = 3/2 for NNH according to the small-polaron theory [35-37] while 

sVRH = sES for ES VRH is treated as an adjustable parameter. 

Note here that E2 and E3 are defined not as the activation energies of conductivities σ2 and σ3 

but as those of drift mobilities µ2 and µ3. On the other hand, ε2 and ε3 usually denote the activation 

energies of conductivities σ2 and σ3, respectively. Since σ2 and σ3 are calculated as σ2,3 = eNt,bµ2,3, 

ε2 and ε3 can be described as )/1()(ln)2/3()/1()(ln ,3,23,23,2 TdNdkTkETddk btBBB −−=−= σε . 

Therefore, ε2 and ε3 are different from E2 and E3 by −(3/2)kBT plus the activation energies of Nt and 

Nb, respectively. At low temperatures, whereas Nb is approximated as Nb ≈≈ +
DN NA and thus can be 

regarded as independent of temperature, Nt is approximated as Nt −≈ DN  = NDf-1. Since f-1 can be 

approximated as f-1 ( )TkU B/exp −∝  at low temperatures, the activation energy of −
DN  increases with 

decreasing temperature to be U at low temperatures [11]. 
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Also according to the small-polaron theory [35-37], the Hall factors for ε2 and ε3 conductions 

are assumed to be expressed as 

 ( ) ( )TkEKITkA BiHHiBHi exp= , (11) 

where KH = 2/3 and IHi are temperature-independent constants. On the other hand, as in the previous 

study [8], the Hall factor AHES for ES-VRH conduction is assumed to be expressed as  

 ( ) ( )( )[ ]2/11
0 1exp TTTTAA ESES

s
ESHESHES

ES ν−= −

 (12) 

with A0HES and νESbeing temperature-independent constants.  

According to the model described in the above, simultaneous fits to experimental data of σ, 

RH, and µH reported by Kasiyan et al. [23] were performed using equation (6), (7), and (8), 

respectively. However, the fitting results in the next section reveal that the fits can be well performed 

with neglecting the third term in each of the right-hand side of equation (7) and (8), i.e., the 

contribution from ε3 conduction, for all the samples investigated. This indicates that the Hall effect is 

absent for NNH in the bottom Hubbard band. 

When conductivity is described by the sum of several terms by ∑=
i

iσσ , as in equation (6), 

the reduced activation energy can be expressed by [38] 
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Thus, the total reduced activation energy w can becalculated as the weighted mean of all the 

respective reduced activation energies wi just like the total Hall mobility. Therefore, the total reduced 

activation energy as well as the total Hall mobility can be deconvoluted into the contribution from 

the respective conduction mechanisms. We calculated w(T) and wi(T) from the calculated results of 

σ(T) and σ i(T) using equation (3). 

3. Fitting results 

Kasiyan et al. [23] reported the results of the temperature-dependent Hall-effect measurements on 

more than twenty samples of Al-doped n-ZnSe with different shallow donor concentrations ND in the 

temperature range between 1.6 and 300 K. Besides the data of the conductivity and the Hall-effect 

measurements, they showed the temperature dependence of w which was obtained through the 

graphical differentiation of σ(T). Among the samples, those with ND higher than 1 ×1017 cm-3 

exhibited metallic conduction while those with lower concentrations exhibited activated conduction 

at low temperatures. Among the samples which exhibited activated conduction, we analyze here the 

experimental data of σ(T), w(T), and RH(T) on eight samples. 

Dotted lines in Figure 2(a) and (b) show the w(T) curves obtained by Kasiyan et al. [23] for 

the seven samples out of eight. From the w(T) curves, Kasiyan et al. identified the ε1 region as well 

as the ε3 region which is replaced by VRH in the lower temperature region. From the slope of the 

lowest-temperature linear portion of the log w versus log T dependence, they determined the power 

exponent p to be 0.5. They also deduced the activation energies ε1 and ε3 but did not deduced the 

characteristic temperature TES for ES VRH. Although they did not refer to the possibility of ε2 

conduction, the existence of the temperature region in which ε2 conduction dominates will be proved 



10 
 

later in the present study through the deconvolution of the w(T) curves as well as by that of RH(T) 

and σ(T). 

Fitting to the experimental data was performed in the way described in the previous study [9], 

in which the values of fitting parameters are determined almost one by one. Therefore, the best-fit 

values of the fitting parameters can be determined almost uniquely, in spite of the large number of 

the fitting parameters. The best-fit values of the fitting parameters are shown in Table 2 for the 

eight samples. For Sample 642, since the fits were well performed without assuming ε2 conduction, 

the parameters related to the top Hubbard band have not been extracted. On the other hand, for three 

samples of 614, 626, and 630, since the fits were well performed without assuming ε3 conduction, 

the parameters related to ε3 conduction have not been extracted. For samples of 642, since the data 

of the Hall-effect measurements are not reported, the parameters related to the Hall effect are not 

extracted. For samples of 626, 630, and 635, since the low temperature ends of the Hall-effect 

measurements were not sufficiently low for the effect of ES VRH on RH to be observed, the 

parameters A0HES and νES related to the Hall effect for ES VRH cannot be extracted.  

Figure 3(a) and 3(b) show the comparison between the experimental and fitted results of the 

temperature dependence of conductivity σ for Sample 614and 637, respectively. In each figure, the 

experimental results of σ are plotted as a function of T-1/2 by closed or open circles while the 

simulated results are shown by a violet solid line. Also shown by green, red, yellow, and blue curves 

are the calculated results of σ1, σ2, σ3, and σVRH, respectively. Closed triangles and dotted curves in 

(a) represents the experimental and the calculated results of σT3/2. Note that the logarithmic plot of σ 

against T-1/2 shown in Figure 2(a) for Sample 614 is not perfectly straight but shows a slightly convex 
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curvature in the ES-VRH dominant temperature region while that of σT3/2 is perfectly straight. This 

is due to the positive value of sES = 3/2. 

The comparison between the experimental and fitted results of the temperature dependence of 

the reduced activation energy w is shown in Figure 2, where (a) shows the results for two samples of 

614 and 630 while (b) shows those for five samples of 633, 635, 637, 639, and 642. The calculated 

results of the contribution from ε1, ε2, ε3 and VRH conductions are shown by green, red, yellow, and 

blue curves, respectively. 

Kasiyan et al. [23] identified the conduction mechanism in the temperature range of 7-14 K 

as ε3 conduction on the basis of the slope of w(T) in this temperature region for all the samples. In 

the present study, however, both curves of σ(T) and w(T) for three samples of 614, 626, and 630 can 

be fitted well without ε3 conduction, as shown in Figure 2(a) and 3(a) for Sample 614. In the present 

study, the slight convex curvatures of the w(T) curves shown in Figure 2(a) for these samples, as well 

as that of the logarithmic plot of σ(T) against T-1/2 shown in Figure 3(a) for Sample 614, in the ES-

VRH dominant temperature region are attributed to the positive values of sES. 

Figure 4 shows comparison between log-log plots of w and w + 1.5 versus T for Sample 626. 

As can be seen in the figure, whereas the log-log plot of w is not straight but exhibits a convex 

curvature, the log-log plot of w + 1.5 is on a straight line with a slope of -1/2. A fine straight solid 

line represents w + 1.5 = (1/2)(TES/T)1/2 with TES = 625 K. Thus, the conduction mechanism in the 

temperature range of 7-14 K for three samples of 614, 626, and 630 has been assigned to be ES VRH 

with sES = 1.5. Also for the other five samples, the values of sES were obtained through the fits to the 

w(T) curves rather than the σ(T) curves.   
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For the five samples of 633, 635, 637, 639, and 642, contribution from ε3 conduction cannot 

be so clearly noticed in the σ(T) curves, as shown in Figure 3(b) for Sample 637. However, 

contribution from ε3 conduction is clearly noticed as the appearance of the peak in the w(T) curves 

for the four samples of 635, 637, 639, and 642, as shown in Figure 2(b). For Sample 633, a faint 

swell around 8 K in the w(T) curve can be attributed to ε3 conduction. 

For the three samples of 614, 626, and 630, although contribution from ε2 conduction cannot 

be clearly noticed in the σ(T) curves, as shown in Figure 3(a) for Sample 614, the sharp rise of the 

w(T) curve at about 20 K before the onset of ε1 conduction can be attributed to the onset of ε2 

conduction, as shown in Figure 2(a). Being different from the three samples of 614, 626, and 630, the 

other five samples exhibit no clear signatures of ε2 conduction in their w(T) curves. As can be seen 

Figure 2(b), the effect of ε2 conduction appears only as a broad tail of the peak due to ε1 conduction 

in each w(T) curve.  

The contribution from ε2 conduction can also be seen in both of the µH(T) and the RH(T) 

curves while that from ε3 conduction can hardly be seen in both the curves. Figure 5 and 6 show 

comparison between the experimental and fitted results of the temperature dependence of the Hall 

mobility µH and that of the Hall coefficient −RH(T), respectively. In each figure, closed and open 

circles represent the experimental results for Sample 614and 637, respectively. The calculated results 

of the contribution from ε1, ε2, and VRH conductions are shown by green, red, and blue curves, 

respectively. The temperature region in which the contribution from ε2 conduction dominates 

appears in the µH(T) curve as well as in the RH(T) curve even for Sample 637 for which the 

temperature region in which σ2/σ1 > 1 is absent. This is partly owing to the large value of AH2 (about 

10 at 30 K) due to the small values of IH2. On the other hand, ε3 conduction hardly contributes to the 
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Hall mobility and the Hall coefficient. This can be attributed to the small value of AH3. The reason 

for the small value of AH3 will be discussed in Sec. 4.2. 

It is seen in Figure 6 that the contribution from ε2 conduction plays the dominant role in −RH 

around its peak. The dominance of the contribution from the ε2 conduction in the Hall coefficient 

around its peak has also been revealed for a p-Ge sample [10] as well as for the n-GaAs and n-InP 

samples [8, 9] in our previous studies. On the other hand, the contribution from ε3 conduction can be 

ignored in the µH(T) curve as well as in the RH(T) curve even for Sample 637 in spite of the 

appearance of the peak due to ε3 conduction in the w(T) curve for this sample.  

4. Discussion 

4.1: Ionization energy Eb 

In the present study, the simultaneous fits to the experimental data of σ(T) and RH(T) in the ε1 

conduction dominant temperature region have enabled us to deduce the values of Eb for the eight 

samples of Table 2. For unintentionally doped n-ZnSe, Nedeoglo [39] plotted his own data of Eb 

together with the data of Aven et al. [40] as a function of the  total impurity ion concentration 2NA + 

n to find the relation of Eb = Eb0 − α0(2NA+ n)1/3, where Eb0 = 33 meV and α0  =  4.9  ×10-5 meV 

cm. In the previous study of the author, on the other hand, it was shown that the relation of Eb = Eb0 

−α0NA
1/3 proposed by Pődör [41] shows better fits to the experimental results not only for n-InP but 

also for n-GaAs [9]. The linear dependence of Eb on the cube root of the compensating impurity 

concentration rather than that of the major impurity concentration has been also show for p-InP [42]. 

In Figure 7, the values of Eb for the eight samples of n-ZnSe of Kasiyan et al. [23] listed in 

Table 2 deduced in the present study are plotted by closed circles (●) as a function of NA
1/3. Also 
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plotted are the Eb data for Al-doped (◆) and unintentionally doped (◇) n-ZnSe samples of Vaziri et 

al. [43], Ga-doped n-ZnSe samples of Vaziri et al. [44] (○), and unintentionally doped n-ZnSe 

samples of Aven [40] (×), Nedeoglo [39] (□), Emel'yanenko et al. [30] (◇), and van Houten et al. 

[45] (+). A solid straight line indicates the relation of Eb = Eb0 − α0NA
1/3, where Eb0 = 33 meV 

and α0  = 7.0 ×10-5 meV cm. It can be seen in Figure 7 that, excepting a few, almost of the values of 

Eb deduced for the above samples including the eight samples in the present study are coincident 

with this relation. 

For the hydrogenic impurities, the ionization energy Eb0 at the limit of the dilute impurity 

concentration can be estimated as Eb0 = (mp/m0)(ε0/εs)2Eh, where Eh is the binding energy of the 

hydrogen atom and mp is the polaron mass which is calculated as mp = m*(1 + αF/6) with the 

Fröhlich coupling constant αF [29]. When m* = 0.135 m0 and αF = 0.575 [29] is adopted for ZnSe, 

the value of εs = 7.8 ε0 is needed for yielding Eb0 = 33 meV. This value of εs is slightly smaller than 

the value used for the calculation of σ1.  

4.2: ε3 conduction 

As can be seen in Table 2, the values of E3 obtained in the present analysis are rather larger than 

those of ε3 obtained by Kasiyan et al. [23] This is mainly owing to the difference between the present 

analysis and the previous one in the assumed temperature dependence of the pre-exponential factor 

of ε3 conduction. Namely, we have assumed the T−3/2 dependence for the pre-exponential factor in 

the present analysis while the temperature-independent pre-exponential factor had been assumed by 

Kasiyan et al. [23]. When assuming the form of equation (10) with s3 = 3/2 for µ3, the slope of the 

Arrhenius plot of σ3 can be written as d(lnσ3)/d(1/kBT) ≈  −E3 + (3/2)kBT. Therefore, when the value 
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of ε3 is deduced from the slope of the Arrhenius plot of σ around T = 14 K, it will be smaller than the 

present value of E3 by (3/2) kBT ≈ 1.8 meV. This value almost explains the difference between the 

values of E3 obtained in the present study and those of ε3 obtained byKasiyan et al. [23]. 

The theoretical expression for the conductivity activation energy ε3 has been obtained by 

Ginzburg [46] as well as by Abboudy [47]. Ginzburg [46] obtained the expression on the basis of his 

molecular-pair theory as 

 ( )ρ
ρ

ρ
επε

εε −
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Here, Rm is the maximum distance between the centers in a percolation chain, α = 1/aB is the 

reciprocal Bohr radius of the 0
DN  state, and η is the numerical factor. Shklovskii [48] theoretically 

deduced the value of ≈η 1.78 for an isotropic conduction minimum. On the other hand, Abboudy 

[47] obtaineda similar but slightly different analytical exression: 
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where 
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 3/1
3/1
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3
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=′ DD NN απαρ . (19) 

Since the hopping conductivity is described by σ3 = eNbµ3, the activation energy ε3 of σ3 

includes not only the activation energy E3 of µ3 but also the activation energy of Nb. At sufficiently 

low temperatures, however, since DDDb NNNN 0+=  can be approximated by the temperature 

independent value of ≈bN DADA NNNN )( − , the activation energy of Nb can be neglected. Therefore, 

we can equate ε3 with E3. 

The value of ε3was calculated according to equation (15) or (18) for K = 0.5 while that of 

ε03was calculated according to equation (16). In Figure 8, solid lines of blue, red, and yellow show 

the calculated results according to equation (16), (15), and (18), respectively, with εs = 7.8 ε0 while 

broken lines show those calculated with εs = 9.2 ε0.  

From the comparison of the calculated results in Figure 8 with the values of ε3 in the brackets 

in Table 2 which were obtained by Kasiyan et al. [23], it is noticed that the latter are too low in 

comparison with the former. On the other hand, almost good agreement can be seen in Figure 8 

between the deduced values of E3 in the present study and the calculated values of ε3 according to 

equation (18) when adopting the value of εs = 7.8 ε0. However, when adopting the value of εs = 9.2 

ε0, the calculated values according to equation (15) seem to be closer to the the deduced values of 

E3. The reported values of εs are ranging from 7.1 ε0 to 9.6 ε0 [49]. Owing to this ambiguity in εs, it 

is difficult to judge which of equation (15) or (18) is better.  

As already mentioned in the above, contribution from ε3 conduction can be substantially 

neglected on fitting RH(T) and µH(T) results of Sample 633, 635, 637, and 639 in spite of the 

appearance of the peak due to ε3 conduction in their w(T) curves. This indicates that the Hall factor 
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AH3 for ε3 conduction is substantially zero. Malwah and Bene [50] theoretically showed that AH3 

vanishes when the bottom Hubbard band is half-filled. Kogutyuk et al. [51] confirmed this result. 

Note, however, that both of these studies are regarding the a.c. Hall effect in the high-frequency 

limit. On the other hand, Movaghar et al. [52] showed that AH3 decreases with decreasing frequency 

ω as ωs to be constant at low frequencies, where s decreases with increasing density of hopping sites. 

Therefore, the Hall effect in the ω = 0 limit, i.e., the d.c. Hall effect, for ε3 conduction will be more 

hardly observed than the a.c. Hall effect for samples in the vicinity of the half-filled band condition. 

The compensation ratios of Sample 633, 635, 637, and 639 are in the range between 0.4 and 0.5. 

Thus, the condition for vanishing AH3 seems to be almost fulfilled for these samples since 

( )KNfNN DDD −≈= 10
0  stands at low temperatures.  

4.3: VRH conduction  

Figure 9, 10, and 11 respectively shows the plots of sES, TES, and µ0ES as a function of ND −  NA. As 

shown in Figure 9, while sES remains constant at 1.5 for ND −  NA < 3.2 ×  1016 cm-3, it decreases with 

ND −  NA for larger values than 3.2 ×1016 cm-3 to be ~0 but slightly negative. Similarly, while TES 

does not decrease so quickly for ND − NA < 3.2 ×  1016 cm-3, it drastically decreases with ND − NA for 

larger values than 3.2 ×  1016 cm-3. The dependence of µ0ES upon ND − NA also seems to show 

marked difference between the two regions in which ND − NA is smaller and larger than 3.2 ×  1016 

cm-3. Note that, in the three samples with ND −  NA < 3.2 ×  1016 cm-3, the ε3 conduction region hardly 

observed between VRH conduction region and the ε2 conduction region. 

Rodríguez et al. [53] theoretically showed that, when the impurity overlap wave function has 

the form of )/exp()( ξψ rrr j −∝ − , where ξ is the localization length, sES can be represented as sES ≈  
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− (4j − 1)/2. The wave function of the ns state in the Coulomb potential has the asymptotic form with 

j = 1 −  n while that in the short-range potential has the form with j = 1. This leads to the positive 

value of sES ≈  (4n − 3)/2 for the ns state in the Coulomb potential while leads to the negative value of 

sES ≈  −3/2 for the short-range potential. The values of sES ≈  3/2 for ND −  NA < 3.2 ×  1016 cm-3 lie 

between the values for the 1s and 2s state in the Coulomb potential. On the other hand, sES ≈  0 for ND 

−  NA > 3.2 ×  1016 cm-3 suggests that the effective potential which determines the impurity overlap 

wave function changes its character from Coulomb-like long-rang potential to short-range one for ND 

−  NA > 3.2 ×  1016 cm-3. 

The decrease of TES with increasing impurity concentration has often been observed for 

various semiconductors such as p-Ge [10], n-Si [12], and n-GaAs [8]. 

4.4: ε2 conduction  

Figure 12 shows ε2 = E2 + 0.945Eb as a function of αdND, where dND = (4π/3)−1/3NND−1/3  is the 

averaged distance between neutral donors at low temperatures. A straight line in Figure 12 shows the 

relation of ( )NDcrND dd ′−= αεε 022  with ε02  = 20.6 meV and NDcrd ′  = 17 nm for n-ZnSe. This value of 

NDcrd ′  corresponds to NND = ND – NA = 4.8 ×1016 cm-3. This value of NND is much smaller than the 

assumed value of NNDcr = 1.3×  1017 cm-3 for the MI transition in n-ZnSe. This situation is different 

from the cases of n-Ge [54] and n-InP [9], in which the values of  NND corresponding to NDcrd ′  are 

almost coincident with NNDcr. 

Figure 13 shows IH2 as a function of ε2. It can be seen there that IH2increases exponentially 

with ε2.The similar dependence of IH2 upon ε2 has also been observed for p-Ge [10], n-Si [12], and 

n-GaAs [8]. 
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5. Summary 

The experimental data of σ, w, and RH for Al-doped n-ZnSe reported by Kasiyan et al. [23] have 

been analyzed on the basis of the impurity-Hubbard-band model developed in the previous study [8]. 

Furthermore, newly developed method utilizing the temperature dependence of w was used to 

confirm the validity of the analyzed results. It has been shown that the contribution from the top 

Hubbard band at the intermediate temperatures is more clearly seen in the temperature dependence of 

w and µH rather than that of σ. The Hall effect for NNH in the bottom Hubbard band has been shown 

to be substantially absent even for the samples for which the peak due to ε3 conduction appears in the 

w(T) curve. In addition, the pre-exponetial factor of ES VRH conductivity was determined through 

the fit to the temperature dependence of w to show that it decreases from ~1.5 to ~0 with increasing 

net donor concentration. 
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