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On minus quotients of ideal class groups of
cyclotomic fields

Satoshi FUJII ∗

October 15, 2019

Abstract

Let C−
n be the minus quotient of the ideal class group of the n-th

cyclotomic field. In this article, first, we show that each finite abelian
group appears as a subgroup of C−

n for some n. Second, we show that,
for all pair of integers n and m with n | m, the kernel of the lifting
map C−

n → C−
m is contained in the 4-torsion C−

n [4] of C−
n . Such an

evaluation of the exponent is an individuality of cyclotomic fields.

1 Introduction

Let Q be the field of rational numbers. Throughout this article, all algebraic
extensions of Q are assumed to be contained in a fixed algebraic closure of
Q. Let CF be the ideal class group of a number field of F , not necessary
finite over Q. Let K be a CM-field and K+ the totally real subfield of K.
Let ι : CK+ → CK be the lifting map of ideal class groups induced from the
inclusion K+ ↪→ K. In this article, we adopt the definition of the minus
quotient C−

K of CK as the cokernel

C−
K = Coker(CK+ → CK) = CK/ι(CK+)

with respect to the lifting map ι. It is known that the relative class number
h−
K of K is equal to the order or the twice of the order of C−

K . Okazaki [7]
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showed that, for CM-fields K0 and K1 with K0 ⊆ K1, h−
K0

divides 4h−
K1

, and
also showed that this divisibility is best possible. To know the structures
of C−

K when K runs CM-fields is also a basic and important problem in
number theory. In this article, we study behaviors of the structures and
the “capitulations” of C−

K specifically on the case where the fields K are
cyclotomic fields.

For a positive integer n, let µn be the group of all n-th roots of unity in
a suitable algebraically closed field. Let kn = Q(µn) be the n-th cyclotomic
field. Let Cn and C+

n be ideal class groups of kn and k+
n . We then denote by

C−
n the minus quotient of Cn. The first result of this article is as follows.

Theorem 1. Let C be a finite abelian group. Then there is a positive
integer n such that C−

n contains a subgroup isomorphic to C.

Cornell [3] showed that Cn contains a subgroup isomorphic to C for some
n. Based on Cornell’s argument, we can obtain a refined result.

The second result is dealing with the “capitulations” of C−
n for n ≥ 1.

When an integer n divides an integer m, we will write n | m as usual.

Theorem 2. Let n and m be positive integers with n | m. Then the kernel
Ker(C−

n → C−
m) of the lifting map C−

n → C−
m is contained in the 4-torsion

subgroup C−
n [4] of C−

n .

In particular, for each odd prime number p and each pair of positive
integers m and n with n | m, the p-part of the linting map C−

n ⊗Zp → C−
m⊗Zp

is always injective, which can be seen as a generalization of proposition 13.26
of [10] for finite extension of cyclotomic fields. As we will see later, in general,
the assertion of theorem 2 does not hold for imaginary abelian fields. In fact,
we will show that there are finite extensions K/F of imaginary abelian fields
with large Ker(C−

F → C−
K) (see proposition 3). Thus we can say that the

validity of theorem 2 is an individuality of cyclotomic fields. In contrast
to theorem 2, Kurihara [6] showed that, for each positive integer n, there
exists a positive integer m divided by n such that C+

n → C+
m is trivial. The

author do not know whether there is a pair of positive integers m and n with
n | m such that C−

n → C−
m is really not injective or not. To find out such an

example of a pair of integers would be an interesting problem.
Let C−

∞ = lim−→n
C−

n , the inductive limit is taken with respect to lifting
maps. By combining theorem 1 and theorem 2, we can obtain the following.

Theorem 3. There is an isomorphism C−
∞ ≃ (Q/Z)⊕N, the direct sum

of countably infinitely many copies of Q/Z, of abelian groups.

2



Brumer [2] showed that lim−→n
Cn ≃ (Q/Z)⊕N, and hence C−

∞ ≃ (Q/Z)⊕N

by Kurihara’s result [6] stated in the above. We will give an alternative proof
of theorem 3.

Here we set some notations. For a prime number p, let Zp and Qp be the
ring of p-adic integers and the field of p-adic numbers, respectively. For a field
F , denote by µF the group of all roots of unity in F . When F is a number
field not necessary finite over Q, for an ideal I of F , let [I] be the ideal class
containing I. For a finite Galois extension K/F and a Gal(K/F )-module
M , denote by H i(K/F,M) the i-th cohomology group H i(Gal(K/F ),M) for
short. When M is equipped a multiplicative operation, for σ ∈ Gal(K/F )

and m ∈M , we will use the notation (σ − 1)m = σ(m)m−1.
Let K/F be a Galois extension and L/K an abelian extensions such

that L/F is a Galois extension. For g ∈ Gal(K/F ) and x ∈ Gal(L/K),
we define the action of Gal(K/F ) on Gal(L/K) via the inner automorphism
x 7→ g̃xg̃−1, here denote by g̃ ∈ Gal(L/F ) an extension of g.

For an abelian group A and a positive integer n, let A[n] be the n-torsion
subgroup of A.

2 Proof of theorem 1

Let C be a finite abelian group. Suppose that C ≃ ⊕r
i=1Z/niZ for some

integers r and n1, · · · , nr. Choose distinct prime numbers pi with 1 ≤ i ≤ r

such that pi ≡ 1 mod 4ni. For each i with 1 ≤ i ≤ r, let (pi) = (πi)(πi)

be the prime decomposition of the prime number pi in k4. Denote by k
(πi)
4

and k
(πi)
4 the ray class fields over k4 of conductors (πi) and (πi). Since the

unit group of k4 is µ4, it follows that k(πi)
4 and k

(πi)
4 are cyclic extensions over

k4 of degree pi−1
4

, and are tamely ramified. For each i with 1 ≤ i ≤ r, put
Fi = k

(πi)
4 k

(πi)
4 , and put F = F1 · · ·Fr. Then F/Q is a Galois extension. Since

the fields F1, · · · , Fr are linearly disjoint over k4, we have a decomposition

Gal(F/k4) ≃ ⊕r
i=1Gal(Fi/k4),

and similarly we have

Gal(Fi/k4) ≃
(
Z/

pi − 1

4
Z
)2

for each i with 1 ≤ i ≤ r.
Let J be a generator of Gal(k4/Q) ≃ Z/2Z. Then J acts on Gal(F/k4).

In particular, J induces an isomorphism Gal(k
(πi)
4 /k4) ≃ Gal(k

(πi)
4 /k4), g 7→
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J̃gJ̃−1 since k
(πi)
4 and k

(πi)
4 are conjugate over Q, and this isomorphism gives

the action of J on Gal(F/k4) ≃ ⊕r
i=1

(
Gal(k

(πi)
4 /k4)×Gal(k

(πi)
4 /k4)

)
. Put

(J − 1)Gal(F/k4) = {J̃gJ̃−1g−1 | g ∈ Gal(F/k4)}.

The subgroup (J−1)Gal(F/k4) of Gal(F/Q) coincides with the commutator
subgroup of Gal(F/Q). Let F ab be the fixed field of (J − 1)Gal(F/k4), and
then F ab/Q is an abelian extension. Since F/k4 is tamely ramified and F

does not contain µ8, the conductor of F ab/Q is equal to 4p1 · · · pr∞, where
∞ is the infinite prime of Q. Put n = 4p1 · · · pr. Then we can see that F ab

is contained in kn, and hence we have F ab = kn ∩ F .
We show that

Gal(F/F ab) ≃ ⊕r
i=1

(
Z/

pi − 1

4
Z
)
,

and that F/F ab is an unramified extension. First, we shall show Gal(F/F ab) ≃
⊕r

i=1

(
Z/pi−1

4
Z
)
. Recall that

Gal(F/k4) ≃ ⊕r
i=1Gal(Fi/k4) ≃ ⊕r

i=1

(
Gal(k

(πi)
4 /k4)×Gal(k

(πi)
4 /k4)

)
.

Let σi be a generator of Gal(k
(πi)
4 /k4). Then σi = J̃σiJ̃

−1 is a generator of
Gal(k

(πi)
4 /k4). Remark that the elements

(1, · · · , 1, σi︸︷︷︸
in Gal(k

(πi)
4 /k4)

, 1, · · · , 1)

and
(1, · · · , 1, σi︸︷︷︸

in Gal(k
(πi)
4 /k4)

, 1, · · · , 1)

generate the inertia subgroups of Gal(F/k4) at (πi) and (πi) respectively.
Let (σa1

1 , σ1
b1 , · · · , σar

r , σr
br) ∈ Gal(F/k4) with a1, b1, · · · , ar, br ∈ Z. Since

the action of J on Gal(F/k4) is given by

J(σa1
1 , σ1

b1 , · · · , σar
r , σr

br) = (σb1
1 , σ1

a1 , · · · , σbr
r , σr

ar),

we have

(J − 1)(σa1
1 , σ1

b1 , · · · , σar
r , σr

br)

=(σb1−a1
1 , σ1

−(b1−a1), · · · , σbr−ar
r , σr

−(br−ar)).
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Thus we have

(J − 1)Gal(F/k4) =
{
(σc1

1 , σ1
−c1 , · · · , σcr

r , σr
−cr) | c1, · · · , cr ∈ Z

}
.

Hence the following map

⊕r
i=1

(
Z/pi−1

4
Z
)
→ (J − 1)Gal(F/k4),

(c1 mod p1−1
4

, · · · , cr mod pr−1
4

) 7→ (σc1
1 , σ1

−c1 , · · · , σcr
r , σr

−cr)

is an isomorphism.
Next, we show that F/F ab is unramified. If

(1, · · · , 1, σc
i , 1, · · · , 1) = (σc1

1 , σ1
−c1 , · · · , σcr

r , σr
−cr)

for some integers c, c1, · · · , cr, then we can see that c ≡ 0 mod pi−1
4

and that
cj ≡ 0 mod

pj−1

4
for each j with 1 ≤ j ≤ r. This shows that (πi) is unramified

in F/F ab. Similarly, (πi) is also unramified in F/F ab.
By class field theory, the Artin map induces a surjective map

Cn → Gal(Fkn/kn).

Since Gal(Fkn/kn) ≃ Gal(F/F∩kn) = (J−1)Gal(F/k4), the above surjective
map factors through C−

n . Then we have isomorphic or surjective maps

C−
n ↠ (J − 1)Gal(F/k4)

≃ ⊕r
i=1

(
Z/

pi − 1

4
Z
)

↠ ⊕r
i=1Z/niZ

= C.

From the duality theorem of finite abelian groups, C−
n contains a subgroup

isomorphic to C. □

Remark 1. An alternative proof of theorem 1 based on Iwasawa theory of
ideal class groups exists. For each prime number p and each positive integer
r, we can show that there is a positive integer s such that the minus part
of the Iwasawa λ-invariant of the cyclotomic Zp-extension of k2ps is greater
than or equal to r. Hence, each finite abelian p-group appears as a quotient
of C−

t for some t. Then, C−
n has a quotient isomorphic to given finite abelian

group C for some n, and hence C−
n has a subgroup isomorphic to C. We

shall omit a precise proof here.
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3 Proof of theorem 2

3.1 Preliminaries

For a finite extension K/Q, let EK be the unit group of K.

Lemma 1. Let K/F be a Galois extension of number fields of finite
degrees over Q. For each prime q of F , let Fq be the localization of F at q,
and Kq the localization of K at a prime lying above q. Let UKq be the unit
group of Kq. Then there is the following exact sequence

0→ Ker(CF → CK)→ H1(K/F,EK)→
⊕

q:primes of F

H1(Kq/Fq, UKq)

of abelian groups. Here, the second map denotes the direct sum of restriction
maps.

Proof. See for example corollary of proposition 1 in [9].

Let K be a CM-field. Let J be the generator of Gal(K/K+) ≃ Z/2Z,
that is, J is the complex conjugation of K. Let QK = [EK : µKEK+ ] be the
unit index of K. It is known that QK = 1 or 2, and QK = 2 if and only if for
each root of unity ζ ∈ µK of K there exists ε ∈ EK such that ζ = (J − 1)ε.
When K = kn, Qkn = 2 if and only if n is not a prime power. If readers want
to know proofs of these facts on the unit index, see for example theorem 4.12
and corollary 4.13 of [10].

Let F be a CM-field. Suppose that F ⊆ K. Since Gal(K/K+) ≃
Gal(F/F+), we may identify these groups. From an argument similar to
the proof of proposition 13.26 of [10], we can obtain a fundamental map and
a complex for the proof.

Lemma 2. Suppose that K/F+ is a Galois extension. Then, there is a
complex

Ker(C−
F → C−

K)→ H1(K/F, µK)→
⊕
q

H1(Kq/Fq, UKq)

of finite abelian groups. Here the second map is the composition of the natural
map H1(K/F, µK)→ H1(K/F,EK) and the direct sum of restriction maps.

Proof. Remark that Jσ = σJ for each σ ∈ Gal(K/F ) since K is a CM-field
and K/F+ is a Galois extension. Recall that for an ideal I of F , we denote
by [I] the ideal class of F containing I. Suppose that [I]ι(CF+) ∈ Ker(C−

F →
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C−
K). Then there exist α ∈ K× and an ideal I+ of K+ such that I = (α)I+

in K. It holds that (J − 1)I = ((J − 1)α). Let σ ∈ Gal(K/F ). Then it holds
that (σ − 1)(J − 1)α ∈ EK , and the absolute value of (σ − 1)(J − 1)α is 1.
This implies that (σ − 1)(J − 1)α ∈ µK . We then obtain a map

Ker(C−
F → C−

K)→ H1(K/F, µK), [I]ι(CF+) 7→ class of fα,

here fα is defined by the formula

fα(σ) = (σ − 1)(J − 1)α

for all σ ∈ Gal(K/F ). We show that the above map is well-defined. Put

IK/F = {I : ideal of F | ∃α ∈ K×, ∃I+ : ideal of K+ s.t. I = (α)I+ in K}.

Then, we shall remark here that Ker(C−
F → C−

K) is a quotient of IK/F .
Let I ∈ IK/F , then there are α ∈ K× and an ideal I+ of K+ such that
I = (α)I+ in K. Suppose that I = (α)I+ = (α0)I

+
0 for some α0 ∈ K× and

an ideal I+0 of K+ in K. Then we have ((J − 1)α) = ((J − 1)α0), and hence
(J − 1)α = ζ(J − 1)α0 for some ζ ∈ EK . Since ζ = (J − 1)(αα−1

0 ), it holds
that ζ ∈ µK . For each σ ∈ Gal(K/F ), we have

fα(σ) = (σ − 1)ζ · fα0(σ),

and hence fα and fα0 define the same cohomology class of H1(K/F, µK).
This shows that

IK/F → H1(K/F, µK), I 7→ class of fα

is well-defined. Suppose that α ∈ F×, I+ is an ideal of F+ and I = (α)I+

in F . Since α ∈ F×, we have fα(σ) = 1 for each σ ∈ Gal(K/F ). This shows
that the map Ker(C−

F → C−
K)→ H1(K/F, µK) is well-defined.

Next, we show that the composition of Ker(C−
F → C−

K)→ H1(K/F, µK)

and H1(K/F, µK)→
⊕

q H
1(Kq/Fq, UKq) is trivial. Recall (J − 1)I = ((J −

1)α) in K. Since (J − 1)I is an ideal of F , for each finite prime q of F ,
there exist πq ∈ F× and εq ∈ UKq such that (J − 1)α = πqεq. Then, for each
σ ∈ Gal(Kq/Fq), it follows that

(σ − 1)(J − 1)α = (σ − 1)(πqεq) = (σ − 1)εq,

and hence the restriction fα|Gal(Kq/Fq) of fα to a decomposition group Gal(Kq/Fq)

at q defines the trivial class of H1(Kq/Fq, UKq). Since all infinite primes of
F are unramified in K/F , we have finished the proof of lemma 2.
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Proposition 1. Suppose that K/F+ is a Galois extension. If QK = 2

then the kernel of the map Ker(C−
F → C−

K) → H1(K/F, µK) is contained in
C−

F [2]. If QK = 1 then the kernel of Ker(C−
F → C−

K) → H1(K/F, µK) is
contained in C−

F [4].

Proof. Suppose that [I]ι(CF+) is contained in the kernel of Ker(C−
F → C−

K)→
H1(K/F, µK). Let I = (α)I+ for some α ∈ K× and an ideal I+ of K+. Then,
there exists ζ ∈ µK such that

fα(σ) = (σ − 1)(J − 1)α = (σ − 1)ζ

for each σ ∈ Gal(K/F ). Suppose first that QK = 2. Then there exists
ε ∈ EK such that ζ = (J − 1)ε−1. Thus, for each σ ∈ Gal(K/F ), we have

(σ − 1)(J − 1)α = (σ − 1)(J − 1)ε−1,

and hence
σ((J − 1)(αε)) = (J − 1)(αε).

Therefore, (J − 1)(αε) ∈ F×.
Remark that I = (αε)I+. By operating J and then multiplying (1 −

J)(αε) to both terms, we have J(I)(1 − J)(αε) = (αε)I+ = I. Therefore,
since (J − 1)(αε) ∈ F×, it follows that

[I2]ι(CF+) = [IJ(I)(1− J)(αε)]ι(CF+) = [IJ(I)]ι(CF+) = ι(CF+),

therefore [I]ι(CF+) ∈ C−
F [2].

Next, suppose that QK = 1. Since I2 = (α2)(I+)2, we have

fα2(σ) = (σ − 1)(J − 1)α2 = (σ − 1)ζ2 = (σ − 1)(J − 1)ζ.

This implies that

σ((J − 1)(α2ζ−1)) = (J − 1)(α2ζ−1),

and hence (J − 1)(α2ζ−1) ∈ F×. Remark that I2 = (α2ζ−1)(I+)2. By
operating J and then multiplying (1 − J)(α2ζ−1) to both terms, we have
J(I2)(1− J)(α2ζ−1) = (α2ζ−1)(I+)2 = I2. Therefore,

[I4]ι(CF+) = [I2J(I2)(1− J)(α2ζ−1)]ι(CF+) = [I2J(I2)]ι(CF+) = ι(CF+),

as desired.

8



Lemma 3. Suppose that K/F+ is a Galois extension and that [K : F ] =

n. Then Ker(C−
F → C−

K) ⊆ C−
F [n].

Proof. For a finite extension k′/k, let Nk′/k be the norm map from k′ to k.
Suppose that [I]ι(CF+) ∈ Ker(C−

F → C−
K). Then there are α ∈ K× and

an ideal I+ of K+ such that I = (α)I+. By taking the norm map from K

to F on both terms, we have In = (NK/Fα)(NK/F I
+). Since Gal(K/F ) ≃

Gal(K+/F+), if holds that NK/F I
+ = NK+/F+I+. This implies that [In] ∈

ι(CF+).

3.2 Proof of theorem 2

From here, we prove theorem 2. Let n and m be positive integers with
n | m. For a fixed prime number p, put A−

n = C−
n ⊗ Zp. We will evaluate

Ker(A−
n → A−

m) by splitting into three cases.
(1) Suppose that p is an odd prime number. We show that A−

n → A−
m is

injective. For this, we may assume that m = 2n if 4 | n, m = 4n if 2 ∤ n
or m = ℓn for some odd prime number ℓ. Assume that m = 2n if 4 | n or
m = 4n if 2 ∤ n. Then it holds that [km : kn] = 2, and hence A−

n → A−
m is

injective by lemma 3.
Suppose that m = ℓn for some odd prime number ℓ. Assume that ℓ = p.

If p ∤ n then [kpm : kn] = p− 1, and hence A−
n → A−

pn is injective by lemma 3.
If p | n, then it is known that A−

n → A−
pn is injective (see proposition 13.26 of

[10]). Assume that ℓ ̸= p. By lemma 1, we have the following exact sequence

0→ Ker(A−
n → A−

ℓn)→ (H1(kℓn/kn, Ekℓn)⊗ Zp)
−

→
⊕
q|ℓ

H1(kℓn,q/kn,q, Ukℓn,q
)⊗ Zp,

only here, for a J-module M , we let M− = {m ∈ M | Jm = −m}. It holds
that

H1(kℓn/kn, Ekℓn)⊗ Zp = H1(kℓn/kn, Ekℓn ⊗ Zp).

Since p is odd, we have

Ekℓn ⊗ Zp = (µkℓn ⊗ Zp)⊕ (Ek+ℓn
⊗ Zp),

and hence it follows that

(H1(kℓn/kn, Ekℓn)⊗ Zp)
− = H1(kℓn/kn, µkℓn ⊗ Zp).
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Since ℓ ̸= p, one sees that µkℓn ⊗ Zp = µkn ⊗ Zp. This implies that

H1(kℓn/kn, µkℓn ⊗ Zp) = Hom(Gal(kℓn/kn), µkn ⊗ Zp).

Also, since Ukℓn,q
is a product of a finite abelian group of order prime to ℓ

and a pro-ℓ abelian group, we can see that⊕
q|ℓ

H1(kℓn,q/kn,q, Ukℓn,q
)⊗ Zp =

⊕
q|ℓ

H1(kℓn,q/kn,q, µkℓn,q
⊗ Zp).

Let q be a prime of kn lying above ℓ, and Q be a prime of kℓn lying above q.
Let On and Oℓn be the ring of integers of kn and kℓn. Since kℓn/kn is totally
ramified at q, we have

µkℓn,q
⊗ Zp ≃ (Oℓn/Q)× ⊗ Zp ≃ (On/q)

× ⊗ Zp ≃ µkn,q ⊗ Zp,

and hence it follows that⊕
q|ℓ

H1(kℓn,q/kn,q, µkℓn,q
⊗ Zp) =

⊕
q|ℓ

Hom(Gal(kℓn,q/kn,q), µkn,q ⊗ Zp).

Combining the above, since Gal(kℓn/kn) ≃ Gal(kℓn,q/kn,q) for each q, we find
that

Hom(Gal(kℓn/kn), µkn ⊗ Zp)→
⊕
q|ℓ

Hom(Gal(kℓn,q/kn,q), µkn,q ⊗ Zp)

is injective. Therefore, A−
n → A−

ℓn is injective.
(2) Suppose that p = 2 and m is a prime power. Put m = ℓr for some

prime number ℓ and a non-negative integer r. Put also n = ℓs for some
non-negative integer s with s ≤ r. If s = 0 then kℓ0 = Q, and hence we may
assume that s ≥ 1. Remark that kℓr/kℓs is an ℓ-extension. If ℓ is an odd
prime number then A−

ℓs → A−
ℓr is injective by lemma 3. If ℓ = 2, then it is

well known that the class number of k2r is prime to 2 for each r ≥ 0. In
particular, A−

2s → A−
2r is injective.

(3) Suppose that p = 2 and m is not a prime power. Suppose also that
m = 2rm0 and n = 2sn0 for some non-negative integers r, s,m0 and n0 with
s ≤ r and (n0m0, 2) = 1. Let t be an integer greater than r + 1. We then
have

kn0 ⊆ kn ⊆ km ⊆ k2tm0 .

We analyze here the extension k2tm0/kn0 .
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Proposition 2. The following assertions hold.
(i) Ker(A−

n0
→ A−

4n0
) ⊆ A−

n0
[2].

(ii) Ker(A−
2vn0
→ A−

2un0
) = 0 for 2 ≤ v ≤ u.

(iii) Ker(A−
2tn0
→ A−

2tm0
) ⊆ A−

2tn0
[2] for t ≥ 2.

Proof. (i) Since [k4n0 : kn0 ] = 2, by lemma 3, we have Ker(A−
n0
→ A−

4n0
) ⊆

A−
n0
[2].
(ii) Consider the cyclic 2-extension k2un0/k2vn0 . If n0 = 1 then C2u⊗Z2 =

0 as before. Suppose that n0 has an odd prime factor. Since Gal(k2un0/kn0)

is the inertia subgroup in k2un0/Q at the prime 2, we find that k2un0/k
+
2un0

is unramified at all primes lying above 2. We need the follwoing result of
Iwasawa theory. Let X− = lim←−u

A−
2un0

, the projective limit is taken with
respect to the norm maps. Then it is known that the formal power series
ring Z2[[T ]] in one variable T with coefficients in Z2 acts on X−, and X− is
a finitely generated torsion Z2[[T ]]-module.

Lemma 4 (From corollary 1.4 of Atsuta [1]). The module X− has no
non-trivial finite Z2[[T ]]-submodule.

Let X = lim←−u
C2un0 ⊗ Z2 and X+ = lim←−u

C+
2un0
⊗ Z2. For each u, since

the sequence

0→ C+
2un0
⊗ Z2 → C2un0 ⊗ Z2 → A−

2un0
→ 0

is exact, the sequence 0 → X+ → X → X− → 0 is also exact. Let
Y +, Y and Y − be kernels of the natural surjective projection maps X+ →
C+

4n0
⊗ Z2, X → C4n0 ⊗ Z2 and X− → A−

4n0
, respectively. For each u,

put νu = (1+T )2
u−1

T
∈ Z2[[T ]]. Then by Iwasawa theory, there are iso-

morphisms C+
2u+2n0

⊗ Z2 ≃ X+/νuY
+ and C2u+2n0

⊗ Z2 ≃ X/νuY of fi-
nite abelian groups. This implies that X+ ∩ νuY = νuY

+, and, since
νuY

+ ⊆ Y + ∩ νuY ⊆ X+ ∩ νuY = νuY
+, one sees that νuY

+ = Y + ∩ νuY .
We also find that A−

2u+2n0
≃ X/(X++νuY ). Therefore, one has the following

exact sequence

0→ νuY + Y +/Y + (≃ νuY/νuY
+)→ X− → A−

2u+2n0
→ 0

for each u. Since νuY + Y +/Y + = νuY
−, we have A−

2u+2n0
≃ X−/νuY

− for
each non-negative integer u. Thus, by lemma 4 and by proposition of [8],
one can see that A−

2un0
→ A−

2∞n0
= lim−→u

A−
2un0

is injective for each integer u

with u ≥ 2. In particular, for each pair of integers u and v with 2 ≤ v ≤ u,
A−

2vn0
→ A−

2un0
is injective.

11



(iii) For a positive integer u, put k2∞u =
∪

t≥1 k2tu. For each positive
integer t greater than 1, by lemma 2, we have a complex

Ker(A−
2tn0
→ A−

2tm0
)→ H1(k2tm0/k2tn0 , µk2tm0

)⊗ Z2

→
⊕
q|m0

n0

H1(k2tm0,q/k2tn0,q, Uk2tm0,q
)⊗ Z2

of abelian groups. Also, since 2 ∤ m0, for each finite prime q of kn with q | m0

n0
,

we find that

H1(k2tm0,q/k2tn0,q, Uk2tm0,q
)⊗ Z2 = H1(k2tm0,q/k2tn0,q, µk2tm0,q

⊗ Z2).

from the same arguments as before.
Put µ2∞ =

∪
u≥1 µ2u . From the fact that inductive limits preserve com-

plexes, by taking the inductive limits with respect to positive integers t,
lifting maps and inflation maps, we also obtain a complex

Ker(A−
2∞n0

→ A−
2∞m0

)→ H1(k2∞m0/k2∞n0 , µ2∞)

→
⊕
q|m0

n0

H1(k2∞m0,q/k2∞n0,q, µ2∞)

of abelian groups. It follows from proposition 1 that the kernel of a map

Ker(A−
2∞n0

→ A−
2∞m0

)→ H1(k2∞m0/k2∞n0 , µ2∞)

is contained in A−
2∞n0

[2] because m = 2rm0 is not a prime power. Since
Gal(k2∞m0/k2∞n0) acts on µ2∞ trivially, one sees that

H1(k2∞m0/k2∞n0 , µ2∞) = Hom(Gal(k2∞m0/k2∞n0), µ2∞),

and that similarly

H1(k2∞m0,q/k2∞n0,q, µ2∞) = Hom(Gal(k2∞m0,q/k2∞n0,q), µ2∞)

for each prime q with q | m0

n0
. Let

m0

n0

=
d∏

i=1

qaii

be the prime decomposition of m0

n0
. Then we have a decomposition

Gal(k2∞m0/k2∞n0) = ⊕d
i=1Gal(k2∞m0/k2∞ m0

q
ai
i

)

12



by inertia subgroups Gal(k2∞m0/k2∞ m0

q
ai
i

) at a prime lying above qi for all 1 ≤

i ≤ d. From the above decomposition of Gal(k2∞m0/k2∞n0), it follows that
each element of Gal(k2∞m0/k2∞n0) is a product of elements of decomposition
groups. That is, it holds that

Gal(k2∞m0/k2∞n0) = ⟨Gal(k2∞m0,q/k2∞n0,q) | q |
m0

n0

⟩

Hence one sees that the direct sum of restriction maps

Hom(Gal(k2∞m0/k2∞n0), µ2∞)→ ⊕q|m0
n0

Hom(Gal(k2∞m0,q/k2∞n0,q), µ2∞)

is injective. Indeed, suppose that f ∈ Hom(Gal(k2∞m0/k2∞n0), µ2∞) maps
to 0. Then, for each prime q and each element σq ∈ Gal(k2∞m0,q/k2∞n0,q), it
holds that f(σq) = 1. As stated in the above, each element σ ∈ Gal(k2∞m0/k2∞n0)

can be written as σ =
∏

q σq for some σq ∈ Gal(k2∞m0,q/k2∞n0,q). Thus, we
find that f(σ) =

∏
q f(σq) = 1, and hence f = 0. Therefore, since

Ker(A−
2∞n0

→ A−
2∞m0

)→ H1(k2∞m0/k2∞n0 , µ2∞)

is trivial, we find that Ker(A−
2∞n0

→ A−
2∞m0

) ⊆ A−
2∞n0

[2] by proposition 1.
To finish the proof, we need the following elementary lemma.

Lemma 5. Let A,B and C be abelian groups and let f : A → B and
g : B → C be morphisms of groups. If Kerf ⊆ A[m] and Kerg ⊆ B[n] for
some integers m and n, then Kerg ◦ f ⊆ A[mn].

Proof. Let a ∈ Kerg ◦ f . Then g(f(a)) = 0, and hence f(a) ∈ B[n]. This
implies that 0 = nf(a) = f(na), and hence na ∈ A[m]. Therefore (mn)a =

0.

Since Ker(A−
2tn0
→ A−

2tm0
) ⊆ Ker(A−

2tn0
→ A−

2∞m0
) and since A−

2tn0
→

A−
2∞n0

is injective, we have Ker(A−
2tn0
→ A−

2tm0
) ⊆ A−

2tn0
[2] by lemma 5.

We finish the proof of theorem 2. Suppose that 2 ∤ n, that is, n =

n0. Then it holds that Ker(A−
n0
→ A−

m) ⊆ Ker(A−
n0
→ A−

2tm0
) ⊆ A−

n [4] by
proposition 2 and lemma 5. Suppose that 4 | n. Recall that n = 2sn0 with
s ≥ 2. Then it holds that

Ker(A−
2sn0
→ A−

m) ⊆ Ker(A−
2sn0
→ A−

2tm0
) ⊆ A−

n [2] ⊆ A−
n [4]

by proposition 2 and lemma 5. This completes the proof of theorem 2. □

13



3.3 On finite extensions of imaginary abelian fields.

Proposition 3. Let p be an odd prime number and m a positive integer.
Then there are infinitely many finite extensions K/F of imaginary abelian
fields such that Ker(C−

F → C−
K) ≃ Z/pmZ.

By proposition 3, the assertion of theorem 2 does not hold for finite
extensions of imaginary abelian fields.

Proof. Let q1 and q2 be distinct prime numbers such that q1, q2 ≡ 1 mod pm.
For i = 1 and 2, let Li be the unique subfield of kqi of degree pm. Put
L = L1L2, and let M/Q be a cyclic subfield of L of degree pm and of conductor
q1q2. Then L/M is an unramified cyclic extension of degree pm. Put K =

L(µpm) and F = M(µpm). Then K/F is also an unramified cyclic extension
of degree pm since L ∩ kpt = Q for all non-negative integer t.

By lemma 1, since K/F is a p-extension, we have the following isomor-
phism

Ker(C−
F → C−

K) ≃ H1(K/F, µK ⊗ Zp)

of finite abelian groups. Since K ⊆ Q(µq1q2pm), it follows that

µK ⊗ Zp = µpm ,

and therefore

Ker(C−
F → C−

K) ≃ H1(K/F, µpm)

= Hom(Gal(K/F ), µpm)

≃ Z/pmZ.

This completes the proof.

4 Proof of theorem 3

We need the following.

Lemma 6. (1) An abelian group A is divisible if and only if A is p-
divisible for all prime numbers p.
(2) A countable, torsion divisible abelian group A is isomorphic to (Q/Z)⊕N if
and only if, for each prime number p and each positive integer r, A contains
a subgroup isomorphic to (Z/pZ)⊕r.

14



Proof. The statement (1) is trivial. For (2), see some references about the
structure theorem of divisible groups. For instance, see theorem 23.1 of
[5].

For the divisibility of C−
∞, we give a simple proof by using the following

celebrated result of Iwasawa theory.

Lemma 7 (Ferrero–Washington [4]). For each prime number p and each
positive integer n, there is a non-negative integer λ−

p depending only on kn

and p such that
lim−→
r

C−
prn ⊗ Zp ≃ (Qp/Zp)

⊕λ−
p

as abelian groups.

For each pair of positive integers n and m with n | m, let in,m : C−
n → C−

m

be the lifting map, and in,∞ : C−
n → C−

∞ the natural map. Let p be a
prime number and x ∈ C−

∞. For the p-divisibility, we may assume that the
order of x is a p-power. There exist a positive integer n and xn ∈ C−

n such
that in,∞(xn) = x. By lemma 7, there exist a non-negative integer r and
yprn ∈ C−

prn such that in,prn(xn) = ypprn. This shows that C−
∞ is p-divisible.

By lemma 6, C−
∞ is divisible.

Next, we show that C−
∞ is countable. Let k∞ = ∪nkn be the full cyclo-

tomic field. We shall use a standard argument of Kummer theory. Let

M = {a⊗1/r ∈ k×
∞⊗Q/Z | ∃n s.t. a ∈ kn, (a) = Irn for some ideal In of kn}.

We then have a surjective map

M → C∞, a⊗ 1/r 7→ in,∞([In]).

Since k×
∞ ⊗Q/Z is countable, a quotient C−

∞ of C∞ is also countable. Thus
C−

∞ is countable.
Again, let p be a prime number and r a positive integer. By theorem 1,

there exists a positive integer n such that C−
n contains a subgroup isomor-

phic to (Z/4pZ)⊕r. By theorem 2, C−
∞ contains a subgroup isomorphic to

(Z/pZ)⊕r. By lemma 6, the assertion of theorem 3 follows. □
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